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Networked multi-agent systems

Multiple dynamic units interacting over a network

Collective goals under limited communication resources
Many applications

▶ sensor networks
▶ home automation
▶ multi-robot coordination
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Archetype NMAS objective - State Agreement

Agents:
¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 (𝑡), 𝑖 ∈ [1, . . . , 𝜈]

with 𝐴 ∈ ℝ𝑛×𝑛 and 𝐵 ∈ ℝ𝑛×𝑚.

Goal: design distributed control signals 𝑢𝑖 (𝑡) such that the states
synchronize, i.e.

lim
𝑡→∞

∥𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)∥ = 0 ∀𝑖, 𝑗 ,

with some trajectory generated by ¤𝑟 (𝑡) = 𝐴0𝑟 (𝑡), for a given 𝐴0 ∈
ℝ𝑛×𝑛 with spec(−𝐴0) ∈ ℂ̄0, i.e.

lim
𝑡→∞

∥𝑥𝑖 (𝑡) − 𝑟 (𝑡)∥ = 0 ∀𝑖.

𝐴0 is an arbitrary model representing the target trajectory.
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Communication constraints

The controller must respect three types of constraints:

Spatial constraints: an agent can transmit only within its
neighborhood N𝑖 (𝑡). The neighborhoods can be
time-varying and communication directed.

Temporal constraints: agents communicate only at discrete
sampling instances, 𝑡 ∈ {𝑠𝑘}. The sampling can be
aperiodic and asynchronous.

Transmission delays: the information transmitted by agent 𝑗 at
𝑡 = 𝑠𝑘 arrives to agent 𝑖 at 𝑡 = 𝑡𝑖 𝑗 [𝑘] := 𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘].
The delays can be time-varying and heterogeneous.

These pose significant challenges for control design.
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Basic assumptions

A1: The pair (𝐴, 𝐵) is stabilizable and there
exists a gain 𝐹 such that 𝐴0 = 𝐴 + 𝐵𝐹.

Solvability

The agents are stabilizable and the trajectory is
attainable.

A2: there is a strictly increasing sub-sequence of
sampling indices {𝑘 𝑝} such that for all 𝑝 ∈ ℤ+

1 the intervals 𝑠𝑘𝑝+1 − 𝑠𝑘𝑝 are uniformly bounded;

2
⋃𝑘𝑝+1

𝑘=𝑘𝑝+1 G[𝑘] contains a directed rooted tree.

A3: incoming information is time stamped and

𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘] < 𝑠𝑘+1, ∀𝑖, 𝑗 ∈ ℕ𝜈 , 𝑘 ∈ ℤ+.
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Small delays

The delays can be locally calculated and are small
compared to the sampling interval.
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The standard approach to agreement problems

Sequential design:

1 Transmit the state, 𝑥𝑖 (𝑡), and use a consensus-based
structure to satisfy the spatial constraints.

2 Assume the sampling is periodic and the control signal
constant between samples.

3 Treat delays and sampling variations as perturbations.

4 Solve a robust control problem to find an appropriate gain.

This often

induces conservatism (discretization, input-delay)
scales badly (# of decision variables may scale with 𝜈)
does not exploit the spatio-temporal interplay of the problem.
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𝑢𝑖 (𝑡) = 𝐾
∑︁

𝑗∈N𝑖 (𝑡 )
(𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡))

5 / 15



The standard approach to agreement problems

Sequential design:

1 Transmit the state, 𝑥𝑖 (𝑡), and use a consensus-based
structure to satisfy the spatial constraints.

2 Assume the sampling is periodic and the control signal
constant between samples.

3 Treat delays and sampling variations as perturbations.

4 Solve a robust control problem to find an appropriate gain.

This often

induces conservatism (discretization, input-delay)
scales badly (# of decision variables may scale with 𝜈)
does not exploit the spatio-temporal interplay of the problem.

x1

x2

x3

x4

x5 GŒk�

𝑢𝑖 (𝑡) = 𝐾
∑︁

𝑗∈N𝑖 [𝑘 ]
(𝑥𝑖 (𝑠𝑘)−𝑥 𝑗 (𝑠𝑘))

5 / 15



The standard approach to agreement problems

Sequential design:

1 Transmit the state, 𝑥𝑖 (𝑡), and use a consensus-based
structure to satisfy the spatial constraints.

2 Assume the sampling is periodic and the control signal
constant between samples.

3 Treat delays and sampling variations as perturbations.

4 Solve a robust control problem to find an appropriate gain.

This often

induces conservatism (discretization, input-delay)
scales badly (# of decision variables may scale with 𝜈)
does not exploit the spatio-temporal interplay of the problem.

𝑢𝑖 (𝑡) = 𝐾
∑︁

𝑗∈N𝑖 [𝑘 ]
(𝑥𝑖 (𝑠𝑘)−𝑥 𝑗 (𝑠𝑘))

5 / 15



The standard approach to agreement problems

Sequential design:

1 Transmit the state, 𝑥𝑖 (𝑡), and use a consensus-based
structure to satisfy the spatial constraints.

2 Assume the sampling is periodic and the control signal
constant between samples.

3 Treat delays and sampling variations as perturbations.

4 Solve a robust control problem to find an appropriate gain.

This often

induces conservatism (discretization, input-delay)
scales badly (# of decision variables may scale with 𝜈)
does not exploit the spatio-temporal interplay of the problem.

𝑢𝑖 (𝑡) = 𝐾
∑︁

𝑗∈N𝑖 [𝑘 ]
(𝑥𝑖 (𝑠𝑘)−𝑥 𝑗 (𝑠𝑘))

5 / 15



The standard approach to agreement problems

Sequential design:

1 Transmit the state, 𝑥𝑖 (𝑡), and use a consensus-based
structure to satisfy the spatial constraints.

2 Assume the sampling is periodic and the control signal
constant between samples.

3 Treat delays and sampling variations as perturbations.

4 Solve a robust control problem to find an appropriate gain.

This often

induces conservatism (discretization, input-delay)
scales badly (# of decision variables may scale with 𝜈)
does not exploit the spatio-temporal interplay of the problem.

𝑢𝑖 (𝑡) = 𝐾
∑︁

𝑗∈N𝑖 [𝑘 ]
(𝑥𝑖 (𝑠𝑘)−𝑥 𝑗 (𝑠𝑘))

5 / 15



A key observation: spatio-temporal interplay

Inter-neighbor interactions and local actions occur at different time scales.

Local information: the state 𝑥𝑖 (𝑡) and controller variable 𝑧𝑖 (𝑡), are continuously available.

▶ Not effected by communication constraints!

Neighboring information: transmitted information, 𝜇 𝑗 (𝑠𝑘), is available intermittently and
may be delayed.

A hybrid controller not not based on a discretized consensus protocol can
exploit the interplay between local and global information.

κ (xi(t), zi(t), µ̄i(sk))ẋi = Axi +Bui

ui(t) µ̄i(sk)xi(t)

xi(t)
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The paradigm: two measurements for two goals

Flow dynamics: use local information to stabilize the system around a local emulation of
the required trajectory 𝜇𝑖 (𝑡) via a continuous control signal.

∥𝑥𝑖 (𝑡) − 𝜇𝑖 (𝑡)∥ → 0, ∀𝑖

Jump dynamics: at sampling instances, use incoming information, 𝜇 𝑗 (𝑠𝑘), ∈ N𝑖 [𝑘], to
update the emulators discretely.

∥𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘)∥ → 0, ∀𝑖, 𝑗

Two objectives: flow dynamics should track, and jump dynamics should synchronize.
▶ This was the idea behind (Barkai, Mirkin, and Zelazo, 2023).
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The hybrid controller for the delay-free problem

Theorem (Barkai, Mirkin, and Zelazo, 2023)

If A1,2 holds, 𝐴 + 𝐵𝐹d is Hurwitz, and 𝐴0 = 𝐴 + 𝐵𝐹; then local control law

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) +
1

𝜈
(𝐹 − 𝐹d) (𝑧𝑖 (𝑡) + 𝑥𝑖 (𝑡))

generated by a hybrid controller with the following flow and jump dynamics
¤𝑧𝑖 (𝑡) = (𝐴 + 𝐵𝐹)𝑧𝑖 (𝑡) + 𝐵(𝐹𝑥𝑖 (𝑡) − 𝑢𝑖 (𝑡)), 𝑧𝑖 (0) = 𝑧𝑖,0

𝑧𝑖 (𝑠+𝑘) = 𝑧𝑖 (𝑠𝑘) −
1

𝜈

∑︁
𝑙∈N𝑖 [𝑘 ]

(𝑧𝑖 (𝑠𝑘) − 𝑧𝑙 (𝑠𝑘) + 𝑥𝑖 (𝑠𝑘) − 𝑥𝑙 (𝑠𝑘)) (1)

asymptotically synchronize the agents to the required trajectory.

Here the emulator is a linear combination of the agent and controller states

𝜇𝑖 :=
1

𝜈
(𝑧𝑖 + 𝑥𝑖)
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Transmission delays in the hybrids setup

The delays affect only transmitted information =⇒ they do not affect the flow.

It can be shown that each emulator evolves according to
¤̄𝜇𝑖 (𝑡) = 𝐴0𝜇𝑖 (𝑡), 𝜇𝑖 (0) = 𝜇𝑖,0

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]) −
1

𝜈

∑︁
𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]

(𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]) − 𝜇 𝑗 (𝑠𝑘))

equivalently, the jump dynamics can be written as

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = e𝐴0𝜏𝑖 𝑗 [𝑘 ] ©«𝜇𝑖 (𝑠𝑘) − 1

𝜈

∑︁
𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]

(𝜇𝑖 (𝑠𝑘) − e−𝐴0𝜏𝑖 𝑗 [𝑘 ]𝜇 𝑗 (𝑠𝑘))ª®¬
We can exploit this to construct a simple predictor

regardless of the gains 𝐹 and 𝐹𝑑.
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The main result

Theorem

If A1,2,3 holds, 𝐴 + 𝐵𝐹d is Hurwitz, and 𝐴0 = 𝐴 + 𝐵𝐹; then the sampled-data controller (1)
with jump map

𝑧𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝑧𝑖 (𝑡𝑖 𝑗 [𝑘]) − e𝐴0𝜏𝑖 𝑗 [𝑘 ]
∑︁

𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]
(𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘)),

asymptotically synchronize the agents for:

all initial conditions;

all sampling sequences,

and all time-varying delays satisfying A3.

Moreover, the system synchronizes with the same trajectory as in the delay-free case.

Recall that 𝜇𝑖 (𝑡) = 1
𝜈
(𝑧𝑖 (𝑡) + 𝑥𝑖 (𝑡)).
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Proof outline - the big picture

1 It can be shown that 𝑥𝑖 (𝑡) synchronize if and only if 𝜇𝑖 (𝑡) synchronize, and that
¤̄𝜇𝑖 (𝑡) = 𝐴0𝜇𝑖 (𝑡), 𝜇𝑖 (0) = 𝜇𝑖,0

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]) −
1

𝜈
e𝐴0𝜏𝑖 𝑗 [𝑘 ]

∑︁
𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]

(𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘)) .

▶ Recall that 𝐴0 = 𝐴 + 𝐵𝐹.

2 Equivalently, the new jump map can be written as

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = e𝐴0𝜏𝑖 𝑗 [𝑘 ] ©«𝜇𝑖 (𝑠𝑘) − 1

𝜈

∑︁
𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]

(𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘))ª®¬ ,
which looks almost exactly like the delay-free case.
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Proof outline - the prediction

1 A3 ensures that each agent can receive at most 1 update from each agent in each
sampling interval.

2 Assume that there are 𝑝 delayed updates, and consider the sequence

𝑠𝑘 ≤ 𝑞1 [𝑘] < · · · < 𝑞𝑝 [𝑘] < 𝑠𝑘+1
where 𝑞𝑖 [𝑘] are the ordered version of 𝑡𝑖 𝑗 [𝑘].

3 It can be shown that at the last update of each interval we have

𝜇𝑖 (𝑞𝑝 [𝑘]+) = e𝐴0𝜏𝑝 [𝑘 ] ©«𝜇𝑖 (𝑠𝑘) − 1

𝜈

𝑝∑︁
𝑙=1

∑︁
𝑗∈N𝑖 [𝑞𝑙 [𝑘 ] ]

(𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘))ª®¬
= e𝐴0𝜏𝑝 [𝑘 ] ©«𝜇𝑖 (𝑠𝑘) − 1

𝜈

∑︁
𝑗∈N𝐷𝐹

𝑖
[𝑘 ]

(𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘))ª®¬
where N𝐷𝐹

𝑖
[𝑘] is the neighborhood set of the delay-free system at 𝑡 = 𝑠𝑘 .
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Simulation’s setup

1 All Simulations involve 𝜈 = 3 agent with the nominal sampling sequence randomized
between 3 graphs and satisfy A2.

x1

x2 x3

G2

x1

x2 x3

G1

x1

x2 x3

G3

2 The nominal sampling intervals are randomized 𝑠𝑘+1 − 𝑠𝑘 ∈ [0.3, 1.8], and the delays are
generated by 𝜏(𝑠𝑘+1 − 𝑠𝑘), where 𝜏 is uniformly distributed random variable from the
interval [0, 0.7], hence satisfy A3.
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Synchronization of LTI agents

Unstable LTI agents w/ time-varying trajectory

¤𝑥𝑖 (𝑡) =
[
4 9
1 4

]
𝑥𝑖 (𝑡) +

[
2
1

]
𝑢𝑖 (𝑡), 𝐴0 =

[
0 1
−1 0

]

State’s trajectories for first coordinate
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1𝑖 (𝑡)
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Error w/ delay-free system: Δ𝜇,2𝑖 (𝑡) := 𝜇2𝑖 (𝑡) − 𝜇𝐷𝐹
2𝑖 (𝑡)
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Concluding remarks

Exploits the hybrid structure of the controller to compensate for transmission delays.

Naturally works with heterogeneous and time-varying delays.

The controller recovers the delay-free behavior - no loss of performance.

It can be shown that each agent needs only a buffer of size 1 to implement the predictor.

Future research:
▶ Robustness to uncertainty in 𝜏𝑖 𝑗 [𝑘]
▶ Extensions to longer time-delays

▶ Moving from state to output feedback.
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