SYMMETRY PRESERVING MOTION COORDINATION

Daniel Zelazo

12.07.2022 European Control Conference Workshop: Rigidity Theory applied to Dynamic Systems from Parallel Robots to Multi-Agent Formations

Technion - Israel Institute of Technology

Formation Control Objective

Given a team of robots endowed with the ability to sense/ communicate with neighboring robots, design a control for each robot using only local information that

- moves the team into a desired spatial configuration formation acquisition
- moves the team into a desired spatial configuration while simultaneously moving the formation through space as a rigid body - formation maneuvering

AGENT CONFIGURATIONS

- we consider a team of nagents in a metric space $\mathbb{R}^d, d \in \{2,3\}$,

$$p_i(t) \in \mathbb{R}^d$$

- the configuration of the agents at time *t* is the vector

$$p(t) = \begin{bmatrix} p_1(t) \\ \vdots \\ p_n(t) \end{bmatrix} \in \mathbb{R}^{nd}$$

- agent dynamics modeled as integrators

$$\dot{p}_i(t) = u_i(t), \ i = 1, \dots, n$$

- agents interact according to a sensing graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- a framework is the pair (\mathcal{G}, p)

FORMATION CONSTRAINTS

- The desired formation is characterized by a set of M constraints, encoded in the function $F : \mathbb{R}^{nd} \to \mathbb{R}^{M}$, and a configuration \mathbf{p}^* satisfying the constraints.
- The set of all feasible formations is

$$\mathcal{F}(p) = \{ p \in \bar{\mathcal{D}} \, | \, F(p) = F(\mathbf{p}^{\star}) \}$$

FORMATION CONSTRAINTS

- The desired formation is characterized by a set of M constraints, encoded in the function $F : \mathbb{R}^{nd} \to \mathbb{R}^{M}$, and a configuration \mathbf{p}^{*} satisfying the constraints.
- The set of all feasible formations is

$$\mathcal{F}(p) = \{ p \in \bar{\mathcal{D}} \, | \, F(p) = F(\mathbf{p}^{\star}) \}$$

Formation Control Objective

For an ensemble of n agents with dynamics

$$\dot{p}_i = u_i,$$

with $p_i(t) \in \mathbb{R}^d$, an information exchange graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, and formation constraint function $F : \mathbb{R}^{nd} \to \mathbb{R}^M$, design a distributed control law for each agent $i \in \{1, \ldots, n\}$ such that the set $\mathcal{F}(p) = \{p \in \overline{\mathcal{D}} \mid F(p) = F(\mathbf{p}^*)\},\$

is asymptotically stable.

Theorem - Distance Constrained Formation Control

Consider the potential function

$$V(p) = \frac{1}{4} \sum_{i \sim j} \left(\|p_i(t) - p_j(t)\|^2 - (d_{ij}^*)^2 \right)^2$$

and assume the desired distances d^{\star}_{ij} correspond to a feasible formation. Then the gradient dynamical system

$$\dot{p} = -\nabla_p V(p) = -R^T(p)R(p)p + R^T(p)(d^\star)^2$$

asymptotically converges to the critical points of the potential function, i.e., $\frac{\partial V(p)}{\partial p} = 0$.

- R(p) is the *rigidity matrix* for the framework (\mathcal{G}, p)
- rigidity theory used here to understand more about the equilibrium sets

PROOF SKETCH

(following De Queiroz '18)

Define some notations...

- relative positions: $\tilde{p}_{ij} = p_i p_j$
- distance error: $e_{ij} = \|\tilde{p}_{ij}\| d_{ij}^{\star}$
- intermediate variable: $z_{ij} = \|\tilde{\tilde{p}}_{ij}\|^2 (d_{ij}^{\star})^2 = e_{ij}(e_{ij} + 2d_{ij}^{\star})$

PROOF SKETCH

Define some notations...

- relative positions: $\tilde{p}_{ij} = p_i p_j$
- distance error: $e_{ij} = \|\tilde{p}_{ij}\| d_{ij}^{\star}$
- intermediate variable: $z_{ij} = \|\tilde{\tilde{p}}_{ij}\|^2 (d_{ij}^{\star})^2 = e_{ij}(e_{ij} + 2d_{ij}^{\star})$

introduce Lyapunov candidate:

$$V(e) = \frac{1}{4} \sum_{i \sim j} z_{ij}^2 = z^T z$$

PROOF SKETCH

Define some notations...

- relative positions: $\tilde{p}_{ij} = p_i p_j$
- distance error: $e_{ij} = \|\tilde{p}_{ij}\| d_{ij}^{\star}$
- intermediate variable: $z_{ij} = \|\tilde{p}_{ij}\|^2 (d_{ij}^{\star})^2 = e_{ij}(e_{ij} + 2d_{ij}^{\star})$

introduce Lyapunov candidate:

$$V(e) = \frac{1}{4} \sum_{i \sim j} z_{ij}^2 = z^T z$$

time-derivative of Lyapunov function along trajectories

$$\bigvee \quad \overleftarrow{\mathbf{K}} = z^T R(p) u$$

IDEA: Design control u to ensure Lyapunov function is decreasing!

• Formation acquisition: $u = -R(p)^T z$ ensures stable formation dynamics "classic" distance-constrained formation controller Formation maneuvering aims to satisfy the formation control objective while simultaneously moving the formation through space as a rigid body.

Formation maneuvering aims to satisfy the formation control objective while simultaneously moving the formation through space as a rigid body.

...recall our earlier Lyapunov function

$$\dot{W} = z^T R(p) u$$

choose $u = u_a + u_m$

• $u_a = -R(p)^T z$: used to attain desired formation • $u_m = \mathbb{1} \otimes v_0 + \begin{bmatrix} \vdots \\ \omega_0 \times \tilde{q}_i \\ \vdots \end{bmatrix}$: rigid body translation (v_0) and rotation about a point ($\omega_0 \times \tilde{q}_i$)

Main Idea: rigid body rotations and translations are in the Kernel of the rigidity matrix! if we relax our requirement to achieve formation shape, does it enrich the class of distance-preserving motions we can achieve?

Flexes of Frameworks

A framework $\mathcal{F} = (\mathcal{G}, p)$ is flexible if there exists a continuous motion of its joints (the points p_i) such that all pairs of joints connected by an edge remain at a constant distance, but between at least one pair of joints not joined by an edge, the distance changes.

- infinitesimal flexes can be found by examining the kernel of the rigidity matrix
- if the only infinitesimal flexes are the translations and rotations, the framework is rigid

Explore flexes of a framework that preserve some notion of symmetry

symmetric frameworks and rigidity well explored in the mathematics community

- B. Schulze and W. Whiteley, *Rigidity of Symmetric Frameworks* 2017
- B. Schulze, The Orbit Rigidity Matrix of a Symmetric Framework 2011
- R. Connelly, Rigidity and Symmetry 2014

SYMMETRY AND GRAPH AUTOMORPHISMS

Graph Automorphism

An automorphism of the graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a permutation ψ of of its vertex set such that

$$\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$$

Automorphisms encode graph symmetries

• identity: Id =
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

• 90° rotation: $\psi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$
• 180° rotation: $\psi_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$
• 270° rotation: $\psi_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$

SYMMETRY AND GRAPH AUTOMORPHISMS

Graph Automorphism

An automorphism of the graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a permutation ψ of of its vertex set such that

$$\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$$

Automorphisms encode graph symmetries

• reflection: $\psi_4 =$		$\frac{1}{2}$	2 1	$\frac{3}{4}$	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$
• reflection: $\psi_5 =$	(1 4	2 3	3 2	$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$
• reflection: $\psi_6 =$	(1 1	2 4	3 3	$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$
• reflection: $\psi_7 =$	($\frac{1}{3}$	$\frac{2}{2}$	$\frac{3}{1}$	$\begin{pmatrix} 4 \\ 4 \end{pmatrix}$

Definition

Let X be a set, and let Γ be a collection of invertible functions $X \to X$. Then Γ is called a group if for any $\Gamma \ni f, g: X \to X$, both the composite function $f \circ g$ and the inverse function f^{-1} belong to Γ .

Automorphisms of a graph form a group - $Aut(\mathcal{G})$

- Aut(\mathcal{G}) = {Id, $\psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6, \psi_7$ }
- subgroup: $\Gamma_1 = { Id, \psi_1, \psi_2, \psi_3 }$
- subgroup: $\Gamma_2 = \{ Id, \psi_2, \psi_4, \psi_5 \}$
- subgroup: $\Gamma_3 = { Id, \psi_2 }$
- subgroup: $\Gamma_4 = { Id, \psi_6 }$
- subgroup: $\Gamma_5 = { Id, \psi_7 }$

Γ -SYMMETRIC GRAPHS

Definition

A Γ -Symmetric graph is a graph for which there exists a group action $\theta : \Gamma \to \operatorname{Aut}(\mathcal{G})$. The action θ is free if $\theta(\gamma)(i) \neq i$ for all $i \in \mathcal{V}$ and non-trivial $\gamma \in \Gamma$.

Definition

For a Γ -symmetric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $i \in \mathcal{V}$, the set $\Gamma^{(i)} = \{\theta(\gamma)(i) \mid \gamma \in \Gamma\}$ is called the vertex orbit. Similarly, for an edge $e = \{i, j\} \in \mathcal{E}$, the set $\Gamma^{(e)} = \{\{\theta(\gamma)(i), \theta(\gamma)(j)\} \mid \gamma \in \Gamma\}$ is termed the edge orbit.

Consider $\Gamma_3 = {\mathrm{Id}, \psi_2}$

• Vertex Orbit:

 $\Gamma^{(1)} = \Gamma^{(3)} = \{1, 3\}, \ \Gamma^{(2)} = \Gamma^{(4)} = \{2, 4\}$

• Edge Orbit: $\Gamma^{(e_1)} = \Gamma^{(e_3)} = \{e_1, e_3\},\$ $\Gamma^{(e_2)} = \Gamma^{(e_4)} = \{e_2, e_4\}$

Γ -SYMMETRIC GRAPHS

Definition

A Γ -Symmetric graph is a graph for which there exists a group action $\theta : \Gamma \to \operatorname{Aut}(\mathcal{G})$. The action θ is free if $\theta(\gamma)(i) \neq i$ for all $i \in \mathcal{V}$ and non-trivial $\gamma \in \Gamma$.

Definition

For a Γ -symmetric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $i \in \mathcal{V}$, the set $\Gamma^{(i)} = \{\theta(\gamma)(i) \mid \gamma \in \Gamma\}$ is called the vertex orbit. Similarly, for an edge $e = \{i, j\} \in \mathcal{E}$, the set $\Gamma^{(e)} = \{\{\theta(\gamma)(i), \theta(\gamma)(j)\} \mid \gamma \in \Gamma\}$ is termed the edge orbit.

Consider $\Gamma_2 = { Id, \psi_2, \psi_4, \psi_5 }$

• Vertex Orbit:

$$\Gamma^{(i)} = \{1, 2, 3, 4\}$$

• Edge Orbit:

 $\Gamma^{(e_i)} = \{e_1, e_2, e_3, e_4\}$

QUOTIENT Γ -GAIN GRAPHS

Definition

For a Γ -symmetric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, the multigraph \mathcal{G}/Γ with vertex set $\mathcal{V}/\Gamma = \{\Gamma^{(i)} \mid i \in \mathcal{V}\}$ and edge set $\mathcal{E}/\Gamma = \{\Gamma^{(e)} \mid e \in \mathcal{E}\}$ is called the quotient graph.

- nodes are the vertex orbits
- edges are the edge orbits

 $e_{2}e_{4}$

QUOTIENT Γ -GAIN GRAPHS

Definition

For a Γ -symmetric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, the multigraph \mathcal{G}/Γ with vertex set $\mathcal{V}/\Gamma = \{\Gamma^{(i)} \mid i \in \mathcal{V}\}$ and edge set $\mathcal{E}/\Gamma = \{\Gamma^{(e)} \mid e \in \mathcal{E}\}$ is called the quotient graph.

C

- nodes are the vertex orbits
- edges are the edge orbits

consider
$$\Gamma_2 = { \mathrm{Id}, \psi_2, \psi_4, \psi_5 }$$

 $e_1 e_2 e_3 e_4$

Definition

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a Γ -symmetric graph, where the group action $\theta : \Gamma \to \operatorname{Aut}(\mathcal{G})$ is free. Each edge orbit $\Gamma^{(e)}$ connecting $\Gamma^{(i)}$ and $\Gamma^{(j)}$ in \mathcal{G}/Γ can be written as $\{\{\theta(\gamma)(i), \theta(\gamma) \circ \theta(\alpha)(j)\} \mid \gamma \in \Gamma\}$ for a unique $\alpha \in \Gamma$. For each $\Gamma^{(e)}$, orient $\Gamma^{(e)}$ from $\Gamma^{(i)}$ to $\Gamma^{(j)}$ in \mathcal{G}/Γ and assign with the gain α . The resulting oriented quotient graph $\mathcal{G}_0 = (\mathcal{V}_0, \mathcal{E}_0)$, together with the gain labeling $w : E_0 \to \Gamma$, is the quotient Γ -gain graph (\mathcal{G}_0, w) of \mathcal{G} .

QUOTIENT Γ -GAIN GRAPHS

Consider $\Gamma_3 = {\mathrm{Id}, \psi_2}$

- vertex orbit $\{1,3\}$ is adjacent to $\{2,4\} = \{\mathrm{Id}(2),\mathrm{Id}(4)\} \text{ under identity} \\ element$
- vertex orbit $\{1,3\}$ is adjacent to $\{2,4\}=\{\psi_2(2),\psi_2(4)\} \text{ under image} \\ \text{ of } \psi_2$
- note no self-loops no vertex orbit is adjacent to itself under Id or ψ_2

- vertex orbit $\{1,2,3,4\}$ is adjacent to itself under ψ_1 or ψ_3
- no self loops with ${\rm Id}$ or ψ_2 vertex orbit not adjacent to itself under these maps

Γ -SYMMETRIC FRAMEWORK

Definition

Given a finite simple graph \mathcal{G} and a map $p: \mathcal{V} \to \mathbb{R}^d$, a symmetry operation of the framework (\mathcal{G}, p) in \mathbb{R}^d is an isometry x of \mathbb{R}^d such that for some $\alpha_x \in \operatorname{Aut}(\mathcal{G})$ we have

$$x(p_i) = p_{\alpha_x(i)}$$
 for all $i \in \mathcal{V}$.

The set of all symmetry operations of a framework (\mathcal{G}, p) forms a group under composition, called the point group of (\mathcal{G}, p) .

- consider $\psi_4 \in \operatorname{Aut}(\mathcal{G})$ (reflection)
- isometry $x : (a, b) \mapsto (-a, b)$

satisfies $x(p_i) = p_{\alpha_x(i)}$ for all $i \in \mathcal{V}$.

Definition

Given a finite simple graph \mathcal{G} and a map $p: \mathcal{V} \to \mathbb{R}^d$, a symmetry operation of the framework (\mathcal{G}, p) in \mathbb{R}^d is an isometry x of \mathbb{R}^d such that for some $\alpha_x \in \operatorname{Aut}(\mathcal{G})$ we have

$$x(p_i) = p_{\alpha_x(i)}$$
 for all $i \in \mathcal{V}$.

The set of all symmetry operations of a framework (\mathcal{G}, p) forms a group under composition, called the point group of (\mathcal{G}, p) .

Let $\mathcal{R}_{(\mathcal{G},\Gamma)}$ denote set of all *d*-dimensional realizations of \mathcal{G} whose point group is either equal to Γ or contains Γ as a subgroup.

• $\mathcal{R}_{(\mathcal{G},\Gamma)}$ consists of all realizations (\mathcal{G},p) for which there exists an action $\theta:\Gamma \to \operatorname{Aut}(\mathcal{G})$ such that

 $x(p(v)) = p(\theta(x)(v))$ for all $v \in \mathcal{V}$ and all $x \in \Gamma$.

Definition

For a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a group action $\theta : \Gamma \to \operatorname{Aut}(\mathcal{G})$, and a homomorphism $\tau : \Gamma \to \mathcal{O}(\mathbb{R}^d)$, a framework (\mathcal{G}, p) is Γ -symmetric if

$$\tau(\gamma)(p_i) = p_{\theta(\gamma)(i)}$$
 for all $\gamma \in \Gamma$ and $i \in \mathcal{V}$.

The symmetry group of a Γ -symmetric framework is the group

$$\tau(\Gamma) = \{\tau(\gamma) \,|\, \gamma \in \Gamma\}$$

of isometries of \mathbb{R}^d .

infinitesimal motions can also be studied in this framework

- $\tau(\gamma)(u_i) = u_{\theta(\gamma)(i)}$
- understanding symmetry structure means we only need to find infinitesimal motion for one representative vertex in each vertex orbit

EXAMPLE

 (\mathcal{G}, p)

• $p_1 = (a, b)^T$

•
$$p_2 = (0, c)^T$$

•
$$p_3 = (-a, b)^T$$

•
$$p_4 = (0, d)^T$$

Rigidity matrix

$$R(p) = \begin{bmatrix} (a \ b - c) & (-a \ c - b) & (0 \ 0) & (0 \ 0) \\ (a \ b - d) & (0 \ 0) & (0 \ 0) & (-a \ d - b) \\ (0 \ 0) & (a \ c - b) & (-a \ b - c) & (0 \ 0) \\ (0 \ 0) & (0 \ 0) & (-a \ b - d) & (a \ d - b) \end{bmatrix}$$

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1\ 0\ 0\ \frac{a}{c-b}\ 1\ 0\ 0\ \frac{a}{d-b})^T$ flex is symmetric! with respect to s($x: (a,b) \mapsto (-a,b)$)

EXAMPLE

 (\mathcal{G},p)

• $p_1 = (a, b)^T$

•
$$p_2 = (c, d)^T$$

•
$$p_3 = (-c, d)^T$$

• $p_4 = (-a, b)^T$

Rigidity matrix

$$R(p) = \begin{bmatrix} (a-c\ b-d) & (c-a\ d-b) & (0\ 0) & (0\ 0) \\ (2a\ 0) & (0\ 0) & (0\ 0) & (-2a\ 0) \\ (0\ 0) & (2c\ 0) & (-2c\ 0) & (0\ 0) \\ (0\ 0) & (0\ 0) & (a-c\ d-b) & (c-a\ b-d) \end{bmatrix}$$

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1 - 1 - 1 \frac{2(c-a)+b-d}{d-b} - 1 - \frac{2(c-a)+b-d}{d-b} 1 1)^T$ flex is not symmetric with respect to s

 (\mathcal{G}, p)

• $p_1 = (a, b)^T$

•
$$p_2 = (c, d)^T$$

•
$$p_3 = (-a, -b)^T$$

• $p_4 = (-c, -d)^T$

Rigidity matrix

$$R(p) = \begin{bmatrix} (a-c\ b-d) & (c-a\ d-b) & (0\ 0) & (0\ 0) \\ (a+c\ b+d) & (0\ 0) & (0\ 0) & (-a-c\ -b-d) \\ (0\ 0) & (0\ 0) & (c-a\ d-b) & (a-c\ b-d) \\ (0\ 0) & (a+c\ b+d) & (-a-c\ -b-d) & (0\ 0) \end{bmatrix}$$

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1 \ 0 \ \frac{cd-ab}{ad-bc} \ \frac{a^2-c^2}{ad-bc} \ 1 \ 0 \ - \frac{cd-ab}{ad-bc} \ - \frac{a^2-c^2}{ad-bc})^T$ flex is symmetric with respect to 180° rotation (C_2)

 (\mathcal{G}, p)

• $p_1 = (a, b)^T$

•
$$p_2 = (c, d)^T$$

•
$$p_3 = (-a, -b)^T$$

• $p_4 = (-c, -d)^T$

Rigidity matrix

$$R(p) = \begin{bmatrix} (a-c\ b-d) & (c-a\ d-b) & (0\ 0) & (0\ 0) \\ (a+c\ b+d) & (0\ 0) & (0\ 0) & (-a-c\ -b-d) \\ (0\ 0) & (0\ 0) & (c-a\ d-b) & (a-c\ b-d) \\ (0\ 0) & (a+c\ b+d) & (-a-c\ -b-d) & (0\ 0) \end{bmatrix}$$

- 180° rotation of points corresponds to $\psi_2 \in Aut(\mathcal{G})$
- recall: vertex orbits : $\{1,3\}$, $\{2,4\}$, edge orbits: $\{e_1, e_3\}$, $\{e_2, e_4\}$

symmetries make certain rows and columns of the rigidity matrix redundant

symmetries make certain rows and columns of the rigidity matrix redundant

		1	2	$3 = \mathcal{C}_2(1)$	$4 = \mathcal{C}_2(2)$
$R(p) = \begin{array}{c} e \\ e \\ \mathcal{C} \\ \mathcal{C} \\ \mathcal{C} \end{array}$	e_1	(a-c b-d)	$(c-a \ d-b)$	$(0 \ 0)$	$(0 \ 0)$
	e_4	(a+c b+d)	$(0 \ 0)$	$(0 \ 0)$	(-a-c - b - d)
	$\mathcal{C}_2(e_1)$	(0 0)	$(0 \ 0)$	(c-a d-b)	$(a - c \ b - d)$
	$C_2(e_4)$	$\langle (a+c \ b+d) \rangle$	(-a-c - b - d)	$(0 \ 0)$)

symmetries make certain rows and columns of the rigidity matrix redundant

		1	2	$3 = \mathcal{C}_2(1)$	$4 = \mathcal{C}_2(2)$
$R(p) = \begin{array}{c} e_{z} \\ e_{z} \\ \mathcal{C} \\ \mathcal{C} \end{array}$	e_1	(a-c b-d)	$(c-a \ d-b)$	$(0 \ 0)$	$(0 \ 0)$
	e_4	(a+c b+d)	$(0 \ 0)$	$(0 \ 0)$	(-a-c - b - d)
	$\mathcal{C}_2(e_1)$	(0 0)	$(0 \ 0)$	(c-a d-b)	$(a - c \ b - d)$
	$\mathcal{C}_2(e_4)$	$\langle (a+c \ b+d) \rangle$	(-a - c - b - d)	$(0 \ 0)$)

Orbit Rigidity Matrix

$$\begin{array}{cccc} 1 & 2 & 1 & 2 \\ e_1 \begin{pmatrix} (p_1 - p_2)^T & (p_2 - p_1)^T \\ (p_1 - C_2(p_2))^T & (p_2 - C_2^{-1}(p_1))^T \end{pmatrix} = \begin{pmatrix} (a - c, b - d) & (c - a, d - b) \\ (a + c, b + d)) & (c + a, d + b) \end{pmatrix}$$

- + 2 rows one for each representative of edge orbits under action of \mathcal{C}_2
- 4 columns nodes p_1, p_2 each have two dof; nodes $p_3 = C_2(p_1)$ and $p_4 = C_2(p_2)$ are uniquely determined by the symmetries

Definition [Shulze 2011]

For a Γ -symmetric framework (\mathcal{G}, p) with quotient gain Γ -gain graph (\mathcal{G}_0, w) , the orbit rigidity matrix, $\mathcal{O}(\mathcal{G}_0, w, p)$, is the $|\mathcal{E}_0| \times d |\mathcal{V}_0|$ matrix defined as follows. Choose a representative vertex \tilde{i} for each vertex $\Gamma^{(i)}$ in \mathcal{V}_0 . The row corresponding to the edge $\tilde{e} = (\tilde{i}, \tilde{j})$ with gain $w(\tilde{e})$ in \mathcal{E}_0 is given by

$$(0 \cdots 0 \underbrace{p(\tilde{i}) - \tau(w(\tilde{e}))p(\tilde{j})}_{\tilde{i}} 0 \cdots 0 \underbrace{p(\tilde{j}) - \tau(w(\tilde{e}))^{-1}p(\tilde{j})}_{\tilde{i}} 0 \cdots 0).$$

If $\tilde{e} = (\tilde{i}, \tilde{i})$ is a loop at \tilde{i} , then the row corresponding to \tilde{e} is given by

$$(0 \ \cdots \ 0 \ \underbrace{2p(\tilde{i}) - \tau(w(\tilde{e}))p(\tilde{i}) - \tau(w(\tilde{e}))^{-1}p(\tilde{i})}_{\tilde{i}} \ 0 \ \cdots \ 0 \ 0 \ 0 \ \cdots \ 0).$$

Theorem [Shulze 2011]

The kernel of the orbit rigidity matrix $\mathcal{O}(\mathcal{G}_0, w, p)$ is the space of (w, Γ) -symmetric infinitesimal motions of (\mathcal{G}, p) restricted to the set of vertex orbits $\Gamma^{(i)}$ of \mathcal{G} .

- Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
- full-rank $\mathcal{O}(\mathcal{G}_0, w, p)$ implies none exist
- size of $\mathcal{O}(\mathcal{G}_0,w,p)$ does not depend on p , but only the graph and symmetry constraints

Symmetry preserving motion coordination aims to satisfy the formation control objective while simultaneously moving the formation through space as a rigid body and preserving symmetry of configuration.

Symmetry preserving motion coordination aims to satisfy the formation control objective while simultaneously moving the formation through space as a rigid body and preserving symmetry of configuration.

...recall our earlier Lyapunov function

$$\dot{W} = z^T R(p) u$$

choose $u = u_a + u_m + u_s$

- $u_a = -R(p)^T z$: used to attain desired formation • $u_m = \mathbb{1} \otimes v_0 + \begin{bmatrix} \vdots \\ \omega_0 \times \tilde{q}_i \\ \vdots \end{bmatrix}$: rigid body translation (v_0) and rotation about a point ($\omega_0 \times \tilde{q}_i$)
- u_s obtained from kernel of Orbit rigidity matrix

- theory of symmetric frameworks and orbit rigidity matrix promising for complex motion coordination applications
- analytical challenges associated with identifying symmetries and automorphisms
- extensions for bearing rigidity

Acknowledgments

Bernd Schulze (University of Lancaster) and Shin-ichi Tanigawa (Tokyo University)