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MULTI-AGENT NETWORKS AND CONSENSUS

Multi-agent networks: A group of SISO agents >J; interact over a graph §

€2

. O—0
Zi : {xz - fi(xhui) 77; c [1711] el @3
Yi = hi(wi, u;) D—Q

Graph g
ﬁk = ¢k (7719’ Ck) EdgeS:{61> €2, 63}
I : ke [1,m] _
{ e = (s Ci) Distributed controllers

Output consensus problem:
Design distributed II;’s, such that

Jim (y(1) — ;1)) = 0, Vi, j

@tlggo y(t) e S

where 5 = span(1) denotes the
agreement space.
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GRAPHS AND LINEAR CONSENSUS PROTOCOLS

SEoait) = wit), vi(t) =zi(t) a group of integrators

10 -1 1 0 0
Eg=|-1 -1 0 B,=10 0 0
0o 1 1 0 1 1

Undirected g  Incidence matrix Directed D  Out-incidence matrix
wit) = Y wig(a(t) — (b)) wit) = Y wi(ws(t) — wi(t))
JEN (4) FEN,(4)
i(t) = u(t) = —EgWEJ x(t) &(t) = u(t) = —B,WEbx(t)
y(t) = x(t) y(t) = x(t)
-0 u(t) ’T‘ y(t) ~0 u(t) ’T‘ y(t)
g(t) g(t)
: ] - =]
w W
u(t) ) u(t) 0)
Undirected Networks Directed Networks
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GRAPH TOPOLOGIES MATTER!

Undirected Directed D
g Balanced D,

. _ 1 T . _ 1 T . F) — T
Jim y(t) = 51,1, 2(0) - lim y(t) = 31,1, 2(0)  lim y(t) = (¢; 2(0))1n
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For G and Dy:

> Achieve average consensus
> Trajectories may differ
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y(t) u(t)

g
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Undirected (3, 11,G) » Directed (3,11, D) 5,
»> Symmetric operator EgHEgT » Asymmetric operator B,I1E],

> Passivity Analysis v/
Passive IT T (£)¢(t) > V(n(t))
> Passive EgIIE,;
9" (Oy(t) = p" (EGy(t) = p" (£)C(1) > I =1:¢(t)=u)
» D is Balanced,

Proposition
If the following hold:

o A decoupled analysis

o Convergence, stability then the operator B,IIE] is
passive. s
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o A decoupled analysis
o Convergence, stability
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o Convergence, stability
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LOOP DECOMPOSITION

oM [T v oM [T v
g(t) !1(;)
(] ER =]
i il
nty LT <o pty L <o
Undirected (X,11,G) ¢ Directed (3,11,D) 5,
E'D:Bu+B1

( Decompose the feedback path of (3,11, D) 5, }




LOOP DECOMPOSITION

FEp =B, + B,
(Z,1L, D)
w(t) = Biu(t) + u(t) 5 y(t)
()] l
Ep E}
B; E}
L ] L=
1(t) ()
II
p(t) q0)

(3L, D w) = (2,11,D)p,
> "External” input: w(t) = B;u(t)
> Agent input: u(t) = —Bopu(t)
» Controller input: ((t) = ELy(t)



LOOP DECOMPOSITION

EP — Bu + B/
(3,11, D)
w(t) = l,;,/iijl,,,,f, u(t) . y(t)
0] | 1
| Ep E}
B; E}
| () ¢(t) |
] s S P |
() (1)

> "External” input: w(t) = B;u(t)
> Agent input: u(t) = —Bopu(t)
» Controller input: ((t) = ELy(t)
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[1] ). M. Montenbruck, M. Arcak, and F. Allgdwer, “An input-output framework for submanifold stabilization,” IEEE TAC, 2017.
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g
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(3,11, D, w), Digraphs

Submanifold & lim; ... Projs. (y(t)) =0

Passivity Relations/! u(t)" Proj.. (y(1)) > Ulu(t)]|* + e[| Projs. (y(t))]|*

()" Projsu (y(t) 2 Ul|2(t) 1 + el Projs . (y (1)

Stabilization

Output Consensus  lim y(t) € span(1) = S lim y(t) = 0 € S
t—o00

[1] ). M. Montenbruck, M. Arcak, and F. Allgdwer, “An input-output framework for submanifold stabilization,” IEEE TAC, 2017.
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(Outputs only depend on states)
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A PASSIVITY-BASED ANALYSIS AND STABILIZATION

Network systems over balanced digraphs & Passivity

T ) = (), e
- e S

(1) L= ] 50 {ii(t) = fizi(t), wi(t)),

(Outputs only depend on states)

[ How can we connect output strict passivity and stabilization? ]

3-Step passivity-based analysis
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STEP 1: FORWARD PATH

> (3911, Dy, w)

- 3 o max(D,): maximal out-degree
1 L o u=—Bou
> ¥¢'s are:

o Continuously differentiable
! u(t) 50) 3

o Output strictly passive (OP)

o I » Goal:
i @

ul Projgi (y) > Ulull®+el Projs. (v)I?
OPY¢:  wiy > Qi(x) +eiw?, € >0
OP X% u'y >3 Qi(w) +ellyll3, e = min(e;)
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STEP 1: FORWARD PATH

o) u(t) (E IL, Dy, w )
,,,,,,,, 1o o maX( »): maximal out-degree

i o u=—Bou
L -
(1)

Proposition: Forward Path Passivity Relation
Assume that >¢'s are OP-=; and with initial conditions that are

asymptotically reachable from {0}. Let ¢ = min;(e;). Then, it follows that
M

u” Projg. (y) >ZQ ;) = lullzllyllz + ell Projs. (y)13,

and the passivity relation satisfies,
T 9 T max (D, T 9 T
(uT, Projg. (y7))>—22Le) |72, 4 ¢ Projs. (y7) 1%, -

-7 : Truncate signals to S = span(1) after timet > 7 9
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2T Projg. (y) 2 Ul2ll? +el Projg. ()]

Property of the incidence matrices of Dy:
ETy = Projs. (ETy) = ET Projg. (y).
OP II;: 1iCr > W + appi, o= min(ay)

10



STEP 2: INNER-FEEDBACK PATH

o0 g v > (3,11, Dy, w)

! u(t) @
o ‘”’"EE{) ””””
Assume that the controllers . Then, it follows that,
El
p'¢=pTETy =27 Projgi(y) > Y Wi(ne) + o3,
k=1
and the satisfies,

(27, Projg. (y7)) = —limys o3y Wi (i (1)) + o7 ||,

10



STEP 3: A PASSIVITY-BASED ANALYSIS AND STABILIZATION

Directed networks with balanced diagraphs (3°,11, D, w)
Agents ¢ 1 @;(t) = fi(zi(t),wi(t)), yi(t) = hi(xi(t)), i € [1,n]

Suppose the following conditions hold:
f; and h;s are continuously differentiable
OP ¢ = (u”, Projgu. (y7))= |17 [|%,+ €|l Projs (y7)1I%,
|E|
OP Iy, = (27, Projg. (y7)) > lim Z Wik (1)) + o7 1%,

HOO
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STEP 3: A PASSIVITY-BASED ANALYSIS AND STABILIZATION

Directed networks with balanced diagraphs (3°,11, D, w)
Agents E? : .%‘l(t) = fi(lii(t), ui(t)), yi(ﬁ) = hz(az(t)), xS [1,’/1}

Suppose the following conditions hold:
f; and h;s are continuously differentiable

OP 57 = (u”, Projg. (y7))> 147 %, ell Projss (57)1%,
E|
OP I = (<7, Projs. (7)) = , lim 3 Wi(me(t)) + "%,

a > max(D,) /e, max(D,) is maximal out-degree of graph D,.

Then, the network (2°, I, Dy, w) is
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STEP 3: A PASSIVITY-BASED ANALYSIS AND STABILIZATION

Directed networks with balanced diagraphs (3°,11, D, w)

Agents E? : l‘l(t) = fi(lii(t), ui(t)), yi(t) = hz(az(t)), xS [1,’/1}
Theorem

Suppose the following conditions hold:
1. f; and h;s are continuously differentiable

2. OP ¢ = (07, Projgu ()=~ "7 |7 |3, + el Projs (y7) 1%,
|E|
3- OP Il = (27, Projsu (y7)) 2 im 3 Wi (i (t)) +allnTII,

t~>oo

4. o > max(D,) /e, max(D,) is maximal out—degree of graph D,,.
Then, the network (X°,I1, Dy, w) is stabilized.

Recent results (Submit to CDC2025):
» Extend to general digraphs;
» Atheorem on output consensus for systems consisting of passive

agents.
1
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CASE STUDY: NEURAL NETWORK

» Systems
Y2 @(t) = —axi(t) +wi(t), yi(t) = tanh(x;(t)), a; >0 OP-q;
Iy« p(t) = %max((k(t),()) OP—%
> Maximal out-degree: max(D,) = 2
> Minimal passivity index of agents: e = 3, o >
» A sufficient condition
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CONCLUDING REMARKS

Summary:

» The passivity of operator 3,11F,,: passive only when D is balanced.

» Loop decomposition: A general approach that enables a passivity
analysis for the network systems with directed coupling.

> Stabilization of network systems over balanced digraphs:
passivity-based conditions

Future work:

» complex dynamics, other passivity properties.
» A sufficient and necessary condition.
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