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Problem formulation

Agents:
¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡), 𝑖 ∈ [1, . . . , 𝜈]
𝑦𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡)

with 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, and 𝐶 ∈ ℝ𝑚×𝑛.

Goal: Given 𝐴0 ∈ ℝ𝑛×𝑛 with spec(𝐴0) ∩ ℂ0 = ∅ and semi-simple imaginary eigenvalues, design
control signals 𝑢𝑖 (𝑡) to synchronize the states 𝑥𝑖 (𝑡) with some trajectory generated by
¤𝑟 (𝑡) = 𝐴0𝑟 (𝑡).

Assumptions:
A1: (𝐶, 𝐴, 𝐵) is stabilizable and detectable,
A2: there is 𝐹 such that 𝐴0 = 𝐴 + 𝐵𝐹,
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Problem formulation

Goal: Given 𝐴0 ∈ ℝ𝑛×𝑛 with spec(𝐴0) ∩ ℂ0 = ∅ and semi-simple
imaginary eigenvalues, design control signals 𝑢𝑖 (𝑡) to synchronize
the states 𝑥𝑖 (𝑡) with some trajectory generated by ¤𝑟 (𝑡) = 𝐴0𝑟 (𝑡).

This encompasses two classic problems.

When 𝐴0 = 𝐴 = 0 this is the consensus problem.
When 𝐴0 = 𝐴 this is the synchronization problem.
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Information constraints

Local information: 𝑦𝑖 (𝑡) and 𝑢𝑖 (𝑡) are continuously available

Spatial constraints: agents communicate within their
neighborhoods, N𝑖 (𝑡).

Temporal constraints: communicate only at discrete sampling
instances, 𝑡 ∈ {𝑠𝑘}.

Aperiodic 𝑠𝑘+1 − 𝑠𝑘 ≠ 𝑠𝑘+𝑙 − 𝑠𝑘+𝑙+1

Asynchronous N𝑖 (𝑠𝑘) ≠ ∅ 6=⇒ N𝑗 (𝑠𝑘) ≠ ∅.
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Emulation approach

1 Find a ”good” controller, an ”ideal” agreeing world.

2 Emulate the ”ideal” world, locally between samples.

3 Generate the control, using local local information.

4 Update the emulation at sampling instances.

Each agent operates in its own ”perfect world”,
which interact intermittently.
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Problem formulation - full state feedback

Agents:
¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡), 𝑖 ∈ [1, . . . , 𝜈]
𝑦𝑖 (𝑡) = 𝑥𝑖 (𝑡)

with 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, and 𝐶 ∈ ℝ𝑚×𝑛.

Assumptions:
A1: (𝐶, 𝐴, 𝐵) is stabilizable and detectable,
A2: there is 𝐹 such that 𝐴0 = 𝐴 + 𝐵𝐹,

Goal: Given 𝐴0 ∈ ℝ𝑛×𝑛 with spec(𝐴0) ∩ ℂ0 = ∅ and semi-simple imaginary eigenvalues, design
control signals 𝑢𝑖 (𝑡) to synchronize the states 𝑥𝑖 (𝑡) with some trajectory generated by
¤𝑟 (𝑡) = 𝐴0𝑟 (𝑡).
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Emulator with full-state feedback (Barkai, Mirkin, and Zelazo, 2023)
Each agent locally emulates the entire ensemble under the
ideal control law,

¤𝜇𝑖 (𝑡) = 𝑓 (𝜇𝑖 (𝑡), 𝑥𝑖 (𝑡))
𝑢𝑖 (𝑡) = 𝐹𝑑𝜇𝑖𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡)

𝜇𝑖𝑖 (𝑡) ≡ 𝑥𝑖 (𝑡), 𝜇𝑖 (𝑡) = (1/𝜈)
𝜈∑
𝑗=1

𝜇𝑖 𝑗 (𝑡)

where 𝜇𝑖 (𝑡) is the 𝑖th agent’s emulation of the entire group.

The agents exchange their emulated centroids, and update
their emulators according to

𝜇𝑖 (𝑠+𝑘) = 𝜇𝑖 (𝑠𝑘) − (𝛼𝑖 ⊗ 𝐼)
∑

𝑗∈N𝑖 [𝑘 ]

(
𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘)

)
,

for any 𝛼𝑖 ∈ ℝ𝜈 such that 𝟙′𝛼𝑖 = 1 and 𝑒′𝑖𝛼𝑖 = 0.
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µi(t) =
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iν(t)
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sk < t ≤ sk+1

Flow dynamics
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State-feedback controller structure (Barkai, Mirkin, and Zelazo, 2023)
Define

𝑒(𝑡) = 𝑥(𝑡) − 𝜇(𝑡), 𝜇𝛿,𝑖 (𝑡) = 𝜇𝑖 (𝑡) − (𝟙 ⊗ 𝐼𝑛)𝜇𝑖 (𝑡)

the aggregate closed loop is given by


¤𝑒(𝑡)
¤𝜇𝛿 (𝑡)
¤̄𝜇(𝑡)

 =


𝐼 ⊗ 𝐴d 0 0

0 𝐼𝜈2 ⊗ 𝐴d 0
0 0 𝐼𝜈 ⊗ 𝐴0




𝑒(𝑡)
𝜇𝛿 (𝑡)
𝜇(𝑡)


𝑒(𝑠+𝑘)
𝜇𝛿 (𝑠+𝑘)
𝜇(𝑠+𝑘)

 =


𝐼 0 (1/𝜈)L[𝑘] ⊗ 𝐼
0 𝐼 −𝐵jmpL[𝑘] ⊗ 𝐼
0 0 (𝐼 − (1/𝜈)L[𝑘]) ⊗ 𝐼




𝑒(𝑠𝑘)
𝜇𝛿 (𝑠𝑘)
𝜇(𝑠𝑘)


, 𝐴d = 𝐴 + 𝐵𝐹d

where L[𝑘] is the Laplacian matrix associated with the network connectivity graph G[𝑘] at 𝑠𝑘 .

The flows are decoupled and 𝐴d is Hurwitz.
Since L[𝑘]𝟙 = 0, if 𝜇𝑖 synchronize then so would 𝑥𝑖 and 𝜇𝛿 → 0.
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Assumption: persistency of eventual connectivity

A3: there is a strictly increasing sub-sequence of
sampling indices {𝑘 𝑝} such that for all 𝑝 ∈ ℤ+

1 the intervals 𝑠𝑘𝑝+1 − 𝑠𝑘𝑝 are uniformly bounded;
2

∪𝑘𝑝+1
𝑘=𝑘𝑝+1 G[𝑘] contains a directed rooted tree.
𝑘1∪

𝑘=𝑘0+1
G[𝑘] = G[𝑠1] ∪ G[𝑠2] ∪ G[𝑠3]

A common assumption in coordination under
switching graphs, e.g., (Ren and Beard, 2008).

If A3 holds then 𝜇(𝑡) → 𝟙 ⊗ e𝐴0𝑡𝑟0 for some 𝑟0.

x1

x2 x3

s1

s2

s3

s3

8 / 15



Assumption: persistency of eventual connectivity

A3: there is a strictly increasing sub-sequence of
sampling indices {𝑘 𝑝} such that for all 𝑝 ∈ ℤ+

1 the intervals 𝑠𝑘𝑝+1 − 𝑠𝑘𝑝 are uniformly bounded;
2

∪𝑘𝑝+1
𝑘=𝑘𝑝+1 G[𝑘] contains a directed rooted tree.
𝑘1∪

𝑘=𝑘0+1
G[𝑘] = G[𝑠1] ∪ G[𝑠2] ∪ G[𝑠3]

A common assumption in coordination under
switching graphs, e.g., (Ren and Beard, 2008).

If A3 holds then 𝜇(𝑡) → 𝟙 ⊗ e𝐴0𝑡𝑟0 for some 𝑟0.

x1

x2 x3

s1

s2

s3

s3

8 / 15



Outline

1 Introduction

2 Preliminaries: the state-feedback case

3 How is output feedback different

4 The main result

5 Concluding remarks

8 / 15



What changes for output feedback?
𝑥𝑖 (𝑡) is no longer available =⇒ 𝜇𝑖𝑖 (𝑡) 6≡ 𝑥𝑖 (𝑡).
Using an observer, we have that 𝜇𝑖𝑖 (𝑡) ≡ 𝑥𝑖 (𝑡) for some

¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) − 𝐿 (𝑦𝑖 (𝑡) − 𝐶𝑥𝑖 (𝑡)).

Repeating the procedure yields


¤𝑒(𝑡)
¤𝜖 (𝑡)
¤̄𝜇(𝑡)

 =


𝐼 ⊗ (𝐴d + 𝐵𝐹) −𝐼 ⊗ 𝑀 0

0 𝐼 ⊗ (𝐴 + 𝐿𝐶) 0
0 −𝐼 ⊗ ( 1

𝜈 𝐿𝐶) 𝐼 ⊗ 𝐴0



𝑒(𝑡)
𝜖 (𝑡)
𝜇(𝑡)


𝑒(𝑠+𝑘)
𝜖 (𝑠+𝑘)
𝜇(𝑠+𝑘)

 =


𝐼 0 (1/𝜈)L[𝑘] ⊗ 𝐼𝑛
0 𝐼 0
0 0 (𝐼𝜈 − (1/𝜈)L[𝑘]) ⊗ 𝐼𝑛



𝑒(𝑠𝑘)
𝜖 (𝑠𝑘)
𝜇(𝑠𝑘)


where

𝑒(𝑡) B 𝑥(𝑡) − 𝜇(𝑡), 𝜖 B 𝑥 − 𝑥, and 𝑀 = 𝐵𝐹d + (1/𝜈)𝐿𝐶.
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0 𝐼 0
0 0 (𝐼𝜈 − (1/𝜈)L[𝑘]) ⊗ 𝐼𝑛



𝑒(𝑠𝑘)
𝜖 (𝑠𝑘)
𝜇(𝑠𝑘)


where

𝑒(𝑡) B 𝑥(𝑡) − 𝜇(𝑡), 𝜖 B 𝑥 − 𝑥, and 𝑀 = 𝐵𝐹d + (1/𝜈)𝐿𝐶.
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A world without disagreement
Emulate an even more optimistic scenario: assume our emulators instantly synchronize.

Hence, 𝜇𝛿 ≡ 0 =⇒ We can directly emulate 𝜇𝑖.
We retain the same control-law structure

𝑢𝑖 (𝑡) = 𝐹𝑑𝑥𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡),

but now

𝜇𝑖 ≠ (1/𝜈)
(

𝜈∑
𝑗=1, 𝑗≠𝑖

𝜇𝑖 𝑗 (𝑡) + 𝑥𝑖 (𝑡)
)

but rather an independent variable.
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The main result

Theorem
If 𝐹d and 𝐿 are such that 𝐴 + 𝐵𝐹d and 𝐴 + 𝐿𝐶 are Hurwitz and 𝐹 is such that 𝐴0 = 𝐴 + 𝐵𝐹,
then the local sampled-data controllers

¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) − 𝐿 (𝑦𝑖 (𝑡) − 𝐶𝑥𝑖 (𝑡))
¤̄𝜇𝑖 (𝑡) = 𝐴0𝜇𝑖 (𝑡)

𝜇𝑖 (𝑠+𝑘) = 𝜇𝑖 (𝑠𝑘) −
1
𝜈

∑
𝑗∈N𝑖 [𝑘 ]

(
𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘)

)
𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡)

will asymptotically synchronize the agents for all initial conditions and all sampling sequences
{𝑠𝑘} satisfying A3.
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Proof outline - error dynamics
Once more defining

𝑒 B 𝑥 − 𝜇, and 𝜖 B 𝑥 − 𝑥

yields the now decoupled stable flow dynamics
¤𝑒(𝑡)
¤𝜖 (𝑡)
¤̄𝜇(𝑡)

 =


𝐼 ⊗ 𝐴d −𝐼 ⊗ (𝐵𝐹d) 0

0 𝐼 ⊗ (𝐴 + 𝐿𝐶) 0
0 0 𝐼 ⊗ 𝐴0



𝑒(𝑡)
𝜖 (𝑡)
𝜇(𝑡)

 ,
while at each sampling instance, {𝑠𝑘}, the system obeys the discrete equation

𝑒(𝑠+𝑘)
𝜖 (𝑠+𝑘)
𝜇(𝑠+𝑘)

 =


𝐼 0 (1/𝜈)L[𝑘] ⊗ 𝐼𝑛
0 𝐼 0
0 0 (𝐼 − (1/𝜈)L[𝑘]) ⊗ 𝐼𝑛



𝑒(𝑠𝑘)
𝜖 (𝑠𝑘)
𝜇(𝑠𝑘)


where L[𝑘] is the Laplacian matrix associated with the network connectivity graph G[𝑘] at 𝑠𝑘 .
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Numerical example (I)
Consider 𝜈 = 3 agents with[

𝐴 𝐵

𝐶

]
=


4 9 2
1 4 1
1 0

 , 𝐴0 =

[
0 1
−1 0

]
and gains

𝐹 = −
[

2 4
]
, 𝐹d = −

[
7 1

]
, and 𝐿 = −

[
19
11

]
.

The sampling sequence is randomized between 3 graphs and satisfy A3, with
𝑠𝑘+1 − 𝑠𝑘 ∈ [0.45, 2.25] [sec]

x1

x2 x3

G2

x1

x2 x3

G1

x1

x2 x3

G3
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Numerical example (II)

Figure: States’ trajectories
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Numerical example (II)

Figure: Centroid’s trajectories
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Numerical example (II)

Figure: ‖𝑒𝑖 (𝑡)‖ (log scale)
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Numerical example (II)

Figure: ‖𝑥𝛿 (𝑡)‖ (log scale)
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Concluding remarks
State synchronization is guaranteed under weak assumptions despite (almost) arbitrary
sampling and output measurements.

The gains design is intuitive, non-restrictive, and independent of the sampling sequence.

If the union graph is strongly connected the convergence is exponential (in the paper).

Low-order controller with scaleable design.

Work in progress: output synchronization, heterogeneous agents, transmission delays,
performance guarantees.
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