62^{nd} IEEE Conference on Decision and Control

A Robustness Analysis to Structured Channel Tampering over Secure-by-design Consensus Networks

Marco Fabris and Daniel Zelazo

December 13th, 2023

Università degli Studi di Padova

Overview and preliminaries

Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information system of an individual or organization.

Example of cyber-attacks target: networked control systems

Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information system of an individual or organization.

Example of cyber-attacks target: *networked control systems*

MAS: set of agents situated in a shared environment, constituting a networked control system having the purpose to attain a common task.

Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information system of an individual or organization.

Example of cyber-attacks target: networked control systems

MAS: set of agents situated in a shared environment, constituting a networked control system having the purpose to attain a common task.

Distinctive features:

- distributed architecture
- autonomy
- scalability
- robustness to failure

Centralized

Graph-based network model

The secure smart networks under analysis are defined as n-agent systems modeled through graph theoretical tools.

<u>Notation</u>

- weighted undirected graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W}), \ |\mathcal{V}| = n, \ |\mathcal{E}| = m$
- vertex set: $\mathcal{V} = \{1, \dots, n\}$
- edge set: $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- *i*-th neighborhood: $\mathcal{N}_i = \{j \in \mathcal{V} \setminus \{i\} \mid (i, j) \in \mathcal{E}\}$
- a spanning tree: $\mathcal{T} \subseteq \mathcal{G}$
- the cut-set matrix of \mathcal{G} w.r.t. \mathcal{T} and $\mathcal{C} = \mathcal{G} \setminus \mathcal{T}$: $R_{(\mathcal{T},\mathcal{C})}$
- weight on edge (i, j): $w_{ij} \in \mathbb{R}$ if $(i, j) \in \mathcal{E}$
- weight matrix: W s.t. $[W]_{kk} = w_{ij}$, k = (i, j)
- incidence matrix: $E \in \mathbb{R}^{n \times m}$
- weighted Laplacian matrix: $L(\mathcal{G}) = EWE^{\top}$

Weighted consensus protocol

- n homogeneous agents with dyanmic state $x_i = x_i(t) \in \mathbb{R}^D$, $i = 1, \dots, n$
- ensemble state: $\mathbf{x} = \operatorname{vec}_{i=1}^n(x_i) \in X \subset \mathbb{R}^N$, with N = nD

Weighted consensus protocol

- n homogeneous agents with dyanmic state $x_i = x_i(t) \in \mathbb{R}^D$, $i = 1, \dots, n$
- ensemble state: $\mathbf{x} = \operatorname{vec}_{i=1}^{n}(x_i) \in X \subset \mathbb{R}^N$, with N = nD

Definition (Weighted Consensus)

An *n*-agent network achieves consensus if $\lim_{t\to+\infty} \mathbf{x}(t) \in \mathcal{A}$, where $\mathcal{A} = (\operatorname{span}(\mathbb{1}_n) \otimes \omega)$, $\omega \in \mathbb{R}^D$, is called *agreement set*.

Weighted consensus protocol

- n homogeneous agents with dyanmic state $x_i = x_i(t) \in \mathbb{R}^D$, $i = 1, \dots, n$
- ensemble state: $\mathbf{x} = \operatorname{vec}_{i=1}^{n}(x_i) \in X \subset \mathbb{R}^N$, with N = nD

Definition (Weighted Consensus)

An *n*-agent network achieves consensus if $\lim_{t\to+\infty} \mathbf{x}(t) \in \mathcal{A}$, where $\mathcal{A} = (\operatorname{span}(\mathbb{1}_n) \otimes \omega)$, $\omega \in \mathbb{R}^D$, is called *agreement set*.

Proposition

For a MAS described by an undirected and connected graph ${\cal G}$ the network state ${\bf x}$ driven by dynamics

$$\dot{\mathbf{x}} = -\mathbf{L}(\mathcal{G})\mathbf{x}, \quad \text{ with } \mathbf{L}(\mathcal{G}) = L(\mathcal{G}) \otimes I_D,$$

fulfills weighted consensus.

Weighted consensus protocol: classic example

Rendez-vous, n = 5, D = 2.

The Secure-by-Design Consensus Protocol

Edge weight encryption: motivations

Edge weight values affect convergence performances of consensus. **Practical motivations** suggesting their encryption:

- **preserving privacy**, in general;
- ensuring performances of existing applications, e.g. decentralized estimation, opinion dynamics;
- achieving synchronization for a group of agents subject to Byzantine attacks through learning-based control techniques.

Edge weight encryption: motivations

Edge weight values affect convergence performances of consensus. **Practical motivations** suggesting their encryption:

- **preserving privacy**, in general;
- ensuring performances of existing applications, e.g. decentralized estimation, opinion dynamics;
- achieving synchronization for a group of agents subject to Byzantine attacks through learning-based control techniques.

We want to embed edge weight encryption into consensus networks and study the related robustness

Meaning: **robust stability to small-magnitude perturbations** altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$

Meaning: **robust stability to small-magnitude perturbations** altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\Delta} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T},\mathcal{C})}^{\top} (R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^{\top})^{-1} R_{(\mathcal{T},\mathcal{C})} P \right\|$

Meaning: **robust stability to small-magnitude perturbations** altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\Delta} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T},\mathcal{C})}^{\top} (R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^{\top})^{-1} R_{(\mathcal{T},\mathcal{C})} P \right\|$

Uncertain consensus protocol: $\dot{\mathbf{x}} = -L(\mathcal{G}_{\Delta^W})\mathbf{x}$, where Δ^W is a (structured diagonal) disturbance and $L(\mathcal{G}_{\Delta^W}) = E(W + \Delta^W)E^{\top}$

Meaning: **robust stability to small-magnitude perturbations** altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\Delta} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T},\mathcal{C})}^{\top} (R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^{\top})^{-1} R_{(\mathcal{T},\mathcal{C})} P \right\|$

Uncertain consensus protocol: $\dot{\mathbf{x}} = -L(\mathcal{G}_{\Delta^W})\mathbf{x}$, where Δ^W is a (structured diagonal) disturbance and $L(\mathcal{G}_{\Delta^W}) = E(W + \Delta^W)E^{\top}$

For the uncertainty Δ^W on \mathcal{E}_Δ then **robust consensus** is guaranteed if $\|\Delta^W\| < \mathcal{R}_{\mathcal{E}_\Delta}^{-1}(\mathcal{G})$

Meaning: **robust stability to small-magnitude perturbations** altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\Delta} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T},\mathcal{C})}^{\top} (R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^{\top})^{-1} R_{(\mathcal{T},\mathcal{C})} P \right\|$

Uncertain consensus protocol: $\dot{\mathbf{x}} = -L(\mathcal{G}_{\Delta^W})\mathbf{x}$, where Δ^W is a (structured diagonal) disturbance and $L(\mathcal{G}_{\Delta^W}) = E(W + \Delta^W)E^{\top}$

For the uncertainty Δ^W on \mathcal{E}_Δ then **robust consensus** is guaranteed if $\|\Delta^W\| < \mathcal{R}_{\mathcal{E}_\Delta}^{-1}(\mathcal{G})$ known small-gain theorem result

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

Introduction of the network manager

One method to increase security among networks is adopting the so-called **network manager**.

The network manager

- is **not** a global controller
- is used to secure distributed algorithms running on MASs
- defines tasks: within consensus, the task corresponds to (encrypted) edge weight selection
- its goal is to guarantee **robust** consensus convergence

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called *codeword*. Decoding functions p_i are used by agents to interpret θ .

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called *codeword*. Decoding functions p_i are used by agents to interpret θ .

Assumptions on the structure of

codeword and decoding functions:

- $\theta^{(k)} := [\theta_i]_j = \theta_{ij}$ such that $\theta_{ij} = \theta_{ji}$, for $k = 1, \dots, m$
- $\theta^{(k)}$ is meaningful if $k = (i, j) \in \mathcal{E}$
- θ_{ii} takes arbitrary value
- $p_{ij}(\theta) = p_{ij}(\theta_{ij})$

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called *codeword*. Decoding functions p_i are used by agents to interpret θ .

Assumptions on the structure of

codeword and decoding functions:

- $\theta^{(k)} := [\theta_i]_j = \theta_{ij}$ such that $\theta_{ij} = \theta_{ji}$, for $k = 1, \dots, m$
- $\theta^{(k)}$ is meaningful if $k = (i, j) \in \mathcal{E}$
- θ_{ii} takes arbitrary value
- $p_{ij}(\theta) = p_{ij}(\theta_{ij})$

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called *codeword*. Decoding functions p_i are used by agents to interpret θ .

Assumptions on the structure of

codeword and decoding functions:

- $\theta^{(k)} := [\theta_i]_j = \theta_{ij}$ such that $\theta_{ij} = \theta_{ji}$, for $k = 1, \dots, m$
- $\theta^{(k)}$ is meaningful if $k = (i, j) \in \mathcal{E}$
- θ_{ii} takes arbitrary value
- $p_{ij}(\theta) = p_{ij}(\theta_{ij})$

Secure-by-design consensus dynamics

Assume that decoding functions p_i , i = 1, ..., n, obey this rule:

$$[p_i(\theta)]_j = p_{ij}(\theta) = \begin{cases} w_{ij}, & (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

Secure-by-design consensus dynamics

Assume that decoding functions p_i , i = 1, ..., n, obey this rule:

$$[p_i(\theta)]_j = p_{ij}(\theta) = \begin{cases} w_{ij}, & (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

Then the nominal consensus protocol can be thus rewritten as

$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} p_{ij}(\theta) h_{ij}(\mathbf{x}), \quad i = 1, \dots, n$$

Secure-by-design consensus dynamics

Assume that decoding functions p_i , i = 1, ..., n, obey this rule:

$$[p_i(\theta)]_j = p_{ij}(\theta) = \begin{cases} w_{ij}, & (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

Then the nominal consensus protocol can be thus rewritten as

$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} p_{ij}(\theta) h_{ij}(\mathbf{x}), \quad i = 1, \dots, n$$

or, equivalently, setting $\mathbf{p} = \operatorname{vec}(p_i)$ and recalling that $\mathbf{H}(\mathbf{x}) = \operatorname{diag}(h_i(\mathbf{x}))$

$$\dot{\mathbf{x}} = -\mathbf{H}(\mathbf{x})\mathbf{p}(\theta)$$

Model for the channel tampering

Attack is a codeword deviation: $\delta^{\theta} \in \mathbf{\Delta}^{\theta} = \left\{ \delta^{\theta} : \left\| \delta^{\theta} \right\|_{\infty} \leq \bar{\delta}^{\theta} \right\}$

Model for the channel tampering

Attack is a codeword deviation: $\delta^{\theta} \in \mathbf{\Delta}^{\theta} = \{\delta^{\theta} : \|\delta^{\theta}\|_{\infty} \leq \bar{\delta}^{\theta}\}$

Model for the channel tampering

Attack is a codeword deviation: $\delta^{\theta} \in \mathbf{\Delta}^{\theta} = \{\delta^{\theta} : \|\delta^{\theta}\|_{\infty} \leq \bar{\delta}^{\theta}\}$

Then the perturbed consensus protocol (PCP) can be described by

$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} p_{ij}(\theta_{ij} + \delta_{ij}^{\theta}) h_{ij}(\mathbf{x}), \quad i = 1, \dots, n$$

where $\delta_{ij}^{\theta} = [\delta_i^{\theta}]_j$ and δ_i^{θ} satisfies $\delta^{\theta} = \operatorname{vec}(\delta_i^{\theta})$.

Channel tampering: multi-edge attack problem

<u>Problem</u>

Design p_{ij} such that the PCP reaches agreement

- \blacksquare independently from the value of θ
- while the MAS is subject to an attack δ^{θ} striking all the edges in \mathcal{E}_{Δ} , that is $\delta^{\theta}_{ij} = 0$ for all $(i, j) \in \mathcal{E} \setminus \mathcal{E}_{\Delta}$

Channel tampering: multi-edge attack problem

<u>Problem</u>

Design p_{ij} such that the PCP reaches agreement

- \blacksquare independently from the value of θ
- while the MAS is subject to an attack δ^{θ} striking all the edges in \mathcal{E}_{Δ} , that is $\delta^{\theta}_{ij} = 0$ for all $(i, j) \in \mathcal{E} \setminus \mathcal{E}_{\Delta}$

Moreover, provide resilience guarantees for a given perturbation set Δ^{θ} in terms of the maximum allowed magnitude (say ρ^{θ}_{Δ}) for the norm of δ^{θ} .

Further (crucial!) assumptions on the decoding functions:

Further (crucial!) assumptions on the decoding functions:

$$(i) \text{ values } [p_i(\theta)]_j = p_{ij}(\theta_{ij}), \text{ with } \theta_{ij} = [\theta_i]_j, \text{ satisfy}$$
$$p_{ij}(\theta) = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

for all $(i, j) \in \mathcal{E}$ and are **not constant** w.r.t. θ_{ij} .

Further (crucial!) assumptions on the decoding functions:

$$(i) \text{ values } [p_i(\theta)]_j = p_{ij}(\theta_{ij}), \text{ with } \theta_{ij} = [\theta_i]_j, \text{ satisfy}$$
$$p_{ij}(\theta) = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

for all $(i, j) \in \mathcal{E}$ and are **not constant** w.r.t. θ_{ij} .

(*ii*) $p_{ij}(\theta)$ is **concave** for all admissible θ

Further (crucial!) assumptions on the decoding functions:

$$(i) \text{ values } [p_i(\theta)]_j = p_{ij}(\theta_{ij}), \text{ with } \theta_{ij} = [\theta_i]_j, \text{ satisfy}$$
$$p_{ij}(\theta) = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

for all $(i, j) \in \mathcal{E}$ and are **not constant** w.r.t. θ_{ij} .

(*ii*) $p_{ij}(\theta)$ is **concave** for all admissible θ

(*iii*) p_{ij} is Lipschitz continuous and differentiable w.r.t. θ , implying $\exists K_{ij} \geq 0: |p'_{ij}(\theta_{ij})| \leq K_{ij}, \forall (i,j) \in \mathcal{E}$

Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting $K_{\Delta} := \max_{(u,v) \in \mathcal{E}_{\Delta}} \{K_{uv}\}$:

Theorem (Agreement of the PCP under single edge perturbation)

For an injection attack δ^θ on edge all the edges in \mathcal{E}_Δ the PCP achieves agreement if

$$\left\|\delta^{\theta}\right\|_{\infty} < \rho_{\Delta}^{\theta} = (K_{\Delta}\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}))^{-1},$$

independently from the values taken by any admissible codeword θ .

Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting $K_{\Delta} := \max_{(u,v) \in \mathcal{E}_{\Delta}} \{K_{uv}\}$:

Theorem (Agreement of the PCP under single edge perturbation)

For an injection attack δ^θ on edge all the edges in \mathcal{E}_Δ the PCP achieves agreement if

$$\left\|\delta^{\theta}\right\|_{\infty} < \rho_{\Delta}^{\theta} = (K_{\Delta}\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}))^{-1},$$

independently from the values taken by any admissible codeword θ .

<u>Sketch of the proof</u>: follows immediately from $\|\Delta^W\| < \mathcal{R}_{\mathcal{E}_\Delta}^{-1}(\mathcal{G})$. The three assumptions (i)-(iii) are sufficient and necessary to figure out the worst case scenario in which the absolute slope of each p_{uv} , $(u, v) \in \mathcal{E}_\Delta$, is maximum, i.e. the absolute slope reaches K_Δ for any given θ .

Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting $K_{\Delta} := \max_{(u,v) \in \mathcal{E}_{\Delta}} \{K_{uv}\}$:

Theorem (Agreement of the PCP under single edge perturbation)

For an injection attack δ^θ on edge all the edges in \mathcal{E}_Δ the PCP achieves agreement if

$$\left\|\delta^{\theta}\right\|_{\infty} < \rho_{\Delta}^{\theta} = (K_{\Delta}\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}))^{-1},$$

independently from the values taken by any admissible codeword θ .

<u>Sketch of the proof</u>: follows immediately from $\|\Delta^W\| < \mathcal{R}_{\mathcal{E}_\Delta}^{-1}(\mathcal{G})$. The three assumptions (i)-(iii) are sufficient and necessary to figure out the worst case scenario in which the absolute slope of each p_{uv} , $(u, v) \in \mathcal{E}_\Delta$, is maximum, i.e. the absolute slope reaches K_Δ for any given θ .

Up to minor changes this result is also valid for **discrete-time** consensus. 16 of 25

Further analysis and numerical results

A trade-off: information hiding vs robust stability

<u>Observation</u>: if $\mathcal{E}_{\Delta} = \{(u, v)\}$, the Lipschitz constant K_{uv} plays a crucial role in either improving information hiding or robust stability!

Considering $p_{uv}(\theta_{uv}) = b_{uv}\theta_{uv}$, the perturbation on θ_{uv} is directly "amplified" by $K_{uv} = |b_{uv}|$. Let's focus on this case.

A trade-off: information hiding vs robust stability

<u>Observation</u>: if $\mathcal{E}_{\Delta} = \{(u, v)\}$, the Lipschitz constant K_{uv} plays a crucial role in either improving information hiding or robust stability!

Considering $p_{uv}(\theta_{uv}) = b_{uv}\theta_{uv}$, the perturbation on θ_{uv} is directly "amplified" by $K_{uv} = |b_{uv}|$. Let's focus on this case.

• if K_{uv} increases then the image of $p_{uv} = b_{uv}\theta_{uv}$ reaches more values w.r.t. to some fixed neighborhood of θ_{uv}

$$K_{uv}$$
 then encrpytion capabilities of p_{uv}

A trade-off: information hiding vs robust stability

<u>Observation</u>: if $\mathcal{E}_{\Delta} = \{(u, v)\}$, the Lipschitz constant K_{uv} plays a crucial role in either improving information hiding or robust stability!

Considering $p_{uv}(\theta_{uv}) = b_{uv}\theta_{uv}$, the perturbation on θ_{uv} is directly "amplified" by $K_{uv} = |b_{uv}|$. Let's focus on this case.

• if K_{uv} increases then the image of $p_{uv} = b_{uv}\theta_{uv}$ reaches more values w.r.t. to some fixed neighborhood of θ_{uv}

$$K_{uv} \uparrow$$
 then encrpytion capabilities of p_{uv} \uparrow

 \bullet if K_{uv} increases then the value of $\rho_{uv}^{\theta}=(K_{uv}\mathcal{R}_{uv}(\mathcal{G}))^{-1}$ decreases

 K_{uv} then robust stability of PCP

The resilience gap

Let us define the quantities:

ntities:
$$\mathcal{R}_{\mathcal{E}_{\Delta}}^{\star}(\mathcal{G}) = \max_{(u,v)\in\mathcal{E}_{\Delta}} \{\mathcal{R}_{(u,v)}(\mathcal{G})\};$$
$$\mathcal{R}_{\mathcal{E}_{\Delta}}^{tot}(\mathcal{G}) = \operatorname{tr}\left[P^{\top}R_{(\mathcal{T},\mathcal{C})}^{\top}(R_{(\mathcal{T},\mathcal{C})}WR_{(\mathcal{T},\mathcal{C})}^{\top})^{-1}R_{(\mathcal{T},\mathcal{C})}P\}\right]$$

It is known that:

$$\mathcal{R}^{\star}_{\mathcal{E}_{\Delta}}(\mathcal{G}) \leq \mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) \leq \mathcal{R}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G})$$

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

The resilience gap

Let us define the quantities:

ntities:
$$\mathcal{K}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \max_{(u,v)\in\mathcal{E}_{\Delta}} \{\mathcal{K}_{(u,v)}(\mathcal{G})\};$$
$$\mathcal{R}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \operatorname{tr} \left[P^{\top} R^{\top}_{(\mathcal{T},\mathcal{C})} (R_{(\mathcal{T},\mathcal{C})} W R^{\top}_{(\mathcal{T},\mathcal{C})})^{-1} R_{(\mathcal{T},\mathcal{C})} P \} \right]$$

G

 (α)

 $\langle \alpha \rangle$

It is known that:

$$\mathcal{R}^{\star}_{\mathcal{E}_{\Delta}}(\mathcal{G}) \leq \mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) \leq \mathcal{R}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G})$$

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

The following ratio is named resilience gap

$$g(\mathcal{G}, \mathcal{E}_{\Delta}) = 1 - \frac{\mathcal{R}_{\mathcal{E}_{\Delta}}^{\star}(\mathcal{G})}{\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G})} \in [0, 1).$$

This quantity measures the **emerging amount of conservatism** related to the fact that multiple edges are under attack.

The resilience gap

Let us define the quantities:

ntities:
$$\mathcal{K}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \max_{(u,v)\in\mathcal{E}_{\Delta}} \{\mathcal{K}_{(u,v)}(\mathcal{G})\};$$
$$\mathcal{R}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \operatorname{tr} \left[P^{\top} R^{\top}_{(\mathcal{T},\mathcal{C})} (R_{(\mathcal{T},\mathcal{C})} W R^{\top}_{(\mathcal{T},\mathcal{C})})^{-1} R_{(\mathcal{T},\mathcal{C})} P \} \right]$$

G

 (α)

19 of 25

 $\langle \alpha \rangle$

It is known that:

$$\mathcal{R}^{\star}_{\mathcal{E}_{\Delta}}(\mathcal{G}) \leq \mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) \leq \mathcal{R}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G})$$

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

The following ratio is named resilience gap

$$g(\mathcal{G}, \mathcal{E}_{\Delta}) = 1 - \frac{\mathcal{R}_{\mathcal{E}_{\Delta}}^{\star}(\mathcal{G})}{\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G})} \in [0, 1).$$

This quantity measures the **emerging amount of conservatism** related to the fact that multiple edges are under attack.

Observation

$$\begin{array}{ll} \mathsf{if} & \mathsf{i} \end{pmatrix} |\mathcal{E}_{\Delta}| = 1, \ \mathsf{or} \\ \mathsf{ii} \end{pmatrix} 2 \leq |\mathcal{E}_{\Delta}| \leq n - 1 = |\mathcal{E}| \\ \end{array} \qquad \qquad \mathsf{then} \qquad g(\mathcal{G}, \mathcal{E}_{\Delta}) = 0 \\ \end{array}$$

Numerical simulations

Decoding function:
$$p_{\Delta}(\eta) = \begin{cases} K_{\Delta} \left(\frac{4}{13}\sqrt{\eta+1}+1\right), & \text{ if } \eta \geq 3; \\ K_{\Delta} \left(-\frac{2}{13}\eta^2+\eta\right), & \text{ if } 0 \leq \eta < 3; \\ K_{\Delta}\eta, & \text{ if } \eta < 0; \end{cases}$$

Edges under attack: $\mathcal{E}_1 = \{(1,2)\}, \quad \mathcal{E}_2 = \{(1,2), (3,5), (4,6)\}$ Couple of values for K_Δ : $K_1 = 2, \quad K_2 = 6$

Numerical simulations (cont'd)

Semi-autonomous network dynamics:

$$\dot{\mathbf{x}} = (L_B(\mathcal{G}) \otimes I_D)\mathbf{x} + (B \otimes I_D)\mathbf{u},$$

where $L_B(\mathcal{G}) = L(\mathcal{G}) + \operatorname{diag}(B1_{|\mathcal{V}_l|})$ and $B \in \mathbb{R}^{n \times |\mathcal{V}_l|}$ such that $[B]_{i\ell} > 0$, if agent *i* belongs to the leader set $\mathcal{V}_l = \{1\}$; $[B]_{i\ell} = 0$, otherwise. 21 of 25

Conclusions

Final remarks

- the secure-by-design consenus protocol rests on novel methods (e.g. network manager, objective coding, information localization) to preserve integrity, synchronization and performance of networks
- the previously devised single-edge attack case has been broadened to a scenario with multiple threats
- small-gain-theorem-based stability guarantees based on the effective resistance are given, which depend on both network topology and encryption system employed
- **trade-off** between information hiding & robust stability is discussed
- the **conservatism** arising from a multiplicity of threats is addressed
- future works: extending this approach to nonlinear consensus and formation control protocols

THANK YOU FOR YOUR ATTENTION

References

- J. Lunze, *Networked control of multi-agent systems*, Edition MoRa, 2019
- D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017
- M. Fabris and D. Zelazo, Secure Consensus via Objective Coding: Robustness Analysis to Channel Tampering, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022
- D.J. Klein and M. Randić, *Resistance distance*, Journal of Mathematical Chemistry, 1993
- M. Fabris, G. Michieletto and A. Cenedese, A General Regularized Distributed Solution for the System State Estimation from Relative Measurements, IEEE L-CSS, 2022
- A. Chapman, Semi-Autonomous Networks: Effective Control of Networked Systems through Protocols, Design, and Modeling, Springer, 2015