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FORMATION CONTROL

Given a team of robots endowed with the ability to sense/ communicate with
neighboring robots, design a control for each robot using only local information that
moves the team into a desired spatial configuration.




FORMATION CONSTRAINTS

- The desired formation is characterized by a set of M constraints, encoded in the
function F : R*® — RM and a configuration p* satisfying the constraints.

- The set of all feasible formations is
F(p)={p € D|F(p) = F(p")}
Formation Control Objective
For an ensemble of n agents with dynamics
pi = Uy,

with p;(t) € R9, an information exchange graph G = (V, £), and formation constraint
function I : R — RM, design a distributed control law for each agenti € {1,...,n}

h that the set D :
such that the se F(p)={peD|F(p) = F(p")},

is asymptotically stable.



RIGIDITY THEORY AND FORMATION CONTROL

Consider the potential function
2
)= 1 (Ipi(t) ~ ;I ~ %)
ijEeE

and assume the desired distances d}; correspond to a feasible formation. Then the
gradient dynamical system

w ==V, Fr(p) = > _ (Ipi — pillI* — d) (p; — i)
ijeE

asymptotically converges to the critical points of the potential function, i.e., aFf(p) = 0.




A NOTE ON FORMATION POTENTIALS AND RIGIDITY THEORY

1 2
Fy(p) = 3 > (i) = ps(OI* = a5)?)
ijee
- formation potential can be written in terms of a rigidity function

[Ff(p) = 2lra(p) - w(p)ﬂﬂ

o Trg:ip— [ < 2llp — ps? ~~~}T: distances between neighbors
o p: a configuration satisfying distance constraints (i.e., |p; — p;||* = d3;)
p1 = (0,0) p2 = (2,0)
Ip1 — p2ll® 4
( ): ||p2 _p3H2 _ 9
Ip3 — pall? 4
[[pa —P1H2 9

pa=(0,-3) p3=(2,-3)



A NOTE ON FORMATION POTENTIALS AND RIGIDITY THEORY

1 2
Fr(p) = 5 3 (Ipi) —p; ()]° = d5)%)
ijee
- formation potential can be written in terms of a rigidity function

[ﬂ@=;m®—mmﬂ

T
o rg:ip— [ o 2lp — ps? } : distances between neighbors
o p:a configuration satisfying distance constraints (i.e., ||p; — p;||* = d3;)
« rigidity theory looks for distance-preserving infinitesimal motions

e ()
Lrg (p + (5])) =rg (p) + ‘ ,(3121)') op + h.O.t}

[e]

infinitesimal motions satisfy ‘r}rgi(”)dp =0
D
the Rigidity matrix: R(p) = “£2 € RI¥*2V!
"rigid body” rotations and translations are always distance preserving: trivial motions

A framework (G, p) is infinitesimally rigid if the only infinitesimal motions are trivial

[e]

o

[e]



RIGIDITY THEORY AND FORMATION CONTROL

our formation control

ui ==V, Fr(p) =Y _ (Ipi — pslI* = d3)) (0; — p1)
ije€l



RIGIDITY THEORY AND FORMATION CONTROL

our formation control

ui ==V, Fr(p) =Y _ (Ipi — pslI* = d3)) (0; — p1)
ije€l

can be expressed with rigidity matrix

(u=—R"()(R@)p - d°))




RIGIDITY THEORY AND FORMATION CONTROL

our formation control

ui ==V, Fr(p) = Z (sz —pj||2 - d?j) (pj —pi)
ije&

can be expressed with rigidity matrix

(u=—R"()(R@)p - d°))

a proof sketch

- define error dynamics for distance error: e = R(p)p — d?

¢ =—R(p)R" (p)e

- Lyapunov argument V(e) = 1||e|?

+ when R(p)R” (p) > 0, we have (local) exponential convergence to desired formation
+ good frameworks are i) infinitesimally rigid, and ii) full row-rank (isostatic farmeworks)



RIGIDITY THEORY AND FORMATION CONTROL

Rigidity theory helps us understand

« how many constraints are required to ensure
uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

» how the constraints should be distributed in the
network

Awidely accepted architectural requirement for distance constrained formation con-
trol is that isostatic frameworks are required. Equivalent to:

tk R(p) =2|V| —3and |E] =2[V| -3 (inR?)




RIGIDITY THEORY AND FORMATION CONTROL

Rigidity theory helps us understand

« how many constraints are required to ensure
uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

» how the constraints should be distributed in the
network

Awidely accepted architectural requirement for distance constrained formation con-
trol is that isostatic frameworks are required. Equivalent to:
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RIGIDITY THEORY AND FORMATION CONTROL

Rigidity theory helps us understand

« how many constraints are required to ensure
uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

» how the constraints should be distributed in the
network

Awidely accepted architectural requirement for distance constrained formation con-
trol is that isostatic frameworks are required. Equivalent to:

tk R(p) =2|V| —3and |E] =2[V| -3 (inR?)

Q: is this a necessary condition? (can we solve the problem with fewer edges?)

A: Impose additional symmetry constraints without
requiring more information exchange (in fact, less!)




GRAPH SYMMETRIES AND POINT GROUPS

Graph Symmetries Point Groups

+ graph automorphisms * isometries



SYMMETRY AND GRAPH AUTOMORPHISMS

Graph Automorphism

An automorphism of the graph G = (V, €) is a permutation ¢ of of its vertex set such
that

{vi,v5} € € & {(vi),¥(v5)} € E

Automorphisms encode graph symmetries

« identity: Id = b2 34
1 2 3 4

. 1 2 4
* 90° rotation: y; = 3
2 3 4 1

—_ W

. 1 2 4
+ 180° rotation: ¢, =
3 4 2

w
N

. 1 2
« 270° rotation: ¢35 = ( 4 )



SYMMETRY AND GRAPH AUTOMORPHISMS

Graph Automorphism

An automorphism of the graph G = (V, €) is a permutation ¢ of of its vertex set such
that

{vi,v5} € € & {(vi),¥(v5)} € E

Automorphisms encode graph symmetries

. 1 2 3 4
- reflection: =
Vs (2 1 4 3)
. 1 2 4
« reflection: ¢5 = 3
4 3 2 1
. 1 2 3 4
- reflection: =
Ve < 1 4 3 2 )
. 1 2 4
« reflection: ¥, = 3
3 2 1 4



AUTOMORPHISM GROUP

Definition

Let X be a set, and let T be a collection of invertible functions X — X. Then T is called
a group if the identity map, Id, belongs to T', and forany I" > f,¢ : X — X, both the
composite function f o g and the inverse function f~! belong to I..

Automorphisms of a graph form a group - Aut(G)

- Aut(g) = {Id7w17w271/)371/}471/)5a1/)6aw7}

A subgroup is a subset of a group, and also satisfies all properties of a group

- {Id, 1, 2, 3}
- {Id, 2, Y4, 95}
- {Id,v9}
- {Id, ¥s}
- {Id, ¢7}



['-SYMMETRIC GRAPHS

« Subgroups of Aut(G) define specific symmetries in G
« for any subgroup I' C Aut(G), we say that G is I'-symmetric

10



['-SYMMETRIC GRAPHS

« Subgroups of Aut(G) define specific symmetries in G
« for any subgroup I' C Aut(G), we say that G is I'-symmetric

Definition
For a T'-symmetric graph G = (V,£) and vertex i € V, the setT'; = {v(i) |y € '} is called
the vertex orbit of i. Similarly, for an edge e = ij € £, the set T'. = {y(i)y(j) |y €T} is
termed the edge orbit of e.
Consider I' = {Id, 12} (3> is the 180° rotation)
+ Vertex Orbit:
D =T5={1,3}, [o =Ty = {2,4}
vertices inside a vertex orbit are equivalent
representative vertex set: Vo = {1,2}
+ Edge Orbit:
Fel - Fe;; - {61763}>
[ep, =T, = {62764}
representative edge set: £ = {e1,e2}

10



7(I")~SYMMETRIC FRAMEWORK

combine notions of graph symmetries with point groups

+ let G be a I'-symmetric graph
- I also represented as a point group

- a set of isometries that preserve symmetries

- homomorphism 7 : T' — O(R%)

- 7 assigns an orthogonal matrix (describing an isometry of R? such as a rotation or
reflection) to each element of T’

Definition

A framework (G, p) in R is called 7(1')-symmetric if
T(V)(Pi) = pyu) forally el and allie€ V.

"



7(I")~SYMMETRIC FRAMEWORK

example... « consider I' = {Id, ¥4} C Aut(9)

: v =1y € I' (reflection about mirror S)
-1 0 a —a
ool - 1

satisfies 7(v)(p;) = py(;) foralli € V.

* isometry 7(v) = [

« note: for a 7(T")-symmetric framework (G, p) and for
every j € I';, there is a v; € I such that 7(v,)p; = p;
forall j €T

12



7(I")~SYMMETRIC FRAMEWORK

example... « consider I' = {Id, ¥4} C Aut(9)

: v =1y € I' (reflection about mirror S)
-1 0 a —a
ool - 1

satisfies 7(v)(p;) = py(;) foralli € V.

* isometry 7(v) = [

« note: for a 7(T")-symmetric framework (G, p) and for
every j € I';, there is a v; € I such that 7(v,)p; = p;
forall j €T

isometries of configuration p coincide with symmetries of the automorphisms of G

« in 7(T')-symmetric frameworks, the configurations p are in a special geometric
position (not necessarily generic)

- symmetry can lead to unexpected infinitesimal flexibility/rigidity

12



SYMMETRIC RIGIDITY

Definition
An infinitesimal motion u of a 7(T")-symmetric framework (G, p) is 7(T")-symmetric if

7(7)(ui) = uyy forally €T and alli € V.

We say that (G, p) is 7(I")-symmetric infinitesimally rigid if every 7(I")-symmetric
infinitesimal motion is trivial.

- recall that infinitesimal motions are in the kernel of the rigidity matrix
R(p)op =0

- we can find a subspace of the kernel that is isomorphic to the space of
‘fully-symmetric’ infinitesimal motions

- velocity assignments to the points of (G, p) that exhibit exactly the same symmetry
as the configuration p

13



SYMMETRIC RIGIDITY

P
p3 P2
<« >
p4\ o
(c)

- C4,-symmetric (and ‘ - Cs-symmetric (with - Cy-symmetric (with
hence 7(I')-symmetric respect to the reflection respect to the reflection
for any subgroup 7(I') of ) o) with a non-trivial
Cav) _ - 7(T')-symmetric Cs-symmetric

- 7(I')-symmetric infinitesimally rigid infinitesimal motion

infinitesimally rigid - 7(I')-symmetric

infinitesimally flexible

14



SYMMETRIC CONFIGURATION FORMATION CONTROL

Symmetric Formation Control Objective

Consider a group of n integrator agents that interact over the I'-symmetric sensing
graph G. Let p € R be a configuration such that (G, p) is 7(I')-symmetric for some
desired point group 7(T"), and let V, be a set of representatives of the vertex orbits of
G under T. Design a control u;(¢) for each agent i such that

(i) lim [lps(t) = p; ($)|l = [Ips — pyll = di; for all ij € & (distance constraints)

(ii) Jim lpw(t) — T(You)pu (t)]| = 0 for all u,v € Ty, i € V. (symmetry constraints)
—00

15



A GRADIENT APPROACH

« the formation potential

Fro®) = 3 3 (Init) ~ oy ()] — a3)?

ijEE



A GRADIENT APPROACH

« the formation potential

Fro(0) = 7 X (Ins®) ~ w30 — a)?
ijeE

- the symmetry potential

Fp0) =5 3 S lIpult) — rlra)p (0

i€V u,vel;
uveE

Assumption 1
The sub-graph induced by each vertex orbit T'; is connected.



A GRADIENT APPROACH

« the formation potential

Fro(0) = 7 X (Ins®) ~ w30 — a)?
ijeE

- the symmetry potential

Fp0) =5 3 S lIpult) — rlra)p (0

i€V u,vel;
uveE

Assumption 1
The sub-graph induced by each vertex orbit T'; is connected.

- the symmetric formation potential

F(p(t)) = Fr(p(t)) + Fs(p(t))



A GRADIENT APPROACH

- propose the gradient control

u(t) = =VFE(p(t))



A GRADIENT APPROACH

- propose the gradient control
u(t) = ~VF(p(t))
- closed-loop dynamics
p(t) = =R(p(t))" (Rp(1)p(t) — %) — Qp(1)

where @ is symmetric and a block-diagonal matrix with

dr,(w)I, uw=v,uel; - Qi € RITilaxITild
Qiluw = —7(Yuw), wv €& u,veT;. * [Qlus € O(R?) (orthogonal group)
0, o.W. * T(Yu) T = T(Yuw) "

o Q; has a decomposition Q; = E(I;,)E(I)”
o Q=EMEMT
o any pin a symmetric position satisfies Qp = 0



- symmetric formation potential makes no assumption on relation between the graph
G and the point group 7(T)

+ we restrict our study to graphs where communication required by symmetric
potential use same edges as G




“NICE” GRAPHS

« symmetric formation potential makes no assumption on relation between the graph
G and the point group 7(T")

- we restrict our study to graphs where communication required by symmetric
potential use same edges as G

« T'={Id, 4} C Aut(G)

Ty =Ty ={1,2}, I3 =14 = {3,4}
Vo ={1,4}

« isometry 7(v) : (a,b) — (—a,b)

satisfies 7(v)(pi) = py(;) foralli € V and
foreachieVyandj e\ {i},
the edge ij isin € (i.e. G(I';) is connected)




A GRADIENT APPROACH

+ propose the gradient control
+ closed-loop dynamics

+ dynamics at for each agent

pi(t) = Z (Ipi(t) — p; I — dF) (p; (t) — pi(t)) + Z (7(7i5)pi (t) — pi(t))
ijeE ijEE
i,j€Ty




MAIN RESULT 1

Consider a team of n integrator agents interacting over a I'-symmetric graph G satisfying Assumption 1 that
can be drawn with maximum point group symmetry S in R%, and let

Fr={p € R™||Ip; — pjll = di;ij € £}, and Fs = {p € R*™ | 7(7)(pi) = pys) VY €T, i € V}.
Then for initial conditions p; (0) satisfying

> (Ipi(0) = p;(0)]| — diz)* < €1, and [[pi(0) — 7(vi;)p; (0)]|* < €2
ijEE

foralli,j € 'y, and u € Vy, for a sufficiently small and positive constant ¢; and es, the control
u= —VF(p(t)),
renders the set 7 N F; exponentially stable, i.e.

Jin [[pi(¢) = p; ()l = dij and lim 7(y)(p;i(t)) = lim py,(t) forallyeliie).

19



EXAMPLE: THE VIC FORMATION

+ formation flight for aircraft originated in WWI

« Vic formation used by pilots to improve visual
communication and defensive advantages

Vic formation with symmetry Flexible framework (9 edges; Minimally Rigid framework
mirror satisfies Assumption 1) (11 edges)

20



EXAMPLE: THE VIC FORMATION

w5 o xe 6

w3

3 2 -1 0 1 2 3 4 5 A 2 1 [ 1 2 3 4 5

« symmetry constraints force agents to with flexible framework and only
correct formation formation potential can not guarantee
* requires less agent communication convergence to correct shape
than standard formation control with
MIR requirement

20



EXPLOIT MORE SYMMETRY

 proposed strategy does not take advantage of the full power of symmetry

21



EXPLOIT MORE SYMMETRY

 proposed strategy does not take advantage of the full power of symmetry

« can we find redundant information between the symmetry constraints and the
distance constraints?

21



['-SYMMETRIC FRAMEWORK

Definition
An infinitesimal motion u of a 7(T")-symmetric framework (G, p) is 7(T")-symmetric if

T(v)(ui) = uy forally €T and all i € V. (1)

We say that (G, p) is 7(T")-symmetric infinitesimally rigid if every 7(T")-symmetric
infinitesimal motion is trivial.

infinitesimal motions can also be studied in this framework

© 7(7)(wi) = uy s
+ understanding symmetry structure means we only need to find infintesimal motion
for one representative vertex in each vertex orbit

22



(G.p)
P (CL, b)T
p2 = (Cv d)T
2 3 * P3= (_Cv d)T
° * ps=(—a, b)T
Rigidity matrix
(a—cb—d) (c—ad-0) (0 0) (00)
| a0 (0 0) (0 0) (—2a 0)
Rip) = (0 0) (2¢ 0) (—2¢ 0) (0 0)
(0 0) (00) (a—cd—=b) (c—ab—d)

« 4-dimensional kernel - flexible 1-dimensional flex spanned by
framework (1 —1 —1 2egpifemd g - et g T

. . flex is not symmetric with respect to s
3 trivial motions

23



(a—cb—d) (c—ad-0) (00) (0 0)

_|(a+cb+d) (0 0) (00) (—a—c —b—d)
Rp) = (0 0) (0 0) (c—ad—b) (a—cb—d
(00) (a+cb+d) (—a—c —b—4d) (0 0)

- 4~-dimensional kernel - flexible 1-dimensional flex spanned by

2_ 2 2_ 2
Ocdabacloicdab G.C)T

framework (- ad—bc ad—be ad—bc ~ ad—bc
flex is symmetrlc with respect to 180° rotation

(C2)

« 3 trivial motions

24



(a—cb—d) (c—ad-=0) (00) (0 0)

|la+cb+d) (00) (00) (-a—c —b—d)
R(p) = (0 0) (0 0) (c—ad—b) (a—cb—d)
(0 0) (a+cb+d) (—a—c —b—4d) (00)

« 180° rotation of points corresponds to v, € Aut(G)
« recall: vertex orbits : {1, 3}, {2, 4}, edge orbits: {e1,e3}, {e2, €4}

24



(G.p)
P (aab)T
'P2:(Cad)T
* p3=(—a,—0)"
 ps= (¢, —d)T
(c—ad—b) (0 0) (0 0)
(0 0) (0 0) (—a—c —b—4d)
(00) (c—ad—0b) (a—cb—ad)
(a+cb+d) (—a—c —b—4d) (00)

[ symmetries make certain rows and columns of the rigidity matrix redundant ]

24



ORBIT RIGIDITY MATRIX

[ symmetries make certain rows and columns of the rigidity matrix redundant ]

1 2 3 =12(1) 4 =12(2)
eq (a—cb—d) (c—ad-—0») (00) (00)
R()_e4 (a4+cb+d) (0 0) (00) (—a—c —b—4d)
P = s (er) (0 0) (0 0) (c—ad—b) (a—cb—d)
Pa(eq) (00) (a+cb+ec) (—a—c —b—d) (00)

25



ORBIT RIGIDITY MATRIX

{ symmetries make certain rows and columns of the rigidity matrix redundant }

1 2 3 =12(1) 4=12(2)
eq (a—cb—d) (c—ad-—0») (00) (00)
R()_e4 (a4+cb+d) (0 0) (00) (—a—c —b—4d)
P)= o (en) (0 0) (0 0) (c—ad—b) (a—cb—d)
Pa(eq) (00) (a+cb+ec) (—a—c —b—d) (00)
Orbit Rigidity Matrix
1 2 1 2

el (p1 —p2)" (p2 —p1)" _ [ la=¢ b=d) (c—a, d=b)
es \ (pr—a(p2))” (p2 — 3 ' (p1))" (a+c, b+d) (c+a, d+b)

« 2 rows - one for each representative of edge orbits under action of v,

« 4 columns - nodes py, p> each have two dof; nodes p; = w2(p1) and py = 12 (p2) are
uniquely determined by the symmetries

25



QUOTIENT GAIN GRAPHS

« relation between vertices within vertex orbits and between vertex orbits (through
edge orbits) captured by quotient gain graph of a I'-symmetric graph
- node set is representative vertex set Vy
- edge set is representative edge set £y: choose edge of form i (j) with i, € Vo
itis ok fori=j
edges are directed with ‘edge gain’ being the group actiony € T’

26



QUOTIENT GAIN GRAPHS

b3 | 2
g P4‘0
- T'={Id, ¢} (rotation) T — {1d, ;) (reflection) ~ * I = {Id, ¥} (reflection)
« T, =1{1,2,3,4} e Ty ={1,2},T54={3,4} ° Iy ={1},Ty = {4},
c Vo= {1}, & = {e1} Vo = {1,3}, Iy =1{2,3}
lz} EO — {127 13’ 24} ° VU - {1,3,4}, 50 - {13, 14}
1
lo<> 1. Y id ol
3
id
V4 id

3 4

26



ORBIT RIGIDITY MATRIX

The O(Go, p) of (G,p) is the |&| x d|Vy| matrix defined as follows.
The row corresponding to an edge ((4,7); ), where i # j, has the form:

(00 Gi—r(E)T 00 (B —r()F)T 00 ),

with the d-dimensional entries (p; — 7(v)p;)” and (p; — 7(v)~'p;)” being in the
columns corresponding to vertex i and j, respectively. The row corresponding to a loop
((i,7);y) has the form:

(0..-0 (2@—7’(7)]51‘—7(7)_151’)T 0---0 ),

with the d-dimensional entry (2p; — 7(v)p; — 7(7)~'p;)T being in the columns
corresponding to vertex i.

27



ORBIT RIGIDITY MATRIX

Theorem [shulze 2011]

Let (G,p) be a 7(T")-symmetric framework with orbit rigidity matrix O(Go, p). Then,

(i) the kernel of O(Gy, p) is isomorphic to the space of 7(I')-symmetric infinitesimal
motions of (G, p), and

(i1) the cokernel of O(Gy, p) is isomorphic to the space of 7(I')-symmetric self-stresses
of (G,p).

« Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
« full-rank O(Gy, p) implies none exist

« size of O(Gy, p) does not depend on p, but only the graph and symmetry constraints

« 7(I')-isostatic frameworks have orbit rigidity matrices with full row-rank

27



ORBIT RIGIDITY MATRIX

key point: quotient gain graph and orbit rigidity matrix suggests a further way to
exploit symmetry in formation control

* representative edges used to maintain distances

« symmetry within vertex orbits have no need for distance constraints

27



A MODIFIED FORMATION POTENTIAL

« the representative edge formation potential

Fe(p(t)) = i Z (||p7: —7(Mp;l* — dzzy(,j)>2

e=ije&o

o ~is label of edge in quotient gain graph

28



A MODIFIED FORMATION POTENTIAL

« the representative edge formation potential

Fe(p(t))=i > (Ilpqz—T( )pslI* = w@))z

e=ije&o

o ~is label of edge in quotient gain graph
+ the symmetry potential

Z Z [P (t) — 7 (Vou)Pu (t )”2

lGVg u,vel;
m;EE

Assumption 1
The sub-graph induced by each vertex orbit I'; is connected.

28



A MODIFIED FORMATION POTENTIAL

« the representative edge formation potential
1 2
Fpm) =7 > (Ipi— 0l - i)
e=ije&o
o ~is label of edge in quotient gain graph
+ the symmetry potential

Z Z [P (t) — 7 (Vou)Pu (t )”2

lGVg u,vel;
’zweg

Assumption 1
The sub-graph induced by each vertex orbit I'; is connected.

- the symmetric formation potential

28



A MODIFIED FORMATION CONTROL

- node relabeling - representative vertices first
= T T T
p=FPp= {po pf}

- propose the gradient control

29



A MODIFIED FORMATION CONTROL

Then the control for each agent i € V, can be expressed as
ui(t) = ul™ () + ul? (1) + ul (1), (2)

where

ul®™ (1) = D (lpi(t) = 7 ON1* = d3;) (r(1)p (£) — pi 1))
iv(j)€Eo
JEV0, i#]

u () = 3 = rpill® = 42 )L = 7() = () Hpi
iv(i)€€y

uW =3 (e (t) — pit)).

ij€&(Ty)

The control for the agents in V' \ V, is simply

wit)= Y (rOg)ps(t) —pi(t)), )

ijeE(Ty,)
for each u € V.

29



A MODIFIED FORMATION CONTROL

in state-space form

[ﬁo(t)] _
pr(t)

recall our earlier idea

—O0T(Go, po(t)) <O(go7po(t))270(t) - d%)

] — PQPT

29



MAIN RESULT

we can define an error system with

o
e = =
q

ot)| _ _
q(t)

O(Go, pot))po(t) — dd
E(0)T PTp(t)

orbit error dynamics

oot OFEy(T)
EXMmo” ET()E()

OT

0 o] 0!

ET(D)PT

30



MAIN RESULT

Let p be the target formation satisfying conditions (i) and (ii) of the Symmetry-Forced
Formation Control Problem, and assume that (G, p) is a 7(T")-symmetric isostatic
framework. Then the origin is a locally exponentially stable equilibrium of the orbit

error dynamics.

The orbit rigidity control uses at most (1 + 1/|T'|)|V| edges.

+ can be significantly less than 2|V| — 3

30



* quotient
gain graph

+ graph has 15 edges + 27r/5 rotational symmetry

- at least 17 edges required for + can use only spanning tree
infinitesimal rigidity subgraph for each vertex orbit

- flexible framework - only 3 distances required

31



* nice...but symmetries are defined with respect to a global origin

31



CENTROID CONSENSUS

idea: augment a virtual consensus dynamics

[ﬁo(t)] _
pr(t)

i = —L(G)r

—O7(Go, co(t) (owo, co(t))co(t) — d%)

0 cr (t)

] — PQPT

co(t)]

with c(t) = p(t) — r(t)

+ cascade structure

+ same analysis idea

32
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CONCLUDING REMARKS

Summary

« 7(I')-symmetric graphs captures symmetry of configurations and graphs

- symmetric formation potential used to design distributed control law with less
edges compared to “traditional” formation control strategies

+ opportunities for more sophisticated motion coordination

Zelazo, Tanigawa and Shulze, Forced Symmetric Formation Control, arXiv 2024.
Future Work

- formation maneuvering requires time-varying point group symmetries
« is it possible to distributedly decide on certain symmetries?

+ can we eliminate need for requiring self-state in protocol?

* more?

[ Questions? ]
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