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formation control

Formation Control Objective
Given a team of robots endowed with the ability to sense/
communicate with neighboring robots, design a control for each
robot using only local information that

• moves the team into a desired spatial configuration - formation
acquisition

• moves the team into a desired spatial configuration while
simultaneously moving the formation through space as a rigid
body - formation maneuvering
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agent configurations

- we consider a team of n
agents in a metric space
Rd, d ∈ {2, 3},

pi(t) ∈ Rd

- the configuration of the
agents at time t is the vector

p(t) =


p1(t)

...
pn(t)

 ∈ Rnd

- agent dynamics modeled as
integrators

ṗi(t) = ui(t), i = 1, . . . , n

- agents interact according to a
sensing graph G = (V, E)

- a framework is the pair (G, p)

2



formation constraints

- The desired formation is characterized by a set of M
constraints, encoded in the function F : Rnd → RM , and a
configuration p? satisfying the constraints.

- The set of all feasible formations is
F(p) = {p ∈ D̄ |F (p) = F (p?)}

Formation Control Objective
For an ensemble of n agents with dynamics

ṗi = ui,

with pi(t) ∈ Rd, an information exchange graph G = (V, E), and
formation constraint function F : Rnd → RM , design a distributed
control law for each agent i ∈ {1, . . . , n} such that the set

F(p) = {p ∈ D̄ |F (p) = F (p?)},

is asymptotically stable.
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rigidity theory and formation control

Theorem - Distance Constrained Formation Control
Consider the potential function

V (p) =
1

4

∑
i∼j

(
‖pi(t)− pj(t)‖2 − (d?ij)

2
)2

and assume the desired distances d?ij correspond to a feasible
formation. Then the gradient dynamical system

ṗ = −∇pV (p) = −RT (p)R(p)p+RT (p)(d?)2

asymptotically converges to the critical points of the potential
function, i.e., ∂V (p)

∂p = 0.

• R(p) is the rigidity matrix for the framework (G, p)
• rigidity theory used here to understand more about the

equilibrium sets
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proof sketch

(following De Queiroz ’18)

Define some notations...

• relative positions: p̃ij = pi − pj
• distance error: eij = ‖p̃ij‖ − d?ij
• intermediate variable: zij = ‖p̃ij‖2 − (d?ij)

2 = eij(eij + 2d?ij)

introduce Lyapunov candidate:

V (e) =
1

4

∑
i∼j

z2
ij = zT z

time-derivative of Lyapunov function along trajectories

Ẇ = zTR(p)u

IDEA: Design control u to ensure Lyapunov function is decreasing!

• Formation acquisition: u = −R(p)T z

ensures stable formation dynamics
“classic” distance-constrained formation controller
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formation maneuvering

Formation maneuvering aims to satisfy the formation control
objective while simultaneously moving the formation through space
as a rigid body.
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formation maneuvering

Formation maneuvering aims to satisfy the formation control
objective while simultaneously moving the formation through space
as a rigid body.

...recall our earlier Lyapunov function

Ẇ = zTR(p)u

choose u = ua + um

• ua = −R(p)T z : used to attain desired formation

• um = 1⊗ v0 +


...

ω0 × q̃i
...

 : rigid body translation (v0) and

rotation about a point (ω0 × q̃i)

Main Idea: rigid body rotations and translations are in the Ker-
nel of the rigidity matrix!
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beyond rotations and translations

if we relax our requirement to achieve formation shape, does it
enrich the class of distance-preserving motions we can achieve?

Flexes of Frameworks
A framework F = (G, p) is flexible if there exists a continuous
motion of its joints (the points pi) such that all pairs of joints
connected by an edge remain at a constant distance, but between
at least one pair of joints not joined by an edge, the distance
changes.

• infinitesimal flexes can be found by examining the kernel of the
rigidity matrix

• if the only infinitesimal flexes are the translations and
rotations, the framework is rigid

7



beyond rotations and translations

Explore flexes of a framework that preserve
some notion of symmetry

symmetric frameworks and rigidity well explored in the
mathematics community

• B. Schulze and W. Whiteley, Rigidity of Symmetric Frameworks
2017

• B. Schulze, The Orbit Rigidity Matrix of a Symmetric Framework
2011

• R. Connelly, Rigidity and Symmetry 2014
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of
its vertex set such that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• identity: Id =

(
1 2 3 4

1 2 3 4

)

• 90◦ rotation: ψ1 =

(
1 2 3 4

2 3 4 1

)

• 180◦ rotation: ψ2 =

(
1 2 3 4

3 4 1 2

)

• 270◦ rotation: ψ3 =

(
1 2 3 4

4 1 2 3

)
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of
its vertex set such that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• reflection: ψ4 =

(
1 2 3 4

2 1 4 3

)

• reflection: ψ5 =

(
1 2 3 4

4 3 2 1

)

• reflection: ψ6 =

(
1 2 3 4

1 4 3 2

)

• reflection: ψ7 =

(
1 2 3 4

3 2 1 4

)
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automorphism group

Definition
Let X be a set, and let Γ be a collection of invertible functions
X → X . Then Γ is called a group if for any Γ 3 f, g : X → X , both
the composite function f ◦ g and the inverse function f−1 belong
to Γ.

Automorphisms of a graph form a group - Aut(G)

• Aut(G) = {Id, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7}
• subgroup: Γ1 = {Id, ψ1, ψ2, ψ3}
• subgroup: Γ2 = {Id, ψ2, ψ4, ψ5}
• subgroup: Γ3 = {Id, ψ2}
• subgroup: Γ4 = {Id, ψ6}
• subgroup: Γ5 = {Id, ψ7}
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Γ-symmetric graphs

Definition
A Γ-Symmetric graph is a graph for which there exists a group
action θ : Γ→ Aut(G). The action θ is free if θ(γ)(i) 6= i for all i ∈ V
and non-trivial γ ∈ Γ.

Definition
For a Γ-symmetric graph G = (V, E) and node i ∈ V , the set
Γ(i) = {θ(γ)(i) | γ ∈ Γ} is called the vertex orbit. Similarly, for an
edge e = {i, j} ∈ E , the set Γ(e) = {{θ(γ)(i), θ(γ)(j)} | γ ∈ Γ} is
termed the edge orbit.

e1

e2

e3

e4

1 2

4 3

Consider Γ3 = {Id, ψ2}
• Vertex Orbit:

Γ(1) = Γ(3) = {1, 3}, Γ(2) = Γ(4) = {2, 4}
• Edge Orbit:

Γ(e1) = Γ(e3) = {e1, e3},
Γ(e2) = Γ(e4) = {e2, e4}
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Γ-symmetric graphs

Definition
A Γ-Symmetric graph is a graph for which there exists a group
action θ : Γ→ Aut(G). The action θ is free if θ(γ)(i) 6= i for all i ∈ V
and non-trivial γ ∈ Γ.

Definition
For a Γ-symmetric graph G = (V, E) and node i ∈ V , the set
Γ(i) = {θ(γ)(i) | γ ∈ Γ} is called the vertex orbit. Similarly, for an
edge e = {i, j} ∈ E , the set Γ(e) = {{θ(γ)(i), θ(γ)(j)} | γ ∈ Γ} is
termed the edge orbit.

e1

e2

e3

e4

1 2

4 3

Consider Γ2 = {Id, ψ2, ψ4, ψ5}
• Vertex Orbit:

Γ(i) = {1, 2, 3, 4}
• Edge Orbit:

Γ(ei) = {e1, e2, e3, e4}
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quotient Γ-gain graphs

Definition
For a Γ-symmetric graph G = (V, E), the multigraph G/Γ with
vertex set V/Γ = {Γ(i) | i ∈ V} and edge set E/Γ = {Γ(e) | e ∈ E} is
called the quotient graph.

e1

e2

e3

e4

1 2

4 3

• nodes are the vertex
orbits

• edges are the edge
orbits

Consider Γ3 = {Id, ψ2}

e1e3

e2e4

13 24
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quotient Γ-gain graphs

Definition
For a Γ-symmetric graph G = (V, E), the multigraph G/Γ with
vertex set V/Γ = {Γ(i) | i ∈ V} and edge set E/Γ = {Γ(e) | e ∈ E} is
called the quotient graph.

e1
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e3
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4 3

• nodes are the vertex
orbits

• edges are the edge
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quotient Γ-gain graphs

Definition
Let G = (V, E) be a Γ-symmetric graph, where the group action
θ : Γ→ Aut(G) is free. Each edge orbit Γ(e) connecting Γ(i) and Γ(j)

in G/Γ can be written as {{θ(γ)(i), θ(γ) ◦ θ(α)(j)} | γ ∈ Γ} for a
unique α ∈ Γ. For each Γ(e), orient Γ(e) from Γ(i) to Γ(j) in G/Γ and
assign with the gain α. The resulting oriented quotient graph
G0 = (V0, E0), together with the gain labeling w : E0 → Γ, is the
quotient Γ-gain graph (G0, w) of G.
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quotient Γ-gain graphs

e1

e2

e3

e4

1 2

4 3

Consider Γ3 = {Id, ψ2}

Id

ψ2

13 24

• vertex orbit {1, 3} is adjacent to
{2, 4} = {Id(2), Id(4)} under identity
element

• vertex orbit {1, 3} is adjacent to
{2, 4} = {ψ2(2), ψ2(4)} under image
of ψ2

• note no self-loops - no vertex orbit
is adjacent to itself under Id or ψ2
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quotient Γ-gain graphs

e1

e2

e3

e4

1 2

4 3

Consider Γ2 = {Id, ψ2, ψ4, ψ5}

ψ1

1234

or

ψ3

1234

• vertex orbit {1, 2, 3, 4} is adjacent to
itself under ψ1 or ψ3

• no self loops with Id or ψ2 - vertex
orbit not adjacent to itself under
these maps
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Γ-symmetric framework

Definition
Given a finite simple graph G and a map p : V → Rd, a symmetry
operation of the framework (G, p) in Rd is an isometry x of Rd such
that for some αx ∈ Aut(G) we have

x(pi) = pαx(i) for all i ∈ V.

The set of all symmetry operations of a framework (G, p) forms a
group under composition, called the point group of (G, p).

e1

e2

e3

e4

s
1 2

4 3

• consider ψ4 ∈ Aut(G) (reflection)
• isometry x : (a, b) 7→ (−a, b)

satisfies x(pi) = pαx(i) for all i ∈ V.
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Γ-symmetric framework

Definition
Given a finite simple graph G and a map p : V → Rd, a symmetry
operation of the framework (G, p) in Rd is an isometry x of Rd such
that for some αx ∈ Aut(G) we have

x(pi) = pαx(i) for all i ∈ V.

The set of all symmetry operations of a framework (G, p) forms a
group under composition, called the point group of (G, p).

Let R(G,Γ) denote set of all d-dimensional realizations of G whose
point group is either equal to Γ or contains Γ as a subgroup.

• R(G,Γ) consists of all realizations (G, p) for which there exists an
action θ : Γ→ Aut(G) such that

x(p(v)) = p(θ(x)(v)) for all v ∈ V and all x ∈ Γ.
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Γ-symmetric framework

Definition
For a graph G = (V, E), a group action θ : Γ→ Aut(G), and a
homomorphism τ : Γ→ O(Rd), a framework (G, p) is Γ-symmetric
if

τ(γ)(pi) = pθ(γ)(i) for all γ ∈ Γ and i ∈ V.

The symmetry group of a Γ-symmetric framework is the group

τ(Γ) = {τ(γ) | γ ∈ Γ}

of isometries of Rd.
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Γ-symmetric framework

infinitesimal motions can also be studied in this framework

• τ(γ)(ui) = uθ(γ)(i)

• understanding symmetry structure means we only need to find
infintesimal motion for one representative vertex in each vertex
orbit
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example

s

1

2

3

4
(G, p)
• p1 = (a, b)T

• p2 = (0, c)T

• p3 = (−a, b)T

• p4 = (0, d)T

Rigidity matrix

R(p) =


(a b− c) (−a c− b) (0 0) (0 0)

(a b− d) (0 0) (0 0) (−a d− b)

(0 0) (a c− b) (−a b− c) (0 0)

(0 0) (0 0) (−a b− d) (a d− b)


• 4-dimensional kernel -

flexible framework
• 3 trivial motions

1-dimensional flex spanned by
(−1 0 0 a

c−b 1 0 0 a
d−b )

T

flex is symmetric! with respect to s
( x : (a, b) 7→ (−a, b)) 13



example

s

1

2 3

4

(G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−c, d)T

• p4 = (−a, b)T

Rigidity matrix

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(2a 0) (0 0) (0 0) (−2a 0)

(0 0) (2c 0) (−2c 0) (0 0)

(0 0) (0 0) (a− c d− b) (c− a b− d)



• 4-dimensional kernel -
flexible framework

• 3 trivial motions

1-dimensional flex spanned by
(−1 −1 −1

2(c−a)+b−d
d−b −1 − 2(c−a)+b−d

d−b 1 1)T

flex is not symmetric with respect to s
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orbit rigidity matrix

e1

e2

e3

e4

1

2

3

4 (G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−a,−b)T

• p4 = (−c,−d)T

Rigidity matrix

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

(0 0) (0 0) (c− a d− b) (a− c b− d)

(0 0) (a+ c b+ d) (−a− c − b− d) (0 0)


• 4-dimensional kernel -

flexible framework
• 3 trivial motions

1-dimensional flex spanned by
(−1 0 cd−ab

ad−bc
a2−c2

ad−bc 1 0 − cd−ab
ad−bc −

a2−c2

ad−bc )T

flex is symmetric with respect to 180◦

rotation (C2)
14



orbit rigidity matrix

e1

e2

e3

e4

1

2

3

4 (G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−a,−b)T

• p4 = (−c,−d)T

Rigidity matrix

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

(0 0) (0 0) (c− a d− b) (a− c b− d)

(0 0) (a+ c b+ d) (−a− c − b− d) (0 0)


• 180◦ rotation of points corresponds to ψ2 ∈ Aut(G)

• recall: vertex orbits : {1, 3}, {2, 4}, edge orbits: {e1, e3}, {e2, e4}

symmetries make certain rows and columns of the rigidity
matrix redundant 14



orbit rigidity matrix

symmetries make certain rows and columns of the rigidity
matrix redundant

R(p) =


1 2 3 = C2(1) 4 = C2(2)

e1 (a− c b− d) (c− a d− b) (0 0) (0 0)

e4 (a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

C2(e1) (0 0) (0 0) (c− a d− b) (a− c b− d)

C2(e4) (a+ c b+ d) (−a− c − b− d) (0 0)



Orbit Rigidity Matrix

( 1 2

e1 (p1 − p2)
T (p2 − p1)

T

e4 (p1 − C2(p2))
T (p2 − C−1

2 (p1))
T

)
=

( 1 2

(a− c, b− d) (c− a, d− b)

(a+ c, b+ d)) (c+ a, d+ b)

)

• 2 rows - one for each representative of edge orbits under
action of C2

• 4 columns - nodes p1, p2 each have two dof; nodes p3 = C2(p1)

and p4 = C2(p2) are uniquely determined by the symmetries
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orbit rigidity matrix

Definition [Shulze 2011]

For a Γ-symmetric framework (G, p) with quotient gain Γ-gain
graph (G0, w), the orbit rigidity matrix, O(G0, w, p), is the
|E0| × d|V0| matrix defined as follows. Choose a representative
vertex ĩ for each vertex Γ(i) in V0. The row corresponding to the
edge ẽ = (̃i, j̃) with gain w(ẽ) in E0 is given by

(0 · · · 0 p(̃i)− τ(w(ẽ))p(j̃)︸ ︷︷ ︸
ĩ

0 · · · 0 p(j̃)− τ(w(ẽ))−1p(j̃)︸ ︷︷ ︸
ĩ

0 · · · 0).

If ẽ = (̃i, ĩ) is a loop at ĩ, then the row corresponding to ẽ is given by

(0 · · · 0 2p(̃i)− τ(w(ẽ))p(̃i)− τ(w(ẽ))−1p(̃i)︸ ︷︷ ︸
ĩ

0 · · · 0 0 0 · · · 0).
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orbit rigidity matrix

Theorem [Shulze 2011]

The kernel of the orbit rigidity matrix O(G0, w, p) is the space of
(w,Γ)-symmetric infinitesimal motions of (G, p) restricted to the
set of vertex orbits Γ(i) of G.

• Orbit rigidity matrix can be used to identify symmetric
infinitesimal flexes

• full-rank O(G0, w, p) implies none exist
• size of O(G0, w, p) does not depend on p, but only the graph and

symmetry constraints
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back to motion coordination

Symmetry preserving motion coordination aims to satisfy the
formation control objective while simultaneously moving the
formation through space as a rigid body and preserving symmetry
of configuration.

...recall our earlier Lyapunov function

Ẇ = zTR(p)u

choose u = ua + um + us

• ua = −R(p)T z : used to attain desired formation

• um = 1⊗ v0 +


...

ω0 × q̃i
...

 : rigid body translation (v0) and

rotation about a point (ω0 × q̃i)
• us obtained from kernel of Orbit rigidity matrix
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symmetry preserving motion coordination
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concluding remarks

• theory of symmetric frameworks and orbit rigidity matrix
promising for complex motion coordination applications

• analytical challenges associated with identifying symmetries
and automorphisms

• extensions for bearing rigidity
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