symmetry-forced formation control

Daniel Zelazo

with Shin-Ichi Tanigawa (University of Tokyo) and Bernd Shulze (Lancaster University)

Technion Control & Systems Theory Seminar April 1, 2024

Formation Control Objective

Given a team of robots endowed with the ability to sense/ communicate with neighboring robots, design a control for each robot using only local information that moves the team into a desired spatial configuration.

formation constraints

- The desired formation is characterized by a set of M constraints, encoded in the function $F: \mathbb{R}^{nd} \to \mathbb{R}^M$, and a configuration \mathbf{p}^\star satisfying the constraints.
- The set of all feasible formations is

$$
\mathcal{F}(p) = \{p \in \bar{\mathcal{D}} \,|\, F(p) = F(\mathbf{p}^\star)\}
$$

Formation Control Objective

For an ensemble of n agents with dynamics

$$
\dot{p}_i=u_i,
$$

with $p_i(t) \in \mathbb{R}^d$, an information exchange graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, and formation constraint function $F:\mathbb{R}^{nd}\to\mathbb{R}^{M}$, design a distributed control law for each agent $i\in\{1,\ldots,n\}$ such that the set $\mathcal{F}(p) = \{p \in \bar{\mathcal{D}} \, | \, F(p) = F(\mathbf{p}^\star)\},$

is asymptotically stable.

Theorem - Distance Constrained Formation Control [Krick 2009]

Consider the potential function

$$
F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} (||p_i(t) - p_j(t)||^2 - \mathbf{d}_{ij}^2)^2
$$

and assume the desired distances d_{ij}^\star correspond to a feasible formation. Then the gradient dynamical system

$$
u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} (||p_i - p_j||^2 - \mathbf{d}_{ij}^2) (p_j - p_i)
$$

asymptotically converges to the critical points of the potential function, i.e., $\frac{\partial F_f(p)}{\partial p}=0.$

a note on formation potentials and rigidity theory

$$
F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(||p_i(t) - p_j(t)||^2 - \mathbf{d}_{ij}^{\star} \right)^2 \right)^2
$$

• formation potential can be written in terms of a rigidity function

$$
F_f(p) = \frac{1}{2} ||r_g(p) - r_g(p)||^2
$$

- $\circ \ \ r \sigma : p \mapsto \begin{bmatrix} \dots & \frac{1}{2} \| p_i p_j \|^2 & \dots \end{bmatrix}^T$: distances between neighbors
- $\circ \;$ $\rm p$: a configuration satisfying distance constraints (i.e., $\|{\bf p}_i {\bf p}_j\|^2 = {\bf d}_{ij}^2)$

$$
r_{\mathcal{G}}(p) = \begin{bmatrix} ||p_1 - p_2||^2 \\ ||p_2 - p_3||^2 \\ ||p_3 - p_4||^2 \\ ||p_4 - p_1||^2 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 4 \\ 9 \end{bmatrix}
$$

$$
F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(||p_i(t) - p_j(t)||^2 - \mathbf{d}_{ij}^{\star} \right)^2 \right)^2
$$

• formation potential can be written in terms of a rigidity function

$$
F_f(p) = \frac{1}{2} ||r_{\mathcal{G}}(p) - r_{\mathcal{G}}(\mathbf{p})||^2
$$

 $\circ \,\, r_\mathcal{G}: p \mapsto \begin{bmatrix} \dots & \frac{1}{2} \| p_i - p_j \|^2 & \dots \end{bmatrix}^T$: distances between neighbors

 $\circ \ {\bf p}$: a configuration satisfying distance constraints (i.e., $\|{\bf p}_i - {\bf p}_j\|^2 = {\bf d}_{ij}^2)$

• rigidity theory looks for distance-preserving infinitesimal motions

$$
r_G(p + \delta p) = r_G(p) + \frac{\partial r_G(p)}{\partial p} \delta p + \text{h.o.t}
$$

- \circ infinitesimal motions satisfy $\frac{\partial r_{\mathcal{G}}(p)}{\partial p} \delta p = 0$
- $\circ~$ the Rigidity matrix : $R(p) = \frac{\partial r_{\mathcal{G}}(p)}{\partial p} \in \mathbb{R}^{|\mathcal{E}| \times 2|\mathcal{V}|}$
- "rigid body" rotations and translations are always distance preserving: trivial motions
- \circ A framework (\mathcal{G}, p) is infinitesimally rigid if the only infinitesimal motions are trivial

our formation control

$$
u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} (||p_i - p_j||^2 - \mathbf{d}_{ij}^2) (p_j - p_i)
$$

our formation control

$$
u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} (||p_i - p_j||^2 - \mathbf{d}_{ij}^2) (p_j - p_i)
$$

can be expressed with rigidity matrix

$$
u = -R^T(p)(R(p)p - \mathbf{d}^2)
$$

our formation control

$$
u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} (||p_i - p_j||^2 - \mathbf{d}_{ij}^2) (p_j - p_i)
$$

can be expressed with rigidity matrix

$$
u = -R^{T}(p)(R(p)p - \mathbf{d}^{2})
$$

a proof sketch

• define error dynamics for distance error: $e=R(p)p-{\bf d}^2$

$$
\dot{e} = -R(p)R^T(p)e
$$

- Lyapunov argument $V(e) = \frac{1}{2} ||e||^2$
	- $\bullet\;$ when $R(p)R^T(p)>0$, we have (local) exponential convergence to desired formation
	- good frameworks are i) infinitesimally rigid, and ii) full row-rank (isostatic farmeworks)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

A widely accepted architectural requirement for distance constrained formation control is that isostatic frameworks are required. Equivalent to:

$$
rk R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3 \quad \text{(in } \mathbb{R}^2\text{)}
$$

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

A widely accepted architectural requirement for distance constrained formation control is that isostatic frameworks are required. Equivalent to:

 $\operatorname{rk} R(p)=2|{\cal V}|-3$ and $|{\cal E}|=2|{\cal V}|-3\quad$ (in $\mathbb{R}^2)$

Q: is this a necessary condition? (can we solve the problem with fewer edges?)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

A widely accepted architectural requirement for distance constrained formation control is that isostatic frameworks are required. Equivalent to:

```
\operatorname{rk} R(p)=2|{\cal V}|-3 and |{\cal E}|=2|{\cal V}|-3\quad (in \mathbb{R}^2)
```
Q: is this a necessary condition? (can we solve the problem with fewer edges?)

A: Impose additional symmetry constraints without requiring more information exchange (in fact, less!)

- graph automorphisms isometries
	-

Graph Automorphism

An automorphism of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a permutation ψ of of its vertex set such that

 $\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$

Graph Automorphism

An automorphism of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a permutation ψ of of its vertex set such that

 $\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$

Automorphisms encode graph symmetries

Definition

Let X be a set, and let Γ be a collection of invertible functions $X \to X$. Then Γ is called a group if the identity map, Id, belongs to Γ, and for any $\Gamma \ni f, g: X \to X$, both the composite function $f\circ g$ and the inverse function f^{-1} belong to $\Gamma.$

Automorphisms of a graph form a *group* - $Aut(G)$

- Aut $(\mathcal{G}) = \{Id, \psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6, \psi_7\}$

A subgroup is a subset of a group, and also satisfies all properties of a group

- $\{Id, \psi_1, \psi_2, \psi_3\}$
- $\{Id, \psi_2, \psi_4, \psi_5\}$
- $\{Id, \psi_2\}$
- $\{Id, \psi_6\}$
- $\{Id, \psi_7\}$

Γ**-symmetric graphs**

- Subgroups of $Aut(\mathcal{G})$ define specific symmetries in $\mathcal G$
- for any subgroup $\Gamma \subseteq \text{Aut}(\mathcal{G})$, we say that $\mathcal G$ is Γ -symmetric
- Subgroups of $Aut(G)$ define specific symmetries in G
- for any subgroup $\Gamma \subseteq \text{Aut}(\mathcal{G})$, we say that $\mathcal G$ is Γ -symmetric

Definition

For a Γ-symmetric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and vertex $i \in \mathcal{V}$, the set $\Gamma_i = \{\gamma(i) | \gamma \in \Gamma\}$ is called the vertex orbit of i. Similarly, for an edge $e = i j \in \mathcal{E}$, the set $\Gamma_e = \{ \gamma(i) \gamma(j) | \gamma \in \Gamma \}$ is termed the edge orbit of e.

Consider $\Gamma = \{ \mathrm{Id}, \psi_2 \}$ (ψ_2 is the 180 \textdegree rotation)

• **Vertex Orbit:**

 $\Gamma_1 = \Gamma_3 = \{1,3\}, \ \Gamma_2 = \Gamma_4 = \{2,4\}$

vertices inside a vertex orbit are equivalent representative vertex set: $V_0 = \{1, 2\}$

• **Edge Orbit**:

 $\Gamma_{e_1} = \Gamma_{e_2} = \{e_1, e_3\},\,$ $\Gamma_{e_2} = \Gamma_{e_4} = \{e_2, e_4\}$ representative edge set: $\mathcal{E}_0 = \{e_1, e_2\}$

combine notions of graph symmetries with point groups

- let G be a Γ -symmetric graph
- Γ also represented as a *point group*
	- a set of isometries that preserve symmetries
	- homomorphism $\tau : \Gamma \to O(\mathbb{R}^d)$
	- τ assigns an orthogonal matrix (describing an isometry of \mathbb{R}^d such as a rotation or reflection) to each element of Γ

Definition

A framework $(\mathcal G,p)$ in $\mathbb R^d$ is called $\tau(\Gamma)$ -symmetric if

 $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $\gamma \in \Gamma$ and all $i \in \mathcal{V}$.

τ (Γ)**-symmetric framework**

- consider $\Gamma = \{ \text{Id}, \psi_4 \} \subseteq \text{Aut}(\mathcal{G})$
- $\gamma = \psi_4 \in \Gamma$ (reflection about mirror S)
- isometry $\tau(\gamma) = \begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$, $\tau(\gamma)$ $\lceil a \rceil$ b 1 = $\lceil -a \rceil$ b 1

satisfies $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $i \in \mathcal{V}$.

• note: for a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) and for every $j\in\Gamma_i$, there is a $\gamma_j\in\Gamma$ such that $\tau(\gamma_j)p_j=p_i$ for all $i \in \Gamma_i$

τ (Γ)**-symmetric framework**

- consider $\Gamma = \{ \text{Id}, \psi_4 \} \subseteq \text{Aut}(\mathcal{G})$
- $\gamma = \psi_4 \in \Gamma$ (reflection about mirror S)
- isometry $\tau(\gamma) = \begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$, $\tau(\gamma)$ $\lceil a \rceil$ b 1 = $\lceil -a \rceil$ b 1

satisfies $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $i \in \mathcal{V}$.

• note: for a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) and for every $j\in\Gamma_i$, there is a $\gamma_j\in\Gamma$ such that $\tau(\gamma_j)p_j=p_i$ for all $i \in \Gamma_i$

isometries of configuration p coincide with symmetries of the automorphisms of G

- in $\tau(\Gamma)$ -symmetric frameworks, the configurations p are in a special geometric position (not necessarily generic)
- symmetry can lead to unexpected infinitesimal flexibility/rigidity

Definition

An infinitesimal motion u of a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) is $\tau(\Gamma)$ -symmetric if

$$
\tau(\gamma)(u_i) = u_{\gamma(i)} \quad \text{ for all } \gamma \in \Gamma \text{ and all } i \in \mathcal{V}.
$$

We say that (G, p) is $\tau(\Gamma)$ -symmetric infinitesimally rigid if every $\tau(\Gamma)$ -symmetric infinitesimal motion is trivial.

- recall that infinitesimal motions are in the kernel of the rigidity matrix

$$
R(p)\delta p=0
$$

- we can find a subspace of the kernel that is isomorphic to the space of 'fully-symmetric' infinitesimal motions
- velocity assignments to the points of (G, p) that exhibit exactly the same symmetry as the configuration p

- C_{4v} -symmetric (and hence $\tau(\Gamma)$ -symmetric for any subgroup $\tau(\Gamma)$ of \mathcal{C}_{4v}
- $\tau(\Gamma)$ -symmetric infinitesimally rigid
- C_s -symmetric (with respect to the reflection σ)
- $\tau(\Gamma)$ -symmetric infinitesimally rigid
- C_s -symmetric (with respect to the reflection σ) with a non-trivial \mathcal{C}_s -symmetric infinitesimal motion
- $\tau(\Gamma)$ -symmetric infinitesimally flexible

Symmetric Formation Control Objective

Consider a group of n integrator agents that interact over the Γ -symmetric sensing graph $\mathcal{G}.$ Let $\mathbf{p} \in \mathbb{R}^{dn}$ be a configuration such that (\mathcal{G},\mathbf{p}) is $\tau(\Gamma)$ -symmetric for some desired point group $\tau(\Gamma)$, and let \mathcal{V}_0 be a set of representatives of the vertex orbits of G under Γ. Design a control $u_i(t)$ for each agent i such that

\n- (i)
$$
\lim_{t \to \infty} \|p_i(t) - p_j(t)\| = \|\mathbf{p}_i - \mathbf{p}_j\| = \mathbf{d}_{ij}
$$
 for all $ij \in \mathcal{E}$;
\n- (distance constraints)
\n- (ii) $\lim_{t \to \infty} \|p_u(t) - \tau(\gamma_{vu})p_v(t)\| = 0$ for all $u, v \in \Gamma_i$, $i \in \mathcal{V}_0$.
\n- (symmetry constraints)
\n

• the formation potential

$$
F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} (||p_i(t) - p_j(t)||^2 - \mathbf{d}_{ij}^2)^2
$$

• the formation potential

$$
F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} (||p_i(t) - p_j(t)||^2 - \mathbf{d}_{ij}^2)^2
$$

• the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the formation potential

$$
F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} (||p_i(t) - p_j(t)||^2 - \mathbf{d}_{ij}^2)^2
$$

• the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the symmetric formation potential

 $F(p(t)) = F_f(p(t)) + F_s(p(t))$

• propose the gradient control

$$
u(t) = -\nabla F(p(t))
$$

• propose the gradient control

$$
u(t) = -\nabla F(p(t))
$$

• closed-loop dynamics

$$
\dot{p}(t) = -R(p(t))^{T} (R(p(t))p(t) - d^{2}) - Qp(t)
$$

where Q is symmetric and a block-diagonal matrix with

$$
[Q_i]_{uv} = \begin{cases} d_{\Gamma_i}(u)I, & u = v, u \in \Gamma_i & \cdot Q_i \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ -\tau(\gamma_{uv}), & uv \in \mathcal{E}, u, v \in \Gamma_i \\ 0, & \text{o.w.} \end{cases}
$$

$$
\begin{array}{ll}\n\cdot & Q_i \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ \cdot & [Q]_{uv} \in O(\mathbb{R}^d) \text{ (orthogonal group)} \\ \cdot & \tau(\gamma_{uv})^{-1} = \tau(\gamma_{uv})^T\n\end{array}
$$

- $\,\circ\,$ Q_i has a decomposition $Q_i = E(\Gamma_i) E(\Gamma_i)^T$
- $Q = \overline{E}(\Gamma) \overline{E}(\Gamma)^T$

 \circ any p in a symmetric position satisfies $Qp = 0$

- symmetric formation potential makes no assumption on relation between the graph G and the point group $\tau(\Gamma)$
- we restrict our study to graphs where communication required by symmetric potential use same edges as G

- symmetric formation potential makes no assumption on relation between the graph G and the point group $\tau(\Gamma)$
- we restrict our study to graphs where communication required by symmetric potential use same edges as G

- $\Gamma = {\text{Id}, \psi_4} \subseteq \text{Aut}(\mathcal{G})$
- $\Gamma_1 = \Gamma_2 = \{1, 2\}, \Gamma_3 = \Gamma_4 = \{3, 4\}$
- $V_0 = \{1, 4\}$
- isometry $\tau(\gamma) : (a, b) \mapsto (-a, b)$

satisfies $\tau(\gamma)(p_i)=p_{\gamma(i)}$ for all $i\in\mathcal{V}$ and for each $i \in \mathcal{V}_0$ and $j \in \Gamma_i \setminus \{i\},$ the edge ij is in $\mathcal E$ (i.e. $\mathcal G(\Gamma_i)$ is connected) • propose the gradient control

$$
u(t) = -\nabla F(p(t))
$$

• closed-loop dynamics

$$
\dot{p}(t) = -R(p(t))^{T} (R(p(t))p(t) - \mathbf{d}^{2}) - Qp(t)
$$

• dynamics at for each agent

$$
\hat{p}_i(t) = \sum_{ij \in \mathcal{E}} (\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^2)(p_j(t) - p_i(t)) + \sum_{\substack{ij \in \mathcal{E} \\ i, j \in \Gamma_u}} (\tau(\gamma_{ij})p_j(t) - p_i(t))
$$

Theorem [Z, Shulze, Tanigawa '23]

Consider a team of n integrator agents interacting over a Γ -symmetric graph G satisfying Assumption 1 that can be drawn with maximum point group symmetry S in \mathbb{R}^d , and let

$$
\mathcal{F}_f = \{ p \in \mathbb{R}^{dn} \mid ||p_i - p_j|| = \mathbf{d}_{ij} \text{ if } i \in \mathcal{E} \}, \text{ and } \mathcal{F}_s = \{ p \in \mathbb{R}^{dn} \mid \tau(\gamma)(p_i) = p_{\gamma(i)} \, \forall \gamma \in \Gamma, \, i \in \mathcal{V} \}.
$$

Then for initial conditions $p_i(0)$ satisfying

$$
\sum_{ij \in \mathcal{E}} (||p_i(0) - p_j(0)|| - \mathbf{d}_{ij})^2 \le \epsilon_1, \text{ and } ||p_i(0) - \tau(\gamma_{ij})p_j(0)||^2 \le \epsilon_2
$$

for all $i, j \in \Gamma_u$ and $u \in V_0$, for a sufficiently small and positive constant ϵ_1 and ϵ_2 , the control

 $u = -\nabla F(p(t)),$

renders the set $\mathcal{F}_f \cap \mathcal{F}_s$ exponentially stable, i.e.

 $\lim_{t\to\infty} ||p_i(t)-p_j(t)|| = \mathbf{d}_{ij}$ and $\lim_{t\to\infty} \tau(\gamma)(p_i(t)) = \lim_{t\to\infty} p_{\gamma(i)}(t) \text{ for all } \gamma \in \Gamma, i \in \mathcal{V}.$

example: the vic formation

- formation flight for aircraft originated in WWI
- Vic formation used by pilots to improve visual communication and defensive advantages

Vic formation with symmetry Flexible framework (9 edges; mirror satisfies Assumption 1) Minimally Rigid framework (11 edges)

- symmetry constraints force agents to correct formation
- requires less agent communication than standard formation control with MIR requirement

• with flexible framework and only formation potential can not guarantee convergence to correct shape

• proposed strategy does not take advantage of the full power of symmetry

- proposed strategy does not take advantage of the full power of symmetry
- can we find redundant information between the symmetry constraints and the distance constraints?

Definition

An infinitesimal motion u of a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) is $\tau(\Gamma)$ -symmetric if

$$
\tau(\gamma)(u_i) = u_{\gamma(i)} \quad \text{ for all } \gamma \in \Gamma \text{ and all } i \in \mathcal{V}.
$$
 (1)

We say that (G, p) is $\tau(\Gamma)$ -symmetric infinitesimally rigid if every $\tau(\Gamma)$ -symmetric infinitesimal motion is trivial.

infinitesimal motions can also be studied in this framework

•
$$
\tau(\gamma)(u_i) = u_{\gamma(i)}
$$

• understanding symmetry structure means we only need to find infintesimal motion for one representative vertex in each vertex orbit

Rigidity matrix

$$
R(p) = \begin{bmatrix} (a - c b - d) & (c - a d - b) & (0 0) & (0 0) \\ (2a 0) & (0 0) & (0 0) & (-2a 0) \\ (0 0) & (2c 0) & (-2c 0) & (0 0) \\ (0 0) & (0 0) & (a - c d - b) & (c - a b - d) \end{bmatrix}
$$

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(1 - 1 - 1 \frac{2(c-a)+b-d}{d-b} - 1 - \frac{2(c-a)+b-d}{d-b} 1)^T$ flex is not symmetric with respect to s

example

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1 0 \frac{cd - ab}{ad - bc} \frac{a^2 - c^2}{ad - bc} 1 0 - \frac{cd - ab}{ad - bc} - \frac{a^2 - c^2}{ad - bc})^T$ flex is symmetric with respect to 180° rotation (C_2)

example

- 180 $^{\circ}$ rotation of points corresponds to $\psi_2 \in \text{Aut}(\mathcal{G})$
- recall: vertex orbits : $\{1,3\}$, $\{2,4\}$, edge orbits: $\{e_1, e_3\}$, $\{e_2, e_4\}$

symmetries make certain rows and columns of the rigidity matrix redundant

symmetries make certain rows and columns of the rigidity matrix redundant

$$
R(p) = \frac{e_1}{\psi_2(e_1)} \begin{pmatrix} 1 & 2 & 3 = \psi_2(1) & 4 = \psi_2(2) \\ (a - c \ b - d) & (c - a \ d - b) & (0 \ 0) & (0 \ 0) \\ (a + c \ b + d) & (0 \ 0) & (0 \ 0) & (-a - c \ - b - d) \\ \psi_2(e_4) & (0 \ 0) & (a + c \ b + c) & (-a - c \ - b - d) & (0 \ 0) \end{pmatrix}
$$

orbit rigidity matrix

symmetries make certain rows and columns of the rigidity matrix redundant

$$
R(p) = \frac{e_1}{\psi_2(e_1)} \begin{pmatrix} 1 & 2 & 3 = \psi_2(1) & 4 = \psi_2(2) \\ (a - c b - d) & (c - a d - b) & (0 0) & (0 0) \\ (a + c b + d) & (0 0) & (0 0) & (-a - c - b - d) \\ (0 0) & (0 0) & (c - a d - b) & (a - c b - d) \\ \psi_2(e_4) & (0 0) & (a + c b + c) & (-a - c - b - d) & (0 0) \end{pmatrix}
$$

Orbit Rigidity Matrix

$$
\begin{pmatrix}\n1 & 2 & 1 & 2 \\
e_1 \left((p_1 - p_2)^T & (p_2 - p_1)^T \\
e_4 \left((p_1 - \psi_2(p_2))^T & (p_2 - \psi_2^{-1}(p_1))^T \right) = \left((a - c, b - d) & (c - a, d - b) \\
(a + c, b + d)) & (c + a, d + b) \right)\n\end{pmatrix}
$$

- 2 rows one for each representative of edge orbits under action of ψ_2
- 4 columns nodes p_1, p_2 each have two dof; nodes $p_3 = \psi_2(p_1)$ and $p_4 = \psi_2(p_2)$ are uniquely determined by the symmetries
- relation between vertices within vertex orbits and between vertex orbits (through edge orbits) captured by quotient gain graph of a Γ -symmetric graph
	- node set is representative vertex set V_0
	- edge set is representative edge set \mathcal{E}_0 : choose edge of form $i\gamma(j)$ with $i, j \in \mathcal{V}_0$

```
it is ok for i = jedges are directed with 'edge gain' being the group action \gamma \in \Gamma
```


- $\Gamma = \{Id, \psi_1\}$ (rotation)
- $\Gamma_i = \{1, 2, 3, 4\}$
- $\mathcal{V}_0 = \{1\}$, $\mathcal{E}_0 = \{e_1\}$

- p_1 p_2 p_3 p_4 σ
- $\Gamma = \{\text{Id}, \psi_4\}$ (reflection)

•
$$
\Gamma_{1,2} = \{1, 2\}, \Gamma_{3,4} = \{3, 4\}
$$

•
$$
V_0 = \{1, 3\},
$$

\n $\mathcal{E}_0 = \{12, 13, 24\}$

• $\Gamma = \{Id, \psi_6\}$ (reflection)

•
$$
\Gamma_1 = \{1\}, \Gamma_4 = \{4\},
$$

\n $\Gamma_{2,3} = \{2,3\}$

•
$$
V_0 = \{1, 3, 4\}, \mathcal{E}_0 = \{13, 14\}
$$

Definition [Shulze 2011]

The orbit rigidity matrix $\mathcal{O}(G_0, \bar{p})$ of (G, p) is the $|\mathcal{E}_0| \times d|\mathcal{V}_0|$ matrix defined as follows. The row corresponding to an edge $((i, j), \gamma)$, where $i \neq j$, has the form:

$$
\left(\begin{array}{cccc} 0 \cdots 0 & (\bar{p}_i - \tau(\gamma)\bar{p}_j)^T & 0 \cdots 0 & (\bar{p}_j - \tau(\gamma)^{-1}\bar{p}_i)^T & 0 \cdots 0 \end{array}\right),
$$

with the d -dimensional entries $(\bar p_i-\tau(\gamma)\bar p_j)^T$ and $(\bar p_j-\tau(\gamma)^{-1}\bar p_i)^T$ being in the columns corresponding to vertex i and j , respectively. The row corresponding to a loop $((i, i); \gamma)$ has the form:

$$
\left(\begin{array}{cc}0\cdots 0 & (2\bar{p}_i-\tau(\gamma)\bar{p}_i-\tau(\gamma)^{-1}\bar{p}_i)^T & 0\cdots 0\end{array}\right),
$$

with the d -dimensional entry $(2\bar p_i-\tau(\gamma)\bar p_i-\tau(\gamma)^{-1}\bar p_i)^T$ being in the columns corresponding to vertex i.

Theorem [Shulze 2011]

Let (G, p) be a $\tau(\Gamma)$ -symmetric framework with orbit rigidity matrix $\mathcal{O}(\mathcal{G}_0, \bar{p})$. Then,

- (i) the kernel of $\mathcal{O}(\mathcal{G}_0, \bar{p})$ is isomorphic to the space of $\tau(\Gamma)$ -symmetric infinitesimal motions of (\mathcal{G}, p) , and
- (ii) the cokernel of $\mathcal{O}(G_0, \bar{p})$ is isomorphic to the space of $\tau(\Gamma)$ -symmetric self-stresses of (G, p) .
	- Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
	- full-rank $\mathcal{O}(\mathcal{G}_0, \bar{p})$ implies none exist
	- size of $\mathcal{O}(\mathcal{G}_0, \bar{p})$ does not depend on p, but only the graph and symmetry constraints
	- $\tau(\Gamma)$ -isostatic frameworks have orbit rigidity matrices with full row-rank

key point: quotient gain graph and orbit rigidity matrix suggests a further way to exploit symmetry in formation control

- representative edges used to maintain distances
- symmetry within vertex orbits have no need for distance constraints

a modified formation potential

• the representative edge formation potential

$$
F_e(p(t)) = \frac{1}{4} \sum_{e = ij \in \mathcal{E}_0} \left(||p_i - \tau(\gamma)p_j||^2 - \mathbf{d}_{i\gamma(j)}^2 \right)^2
$$

 \circ γ is label of edge in quotient gain graph

a modified formation potential

• the representative edge formation potential

$$
F_e(p(t)) = \frac{1}{4} \sum_{e = ij \in \mathcal{E}_0} \left(||p_i - \tau(\gamma)p_j||^2 - \mathbf{d}_{i\gamma(j)}^2 \right)^2
$$

- \circ γ is label of edge in quotient gain graph
- the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

a modified formation potential

• the representative edge formation potential

$$
F_e(p(t)) = \frac{1}{4} \sum_{e = ij \in \mathcal{E}_0} \left(||p_i - \tau(\gamma)p_j||^2 - \mathbf{d}_{i\gamma(j)}^2 \right)^2
$$

- \circ γ is label of edge in quotient gain graph
- the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the symmetric formation potential

$$
F(p(t)) = F_e(p(t)) + F_s(p(t))
$$

• node relabeling - representative vertices first

$$
\tilde{p} = P p = \begin{bmatrix} p_o^T & p_f^T \end{bmatrix}^T
$$

• propose the gradient control

$$
u(t) = -\nabla F(p(t))
$$

Then the control for each agent $i \in V_0$ can be expressed as

$$
u_i(t) = u_i^{(a)}(t) + u_i^{(b)}(t) + u_i^{(c)}(t),
$$
\n(2)

where

$$
u_i^{(a)}(t) = \sum_{\substack{i\gamma(j)\in\mathcal{E}_0\\j\in\mathcal{V}_0,\ i\neq j}} (\|p_i(t) - \tau(\gamma)p_j(t)\|^2 - \mathbf{d}_{ij}^2)(\tau(\gamma)p_j(t) - p_i(t))
$$

$$
u_i^{(b)}(t) = \sum_{\substack{i\gamma(i)\in\mathcal{E}_0}} (\|(I - \tau(\gamma))p_i\|^2 - \mathbf{d}_{i\gamma(i)}^2)(2I - \tau(\gamma) - \tau(\gamma)^{-1})p_i
$$

$$
u_i^{(c)}(t) = \sum_{ij\in\mathcal{E}(\Gamma_i)} (\tau(\gamma_{ij})p_j(t) - p_i(t)).
$$

The control for the agents in $V \setminus V_0$ is simply

$$
u_i(t) = \sum_{ij \in \mathcal{E}(\Gamma_u)} (\tau(\gamma_{ij})p_j(t) - p_i(t)), \tag{3}
$$

for each $u \in V_0$.

in state-space form

$$
\begin{bmatrix} \dot{p}_0(t) \\ \dot{p}_f(t) \end{bmatrix} = \begin{bmatrix} -\mathcal{O}^T(\mathcal{G}_0, p_0(t)) \left(\mathcal{O}(\mathcal{G}_0, p_0(t)) p_0(t) - \mathbf{d}_0^2 \right) \\ 0 \end{bmatrix} - PQP^T \begin{bmatrix} p_0(t) \\ p_f(t) \end{bmatrix}
$$

recall our earlier idea

$$
\dot{p}(t) = -R(p(t))^{T} (R(p(t))p(t) - \mathbf{d}^{2}) - Qp(t)
$$

we can define an error system with

$$
e = \begin{bmatrix} \sigma \\ q \end{bmatrix} = \begin{bmatrix} \mathcal{O}(\mathcal{G}_0, p_0(t))p_0(t) - \mathbf{d}_0^2 \\ \bar{E}(\Gamma)^T P^T p(t) \end{bmatrix}
$$

orbit error dynamics

$$
\begin{aligned}\n\begin{bmatrix}\n\dot{\bar{\sigma}}(t) \\
\dot{\bar{q}}(t)\n\end{bmatrix} &= -\begin{bmatrix}\n\mathcal{O}\mathcal{O}^T & \mathcal{O}\bar{E}_0(\Gamma) \\
\bar{E}_0^T(\Gamma)\mathcal{O}^T & \bar{E}^T(\Gamma)\bar{E}(\Gamma)\n\end{bmatrix} \begin{bmatrix}\n\bar{\sigma}(t) \\
\bar{q}(t)\n\end{bmatrix} \\
&= -\begin{bmatrix}\n\begin{bmatrix}\n\mathcal{O} & 0 \\
\bar{E}^T(\Gamma)P^T\n\end{bmatrix}\n\begin{bmatrix}\n\mathcal{O}^T \\
0^T\n\end{bmatrix} P\bar{E}(\Gamma)\n\end{bmatrix} \begin{bmatrix}\n\bar{\sigma}(t) \\
\bar{q}(t)\n\end{bmatrix}\n\end{aligned}
$$

.

Theorem

Let p be the target formation satisfying conditions (i) and (ii) of the Symmetry-Forced Formation Control Problem, and assume that (G, \mathbf{p}) is a $\tau(\Gamma)$ -symmetric isostatic framework. Then the origin is a locally exponentially stable equilibrium of the orbit error dynamics.

Theorem

The orbit rigidity control uses at most $(1 + 1/|\Gamma|)|\mathcal{V}|$ edges.

• can be significantly less than $2|V| - 3$

• quotient gain graph

- graph has 15 edges
- at least 17 edges required for infinitesimal rigidity
- flexible framework
- $2\pi/5$ rotational symmetry
- can use only spanning tree subgraph for each vertex orbit
- only 3 distances required

• nice...but symmetries are defined with respect to a global origin

idea: augment a virtual consensus dynamics

$$
\begin{bmatrix} \dot{p}_0(t) \\ \dot{p}_f(t) \end{bmatrix} = \begin{bmatrix} -\mathcal{O}^T(\mathcal{G}_0, c_0(t)) \Big(\mathcal{O}(\mathcal{G}_0, c_0(t))c_0(t) - \mathbf{d}_0^2 \Big) \\ 0 \end{bmatrix} - PQP^T \begin{bmatrix} c_0(t) \\ c_f(t) \end{bmatrix}
$$

$$
\dot{r} = -L(\mathcal{G})r
$$

with $c(t) = p(t) - r(t)$

- cascade structure
- same analysis idea

concluding remarks

Summary

- $\tau(\Gamma)$ -symmetric graphs captures symmetry of configurations and graphs
- symmetric formation potential used to design distributed control law with less edges compared to "traditional" formation control strategies
- opportunities for more sophisticated motion coordination

Zelazo, Tanigawa and Shulze, *Forced Symmetric Formation Control*, arXiv 2024.

Future Work

- formation maneuvering requires time-varying point group symmetries
- is it possible to distributedly decide on certain symmetries?
- can we eliminate need for requiring self-state in protocol?
- more?

Questions?