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Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information
system of an individual or organization.

Example of cyber-attacks target: networked control systems
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Distinctive features:

e distributed architecture
e autonomy
e scalability
e robustness to failure Contalizedt bistributed
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Graph-based network model

The secure smart networks under analysis are defined as n-agent systems
modeled through graph theoretical tools.

Notation
m weighted undirected graph: G = (V,E, W), [V|=n, |E|=m
m vertex set: V ={1,...,n}

medgeset: ECV XV

m i-th neighborhood: N, = {j € V\ {i} | (i,)) € £}

m a spanning tree: 7 C G

m the cut-set matrix of G w.rt. T and C =G\ T: Ry
m weight on edge (,): wi; € Rif (i,5) € £

m weight matrix: W s.t. [W]g, = wij, k= (i,7)
m incidence matrix: £ € R"*"™

m weighted Laplacian matrix: L(G) = EWE"
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Weighted consensus protocol

e n homogeneous agents with dyanmic state z; = z;(t) ¢ RP, i =1,...,n
e ensemble state: x = vecl; (z;) € X C RY, with N =nD
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Weighted consensus protocol

e n homogeneous agents with dyanmic state z; = z;(t) ¢ RP, i =1,...,n
e ensemble state: x = vecl; (z;) € X C RY, with N =nD

Definition (Weighted Consensus)

An n-agent network achieves consensus if lim;_, ;- x(¢) € A, where
A = (span(1,) ® w), w € RP, is called agreement set.



Weighted consensus protocol

e 1 homogeneous agents with dyanmic state 2; = z;(t) e RP, i=1,...,n
e ensemble state: x = vecl; (z;) € X C RY, with N =nD

An n-agent network achieves consensus if lim;_, ;- x(¢) € A, where
A = (span(1,) ® w), w € RP, is called agreement set.

For a MAS described by an undirected and connected graph G the network
state x driven by dynamics

x=-L(9)x, with L(G)=L(G)® Ip,
fulfills weighted consensus.



Weighted consensus protocol: classic example

5 5
4 4
3 3
2 2
1 1
1’1’.20 Li 0
-1 -1
92 -2
-3 -3
-4 . : -4
-5 -5
-5-4-3-2-1012 345 012345678910
Ti1 t [S]

Rendez-vous, n =5, D = 2.
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The Secure-by-Design
Consensus Protocol
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Edge weight encryption: motivations

Edge weight values affect convergence performances of consensus.
Practical motivations suggesting their encryption:

m preserving privacy, in general,

m ensuring performances of existing
applications, e.g. decentralized
estimation, opinion dynamics;

Application

m achieving synchronization for a Controller/

group of agents subject to Byzantine Estimator

attacks through learning-based control
CONSENSUS
techniques. L_______
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Edge weight values affect convergence performances of consensus.
Practical motivations suggesting their encryption:
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m ensuring performances of existing
applications, e.g. decentralized
estimation, opinion dynamics;

Application

m achieving synchronization for a Controller/

group of agents subject to Byzantine Estimator

attacks through learning-based control
CONSENSUS
techniques. L_______

We want to embed edge weight encryption into
consensus networks and study the related robustness



“Robustness” within consensus networks

Meaning: robust stability to small-magnitude perturbations altering the

agent dynamics o ‘
58, 9 Ou
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AT w(G)
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Effective resistance (EF): Ryv(G) = [LT(9)]uu — 2[LT(G)]ww + [LT(G)]vw
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“Robustness” within consensus networks

Meaning: robust stability to small-magnitude perturbations altering the
agent dynamics o

o B Ou
o—¥ O

| 111;(g)
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Effective resistance (EF): Ruv(G) = [LT(9)]uu — 2[LT(D)]uw + [LT(G)]ww
Generalized EF w.r.t. the subset Ao C &£ of uncertain edges:

Rea (@) = | PT Rl ) (RroyW Ry ) Rz o P|
Uncertain consensus protocol: x = —L(Gaw )x, where AW is a
(structured diagonal) disturbance and L(Gaw) = E(W + AW)ET

For the uncertainty A" on £ then robust consensus is guaranteed if
HAWH < R-1G) known small-gain
— theorem result

[D. Zelazo and M. Biirger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017] ¢
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Introduction of the network manager

One method to increase security among networks is adopting the so-called
network manager.

Attackcl" The network manager

m is not a global controller

m is used to secure distributed
algorithms running on MASs

Network Manager

3

m defines tasks: within consensus,
the task corresponds to
(encrypted) edge weight
selection

m its goal is to guarantee robust
consensus convergence

Networked System



Objective coding and information localization

Objective coding: a task is described by an encoded parameter 6 € R
called codeword. Decoding functions p; are used by agents to interpret 6.
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Objective coding and information localization

Objective coding: a task is described by an encoded parameter 6 € R
called codeword. Decoding functions p; are used by agents to interpret 6.

Assumptions on the structure of

codeword and decoding functions:

Network x x
L4 H(k) = [92}‘7 = 92] such that 111(;11\1:1:1(‘1‘ f
H(x) '

0;j =0, fork=1,...,m | — "

Task

. . : : -
o 0(k) is meaningful N P B®Ip ET®Ip

if £k = (Z,]) € & \ Attack L 7

e 0;; takes arbitrary value Tk ] " Qs
| : (0 +0")
° pz‘j(e) — pij(eij) i [encryption | /L " ( )}1 iy
[ T 0 9 +4°
W,

Information localization: h;;(x) := col;[h;(x)] =

T O0p, otherwise
H(x) = diagj_, (hi(x))

{I‘i—l‘j, (Z,]) €&



Secure-by-design consensus dynamics

Assume that decoding functions p;, ¢ = 1,...,n, obey this rule:

Wiy, (Za]) €&

0, otherwise

pi(0)]; = pij(0) = {
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Secure-by-design consensus dynamics

Assume that decoding functions p;, ¢ = 1,...,n, obey this rule:

Wiy, (Za]) €&
0, otherwise

pi(0)]; = pij(0) = {

Then the nominal consensus protocol can be thus rewritten as

Ty =— Y pij(@)hi(x), i=1,...,n
JEN;

or, equivalently, setting p = vec(p;) and recalling that H(x) = diag(h;(x))

% = —H(x)p(0)



Model for the channel tampering

Attack is a codeword deviation: 67 € A? = {50 : H59HOO < 59}
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Model for the channel tampering

Attack is a codeword deviation: 67 € A? = {50 : H69H < 59}

Attacker Network Manager

I — T

0
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Model for the channel tampering

Attack is a codeword deviation: 67 € A? = {50 : H69H < 59}

Attacker Network Manager
S T
7l =—1
0

Then the perturbed consensus protocol (PCP) can be described by
T; = — Z pij(Gij—i—éfj)hij(x), 1i=1,...,n
JEN;

where (5 = [69]; and 49 satisfies 5 = vec(d?).
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Channel tampering: multi-edge attack problem

Problem
Design p;; such that the PCP reaches agreement
m independently from the value of 6

m while the MAS is subject to an attack 67 striking all the edges in Ea,
that is 6% =0 for all (i,5) € £\ én
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Channel tampering: multi-edge attack problem

Problem
Design p;; such that the PCP reaches agreement
m independently from the value of 6

m while the MAS is subject to an attack 67 striking all the edges in Ea,
that is 6% =0 for all (i,5) € £\ én

Moreover, provide resilience guarantees for a given perturbation set A? in
terms of the maximum allowed magnitude (say peA) for the norm of 6?.
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Robustness to channel tampering

Further (crucial!) assumptions on the decoding functions:
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Robustness to channel tampering

Further (crucial!) assumptions on the decoding functions:

(l) values [pl(e)]] = pij(ﬂij), with Gij = [(91']]', satisfy

mﬂm:{mﬁ if (i,j) € €

0, otherwise

for all (4,7) € £ and are not constant w.r.t. 6;;.

(i) pi;(0) is concave for all admissible 6

(i49) psj is Lipschitz continuous and differentiable w.r.t. §, implying

3Kij 2 0: |pj;(0ij)| < Kij, (i, j) € €



Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting Ka := max {Kyy}:
(u,w)EEA

For an injection attack 6% on edge all the edges in £a the PCP achieves
agreement if

167, < P = (KaRes(9) 7,

independently from the values taken by any admissible codeword 6.
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Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting Ka := max {Kyy}:
(u,w)EEA

For an injection attack 6% on edge all the edges in £a the PCP achieves
agreement if

167, < P = (KaRes(9) 7,

independently from the values taken by any admissible codeword 6.

Sketch of the proof: follows immediately from HAWH < RgAl(g).

The three assumptions (7)-(#i7) are sufficient and necessary to figure out
the worst case scenario in which the absolute slope of each py,, (u,v) € Ea,
is maximum, i.e. the absolute slope reaches KA for any given 6.

Up to minor changes this result is also valid for discrete-time consensus.



Further analysis and
numerical results
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A trade-off: information hiding vs robust stability

Observation: if Ea = {(u,v)}, the Lipschitz constant K, plays a crucial
role in either improving information hiding or robust stability!

Considering pyy (0uy) = buypbuy, the perturbation on 6, is directly
“amplified” by Ky, = |byy|. Let's focus on this case.

18 of 25



A trade-off: information hiding vs robust stability

Observation: if Ea = {(u,v)}, the Lipschitz constant K, plays a crucial
role in either improving information hiding or robust stability!

Considering pyy (0uy) = buypbuy, the perturbation on 6, is directly
“amplified” by Ky, = |byy|. Let's focus on this case.

e if K{;;,, increases then the image of py, = byybuw reaches more values
w.r.t. to some fixed neighborhood of 6,

Ko T then encrpytion capabilities of py,

18 of 25



A trade-off: information hiding vs robust stability

Observation: if Ea = {(u,v)}, the Lipschitz constant K, plays a crucial
role in either improving information hiding or robust stability!

Considering pyy (0uy) = buypbuy, the perturbation on 6, is directly
“amplified” by Ky, = |byy|. Let's focus on this case.

e if K{;;,, increases then the image of py, = byybuw reaches more values
w.r.t. to some fixed neighborhood of 6,

Ky T then encrpytion capabilities of py,

e if K, increases then the value of p!, = (K., Ruv(G))~! decreases
K T then robust stability of PCP,l,
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The resilience gap

Let us define the quantities: Rzé(g) = ( Hl)‘dé {R(u,v)(g)};
u,v A

RIELG) = tr | PT Ry o) (RiryWRy )" Riro P}
It is known that:
R, (9) < Rea(9) < REL(G)

[D. Zelazo and M. Biirger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

19 of 25



The resilience gap

Let us define the quantities: Rzé(g) = ( Hl)‘dé {R(u,v)(g)};
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[D. Zelazo and M. Biirger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]
The following ratio is named resilience gap

RO
9.8 =17 ©

This quantity measures the emerging amount of conservatism related to
the fact that multiple edges are under attack.

€ [0,1).
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The resilience gap

Let us define the quantities: Rzé(g) = ( Hl)‘dé {R(u,v)(g)};
u,v A

RIEL(G) = tr |[PTRI o) (Rir) W R )" Rir )P},
It is known that:
Ri,(G) < Ren(9) < REL(9)

[D. Zelazo and M. Biirger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]
The following ratio is named resilience gap

RO
9.8 =17 ©

This quantity measures the emerging amount of conservatism related to
the fact that multiple edges are under attack.

€ [0,1).

Observation

i) |Eal =1, or

T e <ieal<n—1=1¢

then 9(G,EA) =0
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Numerical simulations

Ka(vn+1+1), ifn>3;
Decoding function:  pa(n) = § Ka (—5n° + 1), if 0<n<3;

Kan, if n <0
Edges under attack: & ={(1,2)}, & ={(1,2),(3,5),(4,6)}
Couple of values for Ka: Ki; =2, Ky=6

— KA = K)
—Kp =K

pa(n)

/ FOLLOWERS c
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Numerical simulations (cont'd)

Ka =K, Ka = K>

5
4
3
2
‘0
B e —
-2
-3\ —en—&,Ka—K

A = €1, A = 1
-4 —Ex =&, Ka = K,
-5 -5
0123456738910 0123456728910

t [s] t[s]
Semi-autonomous network dynamics:
x = (Lg(G) ® Ip)x + (B® Ip)u,

where Lp(G) = L(G) + diag(B1)y,) and B € R™ Vil such that [B]; > 0,
if agent ¢ belongs to the leader set V; = {1}; [B];y = 0, otherwise. 5, s o5



Conclusions
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Final remarks

m the secure-by-design consenus protocol rests on novel methods
(e.g. network manager, objective coding, information localization) to
preserve integrity, synchronization and performance of networks

m the previously devised single-edge attack case has been broadened to
a scenario with multiple threats

m small-gain-theorem-based stability guarantees based on the
effective resistance are given, which depend on both network
topology and encryption system employed

m trade-off between information hiding & robust stability is discussed
m the conservatism arising from a multiplicity of threats is addressed

m future works: extending this approach to nonlinear consensus and
formation control protocols
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