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open multi-agent systems

network of self-driving cars

smart-grid with EV integration

Resillience and robustness of
network systems required for
safe operations
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networked dynamic systems

(Σ,Π,M)

Network Interconnection
▶ Network is encoded by a matrix

M ∈ Rn×m

▶ [M ]ij =

{
⋆, controller j access to agent i
0, otherwise

A Stability Result

The stability of the dynamic network
(Σ,Π,M) can be guaranteed for output-
strictly passive agent dynamics Σi and
passive controller dynamics Πe.
[Corollary of B&Z 2014]
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passivation by the network

▶ stability result requires a passivity property to hold

▶ what if this cannot be guaranteed?
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passivation by the network

▶ stability result requires a passivity property to hold
▶ what if this cannot be guaranteed?

▶ ρi is passivity index of each agent
◦ ρi = 0 : passive
◦ ρi > 0 : strictly output-passive
◦ ρi < 0 : output passive short

▶ R = diag(ρ1, . . . , ρn)

▶ network can be used to passivy agents [Belabbas, Chen, Z 2023]

▶ a single agent can be used to passivy entire network [Sharf, Z 2019]
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passivation goals

▶ how do we passivy as dynamical
system?
→ feedback passivation
→ loop-transformations (classic)

▶ can we passivy a system to
achieve arbitrary passivity
indices?

▶ can we characterize all
transformations that map a
system with given passivty index
to a system with prescribed
passivity index?
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passivity for dynamical systems

Definition
Let Σ be a SISO system with a constant input-output steady-state pair
(u, y). The system is said to be input-output (ρ, ν)-passive wrt (u, y) if
there exists a C1 positive semi-definite storage function S(x) and
numbers ρ, ν ∈ R, such that ρν < 1/4 and

Ṡ =
∂S

∂x
f(x, u) ≤ (y − y)(u− u)− ρ(y − y)2 − ν(u− u)2,

for any trajectory u, y.

▶ ρ = ν = 0 ⇒ passivity
▶ ρ, ν > 0 ⇒ strict input/output passivity
▶ ρ, ν < 0 ⇒ passive short
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feedback passivation

For a passive-short system Σ : u 7→ y,
we aim to find a map T̂ such that the
closed-loop system Σ̃ : ũ 7→ ỹ is pas-
sive. This is known as feedback pas-
sivation.

Problem Statement

Find all I/O transformations T̂ that map Σ from a I/O (ρ, ν)-passive to
a I/O (ρ⋆, ν⋆)-passive system.
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a running example

Consider the following system:

ẋ = − 3
√
x+ 0.5x+ 0.5u

y = 0.5x− 0.5u

the system is passive-short

S(x) =
1

6
x2

Ṡ = yu+
2

3
y2 +

1

3
u2 − 1

3
(2y + u) 3

√
2y + u ≤ yu+

2

3
y2 +

1

3
u2

system has ρ = −2/3, ν = −1/3
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a running example

we can consider the following transformation:{
u(t) = ũ(t)− y(t)

ỹ(t) = u(t) + y(t)

⇒

[
u(t)

ỹ(t)

]
=

[
−1 1

1 1

][
y(t)

ũ(t)

]
yields the transformed system

ẋ = − 3
√
x+ ũ

ỹ = x

which is passive with storage function S(x) = 1
2x

2 satisfying

Ṡ(x) = ỹũ− ỹ 3
√
ỹ ≤ ỹũ
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loop transformations

The loop transformation, combination of feedback, feedforward, pre-, and
post-multiplication is the classic approach to feedback passivation
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loop transformations

The loop transformation, combination of feedback, feedforward, pre-, and
post-multiplication is the classic approach to feedback passivation

for this work, we prefer to consider the map T :

[
u(t)

y(t)

]
7→

[
ũ(t)

ỹ(t)

]
(always possible when T̂21-block is invertible)
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a geometric approach

A geometric approach to finding our map T ...

Projective Quadratic Inequalities
A projective quadratic inequality (PQI) is an inequality with variables
ξ, χ ∈ R of the form

0 ≤ aξ2 + bξχ+ cχ2 = f(a,b,c)(ξ, χ),

for some numbers a, b, c, not all zero.

▶ inequality is called non-trivial if b2 − 4ac > 0

▶ Cξ,χ: solution set of the PQI, all points (ξ, χ) ∈ R2 satisfying the
inequality
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a geometric approach

PQI:

0 ≤ aξ2 + bξχ+ cχ2 = f(a,b,c)(ξ, χ),

recall our definition for I/O (ρ, ν)-passivity

Ṡ ≤ yu− ρy2 − νu2

PQI captures passivity
Ṡ ≤ f(−ν,1,−ρ)(u, y)

Solution set

Cρ,ν = {(ξ, χ) ∈ R× R : f(−ν,1,−ρ)(ξ, χ) ≥ 0}
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geometric understanding of pqis

▶ we are interested in maps T :

[
u(t)

y(t)

]
7→

[
ũ(t)

ỹ(t)

]
▶ original system has a PQI solution set Cρ,ν for some (ρ, ν)

▶ transformed system has PQI solution set Cρ⋆,ν⋆ for some (ρ⋆, ν⋆)

An I/O transformation T maps an I/O (ρ, ν)-passive system to an I/O
(ρ⋆, ν⋆)-passive system if and only if it maps the PQI

0 ≤ f(−ν,1,−ρ)(ξ, χ)

to the PQI
0 ≤ f(−ν⋆,1,−ρ⋆)(ξ, χ)

(or to a stricter inequality)
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example revisited

recall our earlier example...

ẋ = − 3
√
x+ 0.5x+ 0.5u

y = 0.5x− 0.5u

satisfies
1

3
χ2 + χξ +

2

3
ξ2 = f(1/3,1,2/3)(ξ, χ) ≥ 0

we considered the transformation
[
χ̃

ξ̃

]
=

[
1 1

1 2

][
χ

ξ

]
transformed system satisfies some PQI

aχ̃2 + bχ̃ξ̃ + cξ̃2 ≥ 0
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example revisited

we should recover original PQI by expressing in original coordinates

0 ≤ aχ̃2 + bχ̃ξ̃ + cξ̃2

= a(χ+ ξ)2 + b(χ+ ξ)(χ+ 2ξ) + c(χ+ 2ξ)2

= (a+ b+ c)χ2 + (2a+ 3b+ 4c)χξ + (a+ 2b+ 4c)ξ2

solving for (a, b, c) using 1 1 1

2 3 4

1 2 4


ab
c

 =

 1
3

1
2
3


gives a = c = 0, b = 1/3 implying that

0 ≤ 1

3
χ̃ξ̃

i.e., the transformed system is passive 11



example revisited

main idea

Let A be the solution set of the original PQI. The solution set of the
new PQI under the transformation T is

T (A) = {T (χ, ξ) : (χ, ξ) ∈ A}.

We can therefore study the effect of linear transformations on PQIs by
studying their actions on the solution sets.
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a geometric approach

The solution set of any non-
trivial PQI is a symmetric
double-cone. Moreover, any
symmetric double-cone is the
solution set of some non-trivial
PQI.

Theorem⋆ [Sharf, Jain, Z 2021]

Let (ξ1, χ1), (ξ2, χ2) be non-colinear solutions of a1ξ2 + ξχ+ c1χ
2 = 0,

and (ξ̃1, χ̃1),(ξ̃2, χ̃2) be non-colinear solutions of a2ξ2 + ξχ+ c2χ
2 = 0.

Define

T1 =

[
ξ̃1 ξ̃2
χ̃1 χ̃2

][
ξ1 ξ2
χ1 χ2

]−1

, T2 =

[
ξ̃1 −ξ̃2
χ̃1 −χ̃2

][
ξ1 ξ2
χ1 χ2

]−1

.

Then one of T1, T2 transforms the PQI a1ξ2 + ξχ+ c1χ
2 ≥ 0 to the PQI

τa2ξ
2 + τξχ+ τc2χ

2 ≥ 0 for some τ > 0. 12



example continued

...back to our original system with PQI

1

3
χ2 + χξ +

2

3
ξ2 = f(1/3,1,2/3)(ξ, χ) ≥ 0

can be rewritten as
1

3
(χ+ ξ)(χ+ 2ξ) = 0

so two solutions are (2,−1), (−1, 1) ∈ C1/3,2/3

the new PQI satisfies
1

3
χ̃ξ̃ ≥ 0

with solutions (1, 0), (0, 1) ∈ C0,0 applying theorem

T1 =

[
1 0

0 1

][
2 −1

−1 1

]−1

=

[
1 1

1 2

]

i.e., the transformation we found earlier!
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towards a characterization

summary

A map T transforms an I/O (ρ, ν)-passive system to an I/O (ρ⋆, ν⋆)-
passive system if and only if it sends Cρ,ν into Cρ⋆,ν⋆

, which we denote
by Cρ,ν ↪→ Cρ⋆,ν⋆

▶ earlier theorem gives a characterization for these maps - allows to
find a map from one double cone to another double cone

▶ we would like to characterize all possible maps

main idea

show that all maps from an arbitrary double cone into another arbi-
trary double cone can be built using maps from C0,0 into iteslf
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mapping C0,0 into itself

Proposition

Let ρ, ν, ρ⋆, ν⋆ be any four numbers such that ρν, ρ⋆ν⋆ < 1/4, and let
T : Cρ,ν ↪→ Cρ⋆,ν⋆ . Let Sρ,ν : C0,0 ↪→ Cρ,ν and Sρ⋆,ν⋆ : C0,0 ↪→ Cρ⋆,ν⋆ built
using Theorem ⋆. Then there exists a matrix Q : C0,0 ↪→ C0,0, such that
T = Sρ⋆,ν⋆

QS−1
ρ,ν holds.

▶ by composition of maps we have

Q = S−1
ρ⋆,ν⋆

TSρ,ν ⇔ C0,0
Sρ,ν

↪→ Cρ,ν
T
↪→ Cρ⋆,ν⋆

S−1
ρ⋆,ν⋆
↪→ C0,0

▶ Q therefore maps C0,0 into itself
▶ all maps are invertible, therefore

T = Sρ⋆,ν⋆QS−1
ρ,ν
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mapping C0,0 into itself

Proposition

A matrix T ∈ GL2(R) sends C0,0 into itself if and only if all of the
entries of T have the same sign, i.e., TijTkl ≥ 0 for every i, j, k, l ∈
{1, 2}.
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mapping from Cµ,τ to C0,0

Proposition †

Let µ, τ be any two numbers such that µτ < 1/4. Recall that Sµ,τ is a
map C0,0 ↪→ Cµ,τ , as constructed in Theorem ⋆. Define R =

√
1− 4τµ.

i) If τ < 0, we can choose Sµ,τ = 1
2τ

[−1−R 1−R
−2τ 2τ

]
.

ii) If τ > 0, we can choose Sµ,τ = 1
2τ

[
1+R 1−R
2τ 2τ

]
.

iii) If τ = 0, we can choose Sµ,τ =
[
1 µ
0 1

]
.

direct construction
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main result

Theorem

Let Σ be a SISO I/O (ρ, ν)-passive system, and let T ∈ GL2(R) be an
invertible matrix I/O transformation. The transformed system Σ̃ is I/O
(ρ⋆, ν⋆)-passive if and only if there exists a matrix M ∈ GL2(R) such
that

i) Mij ≥ 0 for all i, j ∈ {1, 2};
ii) some θ ∈ {±1} such that T = Sρ⋆,ν⋆

(θM)S−1
ρ,ν , where Sρ,ν , Sρ⋆,ν⋆

are given in Proposition †.

In other words, the transformed system Σ̃ is I/O (ρ⋆, ν⋆)-passive if and
only if all of the entries of the matrix S−1

ρ⋆,ν⋆
TSρ,ν have the same sign.
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main result
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mimo extensions

results can be generalized to MIMO systems

Theorem Sharf, Z 2024

Let Σ be an I/O (ρ, ν)-passive system with input and output dimension
equal to d, and let T ∈ GL2d(R) be an invertible matrix inducing an
I/O transformation. The transformed system Σ̃ is I/O (ρ⋆, ν⋆)-passive
if and only if there exists a matrix M ∈ GL2d(R) and some positive
λ > 0 such that:

T = (Sρ⋆,ν⋆
⊗ Idd)M(S−1

ρ,ν ⊗ Idd), M⊤JM − λJ ≥ 0,

where J =
[

0 0.5Idd

0.5Idd 0

]
, i.e., Σ̃ is I/O (ρ⋆, ν⋆)-passive if and only if

there exists λ > 0 such that X = (S−1
ρ⋆,ν⋆

⊗ Idd)T (Sρ,ν ⊗ Idd) satisfies
X⊤JX − λJ ≥ 0.
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outlooks

▶ framework can allow us to consider optimal passivizing
transformations

min
T

Φ(T )

s.t. T maps I/O (ρ, ν) systems to I/O (ρ⋆, ν⋆)-systems.

▶ extend to different passivity variations (incremental, equilibrium
independent, etc.)

▶ applications to plug-and-play networks
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