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Bearing-Only Network Localization

◦ Problem Statement
p1

p2p3

p4

Notations:

• A network of n nodes in Rd (n ≥ 2, d ≥ 2)

• The underlying graph G = (V, E)
• The position of each node is pi ∈ Rd (i ∈ V)

Anchors and followers:

• The first na nodes are anchors and the rest nf nodes are followers (na +nf = n)

• The position of each anchor is known, and the position of each follower is
unknown and to be localized

• Denote Va = {1, . . . , na} and Vf = {na + 1, . . . , n}; pa = [pT1 , . . . , p
T
na

]T and

pf = [pTna+1, . . . , p
T
n ]T

Follower i ∈ Vf can obtain

• Bearings of its neighbors: {gij}j∈Ni

• Estimates of its neighbors: {p̂j}j∈Ni
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Bearing-Only Network Localization

◦ Problem Statement

p̂1 = p1

p̂2 = p2p3

p4

p̂3

p̂4

Problem statement:

• Each follower has an estimate p̂i of its own position pi. Design a distributed
localization protocol based on {gij}j∈Ni

and {p̂j}j∈Ni
such that p̂i(t)→ pi as

t→∞
Assumption:

• Undirected graph: (i, j) ∈ E ⇔ (j, i) ∈ E. Nodes i and j can measure the
bearings of each other and communicate with each other

• Global orientation: each node can measure the bearings of their neighbors with
respect to a global orientation

Two problems to solve:

• What kind of networks can be localized?

• How to distributedly localize a network?
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Bearing-Only Network Localization

◦ Localizability Analysis: What kind of networks can be localized?

Localizability is a fundamental property of a network. A network must be localizable
in order to be localized in either centralized or distributed ways.

The bearing-only network localization problem is to retrieve pf by solving
p̂j − p̂i
‖p̂j − p̂i‖

= gij , ∀(i, j) ∈ E,

p̂i = pi, ∀i ∈ Va.
(1)

Definition (Bearing-Only Network Localizability)

A network G(p) is called localizable if the true location p is the unique feasible
solution to (1).

Examples of non-localizable networks:
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Bearing-Only Network Localization

◦ Localizability Analysis: An orthogonal projection operator

For any nonzero vector x ∈ Rd (d ≥ 2), define the orthogonal projection operator
P : Rd → Rd×d as

P (x) , Id −
x

‖x‖
xT

‖x‖
.

For notational simplicity, denote Px , P (x). Note that Px is an orthogonal projection
matrix that geometrically projects any vector onto the orthogonal compliment of x.

x
y

Pxy

• PT
x = Px and P 2

x = Px.

• Px is positive semi-definite.

• Null(Px) = span{x} and the eigenvalues of Px are {0, 1(d−1)}.
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Bearing-Only Network Localization

◦ Localizability Analysis: A Least-Squares formulation

Nonlinear algebraic problem:
p̂j − p̂i
‖p̂j − p̂i‖

= gij , ∀(i, j) ∈ E,

p̂i = pi, ∀i ∈ Va.

⇐⇒ Linear algebraic problem:{
Pgij (p̂j − p̂i) = 0, ∀(i, j) ∈ E,
p̂i = pi, ∀i ∈ Va.

⇐⇒ Least-squares problem:

minimize
p̂∈Rdn

J(p̂) =
1

2

∑
i∈V

∑
j∈Ni

‖Pgij (p̂i − p̂j)‖
2,

subject to p̂i = pi, i ∈ Va.
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Bearing-Only Network Localization

◦ Localizability Analysis: A Least-Squares formulation

⇐⇒ Least-squares problem:

minimize
p̂∈Rdn

J(p̂) = p̂TLp̂

subject to p̂a = pa

where L ∈ Rdn×dn and the ijth subblock matrix of L is

[L]ij =


0d×d, i 6= j, (i, j) /∈ E,
−Pgij , i 6= j, (i, j) ∈ E,∑

k∈Ni
Pgik , i = j, i ∈ V.

The matrix L can be viewed as a matrix-weighted Laplacian matrix. We call L the
bearing Laplacian since it carries the information of both the bearings and the
underlying graph of the network. The bearing Laplacian L can be partitioned into

L =

[
Laa Laf
Lfa Lff

]
,

where Laa ∈ Rdna×dna , Laf = LTfa ∈ Rdna×dnf , and Lff ∈ Rdnf×dnf .
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Bearing-Only Network Localization

◦ Localizability Analysis: necessary and sufficient conditions

⇐⇒ Unconstrained Least-Squares problem:

min
p̂f∈R

dnf

J̃(p̂f ) = p̂Tf Lff p̂f + 2pTa Laf p̂f + pTa Laapa.

The Least-Squares problem has a unique global minimizer if and only if Lff is
nonsingular. The global minimizer is

p̂∗f = −L−1
ff Lfapa = pf .

Theorem (Algebraic Condition for Localizability)

A network G(p) is localizable if and only if the matrix Lff is nonsingular.

More results can be found in

• S. Zhao and D. Zelazo. Bearing rigidity and almost global bearing-only formation stabilization.
IEEE Transactions on Automatic Control, 2015a.
to appear (available at arXiv:1408.6552)

• S. Zhao and D. Zelazo. Bearing-only network localization: localizability, sensitivity, and distributed protocols.
Automatica, 2015b.
under review (available at arXiv:1502.00154)
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Bearing-Only Network Localization

◦ Localizability Analysis: examples

(a) (b) (c) (d) (e)

Figure: Examples of non-localizable networks.

(a) (b) (c) (d) (e)

Figure: Examples of localizable networks.
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Bearing-Only Network Localization

◦ Distributed Localization Protocol

The global minimizer of J̃(p̂f ) = p̂Tf Lff p̂f + 2pTa Laf p̂f + pTa Laapa can be solved by

the gradient decent protocol

˙̂pf (t) = −∇p̂f J̃(p̂f ) = −Lff p̂f (t)− Lfapa,
whose elementwise expression is

˙̂pi(t) = −
∑
j∈Ni

Pgij (p̂i(t)− p̂j(t)), i ∈ Vf .

where Pgij = Id − gijgTij .

gij

−Pgij (p̂i(t)− p̂j(t))

p̂i(t)

p̂j(t)

Figure: The geometric interpretation of the localization protocol.

Theorem

The protocol can globally localize a network if and only if the network is localizable.
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Bearing-Only Network Localization

◦ Distributed Localization Protocol: simulation examples
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Figure: A simulation example to demonstrate the localization protocol.
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Figure: A simulation example to demonstrate the localization protocol. 12 / 20
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Bearing-Based Formation Control

◦ Problem Statement

• The target formation is defined by the constant bearing constraints {g∗ij}(i,j)∈E
and the leaders {p∗i }i∈V` where V` is the index set of the leaders

• The control objective is to steer pi(t)→ p∗i where i ∈ Vf and p∗i is the position
in the target formation

p̂1(t) = p1

p̂2(t) = p2p3

p4

p̂3(t)

p̂4(t)

(a) Network localization

p1(t) = p∗1

p2(t) = p∗2p∗3

p∗4

p3(t)

p4(t)

(b) Formation control

˙̂pi(t) = −
∑
j∈Ni

Pgij (p̂i(t)− p̂j(t)) =⇒ ṗi(t) = −
∑
j∈Ni

Pg∗ij
(pi(t)− pj(t))
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Bearing-Based Formation Control

◦ Simulation Examples
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Figure: A 3D example for bearing-based formation control: leaderless case.
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Figure: A 3D example for bearing-based formation control: leader-follower case. Agents in red are fixed leaders. 15 / 20



Bearing-Based Formation Control

◦ Latest Results:

• S. Zhao and D. Zelazo. Translational and scaling formation maneuver control via a bearing-based approach.
IEEE Transactions on Control of Network Systems, 2015c.
under review (available at arXiv:1506.05636)

• S. Zhao and D. Zelazo. Bearing-based formation maneuvering.
In Proceedings of the 2015 IEEE Multi-Conference on Systems and Control.
under review (available at arXiv:1504.03517)

There are many formation control approaches. Why bearing-based formation control?

• Bearing-based formation control provides a natural solution to formation scale
control

Figure: The bearing constraints are invariant to the formation scale.
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Bearing-Based Formation Control

◦ Latest Results:

◦ Single integrator dynamics:

ṗi(t) = −
∑
j∈Ni

Pg∗ij

[
kp(pi(t)− pj(t)) + kI

∫ t

0
(pi(τ)− pj(τ))dτ

]
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Figure: Leaders: red and blue circles; followers: circles

17 / 20



Bearing-Based Formation Control

◦ Latest Results:

◦ Double integrator dynamics:

ṗi(t) = vi(t), v̇i(t) = −
∑
j∈Ni

Pg∗ij
[kp(pi(t)− pj(t)) + kv(vi(t)− vj(t))]
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Conclusions

Main contributions:

• Bearing-Only Network Localization
• When a network is localizable?
• How to distributedly localize a network?

• Bearing-Based Formation Control

Compared to the existing studies, the proposed results are applicable to
networks/formations in arbitrary dimensions.

Limitations and future work:

• The underlying graph is undirected/bidirectional. The directed case should be
studied in the future.
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The End

Thank you!

Q & A
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