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Problem formulation

Agents:
X;(t) = Ax;(¢) + Bu;(t), i€[l,...,v]
yi(t) = Cx;i(1)

with A € R™" B € R"™™ and C € R™",

Goal: Given Ag € R™" with spec(Ag) N Cy = @ and semi-simple imaginary eigenvalues, design
control signals u;(#) to synchronize the states x;(¢) with some trajectory generated by
F(1) = Aor(?).
Assumptions:
e Ajq: (C,A,B) is stabilizable and detectable,
e Ay there is F such that Ag = A + BF,
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Problem formulation

Goal: Given Ag € R™" with spec(Ag) N Cy = @ and semi-simple
imaginary eigenvalues, design control signals u;(t) to synchronize
the states x;(¢) with some trajectory generated by 7(¢) = Agr(¢). y\

This encompasses two classic problems.
@ When Ay = A = 0 this is the consensus problem. T
@ When Ag = A this is the synchronization problem. \
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Information constraints

Local information: y;(z) and u;(¢) are continuously available

Spatial constraints: agents communicate within their
neighborhoods, N; (7).

Temporal constraints: communicate only at discrete sampling
instances, t € {s¢}.

o Aperiodic Sgy1 — Sk # Skl — Sklsl

@ Asynchronous N;(sx) # @ =5 N;(sk) # @.
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Emulation approach

© Find a "good"” controller, an "ideal” agreeing world.
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Emulation approach
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Emulation approach

© Find a "good"” controller, an "ideal” agreeing world.
@ Emulate the "ideal” world, locally between samples.
© Generate the control, using local local information.

@ Update the emulation at sampling instances.

Each agent operates in its own "perfect world”,
which interact intermittently. J
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© Preliminaries: the state-feedback case
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Problem formulation - full state feedback

Agents:
X;(t) = Ax;(¢) + Bu;(t), i€[l,...,v]
yi(t) = xi(1)

with A € R™" B € R"™™ and C € R™*",

Assumptions:

o Aj: (C, A, B) is stabilizable and detectable,
@ A, there is F such that Ay = A + BF,

Goal: Given Ag € R™" with spec(Ag) N Cy = @ and semi-simple imaginary eigenvalues, design
control signals u;(t) to synchronize the states x;(f) with some trajectory generated by
7(t) = Aor(t).
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Emulator with full-state feedback (Barkai, Mirkin, and Zelazo, 2023)

@ Each agent locally emulates the entire ensemble under the
ideal control law,

i () = f(pi(t), x; (1))
wi(t) = Fapii (1) + (F = Fg) 1 (1)

pii(t) = xi(0), ey = (1/v) D i (o)
j=1

where u; (1) is the ith agent's emulation of the entire group.

wit) = [ piy - iy () ]
S <t < Sk

Flow dynamics J
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Emulator with full-state feedback (Barkai, Mirkin, and Zelazo, 2023)

@ Each agent locally emulates the entire ensemble under the
ideal control law,

i () = f(pi(t), x; (1))
wi(t) = Fapii (1) + (F = Fg) 1 (1)

pii(t) = 2,0, @(0) = (1/v) D i (1)
j=1

where u; (1) is the ith agent's emulation of the entire group.

@ The agents exchange their emulated centroids, and update
their emulators according to

wi(sy) = pi(si) — (a; ® 1) Z(ﬂi(sk) — i1 (sp)),
JEN;[K]

for any a; € RY such that 1’a; = 1 and eja; = 0.

Jump dynamics J
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State-feedback controller structure (Barkai, Mirkin, and Zelazo, 2023)

Define

e(t) =x(1) — (1),

the aggregate closed loop is given by

é(r) ]
fis (1)
u(r) |
e(sy) |
Hs(sy)

asy) |

[ I® Aqg
0
0

(1 0
0 1
0 0

0
1,2®Aq
0

0
0

I, ® Ay |

(I/v)Llk] 1
- jmp-E[k] ®1

(I- (/LD ST |

11 e(®)

11 eCsi)

Ms,i(t) = pi(t) = (1 ® L) i (1)

ps(t)
| u(t)

, Aq=A+BFy

Ms(Sk)

| a(sk)

where L[k] is the Laplacian matrix associated with the network connectivity graph G[k] at sy.
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State-feedback controller structure (Barkai, Mirkin, and Zelazo, 2023)

Define
e(t) =x(t) — (1), pesi(t)=pi(t) = (V& 1);(1)

the aggregate closed loop is given by

é(r) | [1®Aq 0 0 [ e
pas(t) | = 0 1,2®Aqg 0 ps(1)
A Lo 0 e do 1 A1) , Ag=A+BFy
e(sy) I 0 (I/nLk]T e(sy)
us(sp) =10 I —BmpL[k]®1 Ms(Sk)
atsp) | L0 0 U-A/mLkD T || ilsk)

where L[k] is the Laplacian matrix associated with the network connectivity graph G[k] at sy.

@ The flows are decoupled and Ay is Hurwitz.
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State-feedback controller structure (Barkai, Mirkin, and Zelazo, 2023)

Define

e(t) =x(1) — (1),

the aggregate closed loop is given by

é(t) |
fis (1)
u() |
e(sp) |
ps(sy

asy) |

[ I® Aqg
0
0

(1 0
0 1
0 0

0
1,2®Aq
0

0
0

I, ® Ay |

(I/v)Llk] 1
- jmpL[k] ®1

(I- (/LD ST |

11 e(®)

11 eCsi)

Ms,i(t) = pi(t) = (1 ® L) i (1)

ps(t)
| u(t)

, Aq=A+BFy

Ms(Sk)

| a(sk)

where L[k] is the Laplacian matrix associated with the network connectivity graph G[k] at sy.

@ The flows are decoupled and Ay is Hurwitz.

@ Since L[k]1 =0, if g; synchronize then so would x; and pus — 0.
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Assumption: persistency of eventual connectivity

@ Aj: there is a strictly increasing sub-sequence of
sampling indices {k,} such that for all p € Z,

@ the intervals Skpe — Sk, are uniformly bounded;

Q Uif}; +1 GLk] contains a directed rooted tree.
=Kp
k1

| Gk =Gls11uGlsal U Glss]

k=k0+1

@ A common assumption in coordination under
switching graphs, e.g., (Ren and Beard, 2008).
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Assumption: persistency of eventual connectivity

@ Aj: there is a strictly increasing sub-sequence of
sampling indices {k,} such that for all p € Z,

@ the intervals Skpe — Sk, are uniformly bounded;

Q Uig;ﬂ G k] contains a directed rooted tree. @
) 6l =Gls11uGlsal UGlss] A
k=ko+1 :_;' sl}'

@ A common assumption in coordination under @ @
switching graphs, e.g., (Ren and Beard, 2008).

If A3 holds then fi(f) — 1 ® e’y for some ry. |
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© How is output feedback different
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What changes for output feedback?

@ x;(t) is no longer available = u;;(t) # x;(¢).
@ Using an observer, we have that u;; () = %;(¢) for some

%;(t) = A%;(t) + Bu; (1) — L(y: (1) — C%;(1)).
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What changes for output feedback?

@ x;(t) is no longer available = u;;(t) # x;(¢).
@ Using an observer, we have that u;; () = %;(¢) for some

%;(t) = A%;(t) + Bu; (1) — L(y: (1) — C%;(1)).

@ Repeating the procedure yields

ét) ] [I®(A¢+BF) —-I®M | 0 e(r)
[ () | = 0 I®(A+LC), 0 (1) }
ey | | o -1®(LLC) 1T@ A, || a()
e(sy) | I 0 (/) Lk]l &I, e(sy)
e(sp) |=]10 1 0 €(sk)
alsy) | 00 (L -QA/v)LIkD®L || #sk)

where
e(t) =x(t)—pu(t), e=x-% and M =BFq+(1/v)LC.
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A world without disagreement

@ Emulate an even more optimistic scenario: assume our emulators instantly synchronize.
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A world without disagreement

@ Emulate an even more optimistic scenario: assume our emulators instantly synchronize.
@ Hence, us =0 = We can directly emulate g;.

@ We retain the same control-law structure
ui (1) = Fa&i(t) + (F = Fg) f1;(1),

but now

fi % (1/v) ( TG +xi(r))

J=1,j#i

but rather an independent variable.
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@ The main result
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The main result

Theorem

If Fg and L are such that A+ BFy and A + LC are Hurwitz and F is such that Ay = A + BF
then the local sampled-data controllers

(1) = A%;(t) + Bu; (1) — L(y; (1) — C%(1))
wi(t) = Aofi (1)
wi(sy) = fi(sg) = % Z(ﬂi(Sk) - i (sx))
JEN;[K]
ui(t) = Faki(t) + (F — Fq) 1 (1)

will asymptotically synchronize the agents for all initial conditions and all sampling sequences
{sr} satisfying As.
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Proof outline - error dynamics

Once more defining
e=x—-f, and €:=x-Xx

yields the now decoupled stable flow dynamics

é(1) I®Ay -I®(BFy) « 0 e(t)
én [=| 0 I8@A+LO), 0 || e |,
(1) 0 0 T®Ag || ()

while at each sampling instance, {si}, the system obeys the discrete equation

e(sy) I 0 (A/v)L[k]®Iy e(sk)
e(sp) | =10 1 0 e(sy)
A(sy) 00 (U-QA/mLkD®IL, || flsk)

where L[k] is the Laplacian matrix associated with the network connectivity graph G[k] at s.
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Numerical example (1)

Consider v = 3 agents with

and gains
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Numerical example (1)

Consider v = 3 agents with

and gains

F=-|2 4], Fg=-[7 1], and L:—[lg].

@ The sampling sequence is randomized between 3 graphs and satisfy A3, with
Sk+1 — Sk € [0.45,2.25] [sec]
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Numerical example (I1)
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Figure: States’ trajectories
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Numerical example (I1)

Sko Sky Sky Sks  Ske Sks Sko Skyy Sky

(t)

M2,

Lol 11 Il
Skﬂ Sk2 Sk4 SkS Skﬁ SkS Skg Skll Sk14
Time, ¢

Figure: Centroid’s trajectories
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Numerical example (I1)
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Figure: |le;(7)]| (log scale)
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Numerical example (I1)
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Figure: |lxs(2)|| (log scale)
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Concluding remarks

@ State synchronization is guaranteed under weak assumptions despite (almost) arbitrary
sampling and output measurements.

@ The gains design is intuitive, non-restrictive, and independent of the sampling sequence.
@ If the union graph is strongly connected the convergence is exponential (in the paper).
@ Low-order controller with scaleable design.

@ Work in progress: output synchronization, heterogeneous agents, transmission delays,
performance guarantees.
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