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Challenges in Multi-Robot Systems

Solutions to coordination problems
in multi-robot systems are highly
dependent on the sensing and
communication mediums available!

Sensing Communication
selection criteria depends on
* GPS * Internet . :
, s , mission requirements, COst,
* Relative Position < Radio :
, environment...
Sensing * Sonar

* Range Sensing * MANet
* Bearing Sensing
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Formation Control: Distance-Based Approaches

—————— robots modeled as integrators
Di = U4

agents can sense range to neighbors
determined by a (fixed) sensing graph

Ipi — p;°

desired formation is specified by a
vector of distances

d2.

¥,

desired formation is (locally)
- 12 = 42 D . . .
= Z (Ipi = p;lI" = di) (ps = i) asymptotically stable if the sensing
]NZ . ° ° ° ° ° °
graph is infinitesimally rigid
[Krick2007, Anderson2008, Dimarogonas2008, Dorfler2010]
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Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness”
or “flexibility” of structures formed by rigid bodies connected by
flexible linkages or hinges.

Distance Rigidity Parallel Rigidity

- maintain distance pairs - maintain angles (shape)

- rigid body rotations and - rigid body translations
translations and dilations

e
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Rigidity Theory

bar-and-joint frameworks

D : VY — R?

maps every vertex to a
point in the plane

.
p503
example: ’/ |‘.‘ p2 (1) p2 o)
Fi = (G, N
1 = p1) | NS
L a N
'. >
\ ' L o L1
N ‘| d _____
_ G \ L
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Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness”
or “flexibility of structures formed by rigid bodies connected by
flexible linkages or hinges.

Distance Rigidity Parallel Rigidity
infinitesimal motions infinitesimal motions
(p(r) — p(o))" ((u) — €)= 0 ((p(w) — p()fD " (6(w) — €(w)) = 0
Rigidity Matrix Parallel Rigidity Matrix
R(p)§ =0 R (p)§ =0
Theorem

A framework is infinitesimally rigid if and only if the rank of the
rigidity matrix is 2|V| — 3
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Formation Control: Distance-Based Approaches

. 2 2
pi =Y (lpi = pjlI* = d%;) (0j — pi)
jri
DI LS S T T—_— Important Assumptions
é 5 S .
B R S e N * point masses
I < il T A * bidirectional sensing
LI N N * range measurements*
. « common reference frame is implicit
A more “practical” approach...

* agents represented by points in

A
SE(2) (position and orientation)
* bearing measurements with
respect to body-frame
- unidirectional sensing
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Rigidity Theory in SE(2)

bar-and-joint frameworks in SE(2) o

(Q y Py w) (P, ) §@x<> — (p(v1), ¥(w1))

g — (V, g ) a directed graph /§‘\
,"' //‘\ “‘.
| 2 CATNE
p:V—>R ws) e
Yv:V =S ey
X(U2R
a directed edge indicates availability
of relative bearing measurement
A ,% stacked vector of entire framework

O Lo xp = p(V) € R2V

! w =) es”

=
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Rigidity Theory in SE(2)

bar-and-joint frameworks in SE(2)
(G, p, )

directed bearing rigidity function

b - SE2)VI = st1¢

bQ(X(V)) — [ 561

bearing can be expressed
as a unit vector

ou (D, V)

T
Y
i T

cos(Byu) }
sin( By

N——"

=
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_ | cos(i(v))  sin(y(v)) ] (p(u) — p(v))
L —sin((v)) cos(®(v)) | Tlp(v) = plw)
T(6(v))
D5M NPWLINIMN NDTIND NL,MPaAN ECC2014

Strasbourg, France



Rigidity Theory in SE(2)

DEfi nition (Rigidity in SE(2))

Let G = (V,€&) be a directed graph and Ky be the complete directed graph
on |V| nodes. The SE(2) framework (G, p, ) is rigid in SE(2) if there exists a
neighborhood S of x(V) € SE(2)Vl such that

by, (0K (X(V))) NS = bg (bg (x(V))) N S,

where bf_<|1v| (b, (X(V))) C SE(2) denotes the pre-image of the point by, (x(V))

under the directed bearing rigidity map.
The SE(2) framework (G, p, 1) is roto-flexible in S E(2) if there exists an analytic
path n: [0, 1] — SE(2)V! such that n(0) = (V) and

1(t) € b (bg (x(V))) — b, (b, (X(V)))

for all ¢ € (0, 1].
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Rigidity Theory in SE(2)

DEfI n Itl On (Equivalent and Congruent SE(2) Frameworks)
Frameworks (G, p, ) and (G, q, @) are bearing equivalent if

for all|(u,v) € £ and are bearing congruent if

T(W(w) Dy = T(S(uw))"q,, and
T(W(0) Ppu = T(9(0))" Tyus

for allju,v € V.

DEfI n Itl O n (Global Rigidity of SE(2) Frameworks)

A framework (G,p, ) is globally rigid in SE(2) if every framework which is
bearing equivalent to (G, p,) is also bearing congruent to (G, p, ).
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Rigidity Theory in SE(2)

(p(v1), ¥ (v1))

g

(p(v3), 9 (v3))

>

both frameworks are parallel rigid agent 3 maintains no bearing angles
(i.e., internal angles are fixed) and is free to “spin” —> framework

is not globally rigid in SE(2)!
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Rigidity Theory in SE(2)
a “linearized” version of bearing rigidity

bg(X(V) + dx) = bg(x(V)) + (Vybg(x(V))) dx + h.o.t.

Directed Bearing Rigidity Matrix
Bg(x(V)) := Vybg(x(V)) € RIEX3V

Theorem
An SE(2) framework is infinitesimally rigid if and only if

rk|Bg(x(V))| = 3|V| -4

55M NpWININMN NDTIND NLMPan ECC2014

Faculty of Aerospace Engineering Strasbourg, France

=



Rigidity Theory in SE(2)
a “linearized” version of bearing rigidity

bg(X(V) + dx) = bg(x(V)) + (Vybg(x(V))) dx + h.o.t.

Directed Bearing Rigidity Matrix
Bs(x(V)) := Vybg(x(V)) € RIEX3VI

Bo(x(V)) =[ Dg'(xp)R)(xp) EG)" ]

Dg(xp) = diag{..., [Ip(v) —p(v)|*,.. .}

— o 1, ifek:(vi,v-)eg
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Infinitesimal Motions in SE(2)

recall...
Distance Rigidity Parallel Rigidity
- maintain distance pairs - maintain angles (shape)
- rigid body rotations and - rigid body translations
translations and dilations

R(p)§ =0 Ry (p)§ =0

What are the infinitesimal motions in SE(2)?

Theorem

Every infinitesimal motion dx € N [Bg(x(V))] satisfies

Rll (Xp)5Xp —Dg (Xp) T(g)(SXw

D5M NPWLINIMN NDTIND NL,MPaAN ECC2014

Faculty of Aerospace Engineering Strasbourg, France

=



Infinitesimal Motions in SE(2)

R, (Xp)Oxp = —Dg (Xp)ET(g)(SXw

if all agents maintain attitude, infinitesimal
motions are the translations and dilations of
the framework
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Infinitesimal Motions in SE(2)

R, (Xp)Oxp = —Dg (Xp)ET(g)(SXw

if angular velocities are non-zero,
the infinitesimal motions are the
coordinated rotations of the framework
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Estimation of Relative Positions

high level coordination objectives
(formation keeping, localization,
sensor fusion) require robots to
know the transformation between
local body frames - relative
positions and relative orientation

A distributed gradient descent estimator

Bearing Error:

A

e(&,9,p,v) = bg(x(V)) — bg (£, D)

Cost Function:

1 n A N N "
J(e) = 5 (Kelle(€ 9,p,0) |2 + k1 &l + kIl = 1% + k(1 = cos D))
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Estimation of Relative Positions

--------------------------

not SE(2)
infinitesimally rigid :
- .

' S
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Estimation of Relative Positions
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Conclusions and Outlook

» coordination methods for multi-agent systems depend
on sensing and communication mediums

» systems with bearing only sensing is a practical solution
for many multi-agent systems

» extension of rigidity to concepts to frameworks in SE(2)
» SE(2) rigidity used to distributedly estimate relative
positions from only bearing measurements
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Conclusions and Outlook

» deeper results for bearing rigidity

e extensions to SE(3)

» estimation filter combined with higher-level tasks
(formation keeping)

e control and estimation with field-of-view constraints
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Rigidity Theory in SE(2)
a “linearized” version of bearing rigidity

bg(X(V) + dx) = bg(x(V)) + (Vybg(x(V))) dx + h.o.t.

Directed Bearing Rigidity Matrix
Bg(x(V)) := Vybg(x(V)) € RIEX3V

Defl NITION anfinitesimal Rigidity in SE)

An SE(2) framework (G, p, ) is infinitesimally rigid
if N'[Bg(x(V))] =N |Bk,,, (x(V))]. Otherwise, it is
infinitesimally roto-flexible in SE(2).
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