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Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information
system of an individual or organization.

Example of cyber-attacks target: networked control systems

MAS: set of agents situated in a shared environment, constituting a
networked control system having the purpose to attain a common task.

Distinctive features:

• distributed architecture
• autonomy
• scalability
• robustness to failure
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Graph-based network model
The secure smart networks under analysis are defined as n-agent systems

modeled through graph theoretical tools.

Notation

1

2

3

4
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10

10
1

10

weighted undirected graph: G = (V, E ,W), |V| = n, |E| = m

vertex set: V = {1, . . . , n}
edge set: E ⊆ V × V
i-th neighborhood: Ni = {j ∈ V \ {i} | (i, j) ∈ E}
a spanning tree: T ⊆ G
the cut-set matrix of G w.r.t. T and C = G \ T : R(T ,C)

weight on edge (i, j): wij ∈ R if (i, j) ∈ E
weight matrix: W s.t. [W ]kk = wij , k = (i, j)

incidence matrix: E ∈ Rn×m

weighted Laplacian matrix: L(G) = EWE⊤
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Weighted consensus protocol

• n homogeneous agents with dyanmic state xi = xi(t) ∈ RD, i = 1, . . . , n

• ensemble state: x = vecni=1(xi) ∈ X ⊂ RN , with N = nD

Definition (Weighted Consensus)

An n-agent network achieves consensus if limt→+∞ x(t) ∈ A, where
A = (span(1n)⊗ ω), ω ∈ RD, is called agreement set.

Proposition

For a MAS described by an undirected and connected graph G the network
state x driven by dynamics

ẋ = −L(G)x, with L(G) = L(G)⊗ ID,

fulfills weighted consensus.

5 of 25



Weighted consensus protocol

• n homogeneous agents with dyanmic state xi = xi(t) ∈ RD, i = 1, . . . , n

• ensemble state: x = vecni=1(xi) ∈ X ⊂ RN , with N = nD

Definition (Weighted Consensus)

An n-agent network achieves consensus if limt→+∞ x(t) ∈ A, where
A = (span(1n)⊗ ω), ω ∈ RD, is called agreement set.

Proposition

For a MAS described by an undirected and connected graph G the network
state x driven by dynamics
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Weighted consensus protocol: classic example

Rendez-vous, n = 5, D = 2.
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The Secure-by-Design
Consensus Protocol
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Edge weight encryption: motivations
Edge weight values affect convergence performances of consensus.
Practical motivations suggesting their encryption:

preserving privacy, in general;

ensuring performances of existing
applications, e.g. decentralized
estimation, opinion dynamics;

achieving synchronization for a
group of agents subject to Byzantine
attacks through learning-based control
techniques.

Application
plant

Controller/

Estimator

CONSENSUS

We want to embed edge weight encryption into
consensus networks and study the related robustness
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“Robustness” within consensus networks
Meaning: robust stability to small-magnitude perturbations altering the
agent dynamics

Ruv(G)

u v

u

v
δθuv

δθuv

Ruv(G)

δwuvδwuv

u v

u

v

Effective resistance (EF): Ruv(G) = [L†(G)]uu − 2[L†(G)]uv + [L†(G)]vv

Generalized EF w.r.t. the subset E∆ ⊆ E of uncertain edges:

RE∆(G) =
∥∥∥P⊤R⊤

(T ,C)(R(T ,C)WR⊤
(T ,C))

−1R(T ,C)P
∥∥∥

Uncertain consensus protocol: ẋ = −L(G∆W )x, where ∆W is a

(structured diagonal) disturbance and L(G∆W ) = E(W +∆W )E⊤

For the uncertainty ∆W on E∆ then robust consensus is guaranteed if∥∥∆W
∥∥ < R−1

E∆(G)
known small-gain
theorem result

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]
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Introduction of the network manager

One method to increase security among networks is adopting the so-called
network manager.

Network Manager

Networked System

attackAttacker

Network Manager

Networked System

The network manager

is not a global controller

is used to secure distributed
algorithms running on MASs

defines tasks: within consensus,
the task corresponds to
(encrypted) edge weight
selection

its goal is to guarantee robust
consensus convergence
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Objective coding and information localization

Objective coding: a task is described by an encoded parameter θ ∈ Rn2

called codeword. Decoding functions pi are used by agents to interpret θ.

Assumptions on the structure of

codeword and decoding functions:

• θ(k) := [θi]j = θij such that
• θij = θji, for k = 1, . . . ,m

• θ(k) is meaningful
• if k = (i, j) ∈ E
• θii takes arbitrary value

• pij(θ) = pij(θij)

Task

assignment

Task

encryption

Network
manager

Attack

+

δθ

θ θ + δθ

{pi(θ + δθ)}ni=1

E ⊗ ID E> ⊗ ID

∫ẋ x−

H(x)

Information localization: hij(x) := colj [hi(x)] =

{
xi − xj , (i, j) ∈ E
0D, otherwise

H(x) = diagni=1(hi(x))
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Secure-by-design consensus dynamics
Assume that decoding functions pi, i = 1, . . . , n, obey this rule:

[pi(θ)]j = pij(θ) =

{
wij , (i, j) ∈ E
0, otherwise

Then the nominal consensus protocol can be thus rewritten as

ẋi = − ∑
j∈Ni

pij(θ)hij(x), i = 1, . . . , n

or, equivalently, setting p = vec(pi) and recalling that H(x) = diag(hi(x))

ẋ = −H(x)p(θ)
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Model for the channel tampering

Attack is a codeword deviation: δθ ∈ ∆θ =
{
δθ :

∥∥δθ
∥∥
∞ ≤ δ̄θ

}

Network Manager

Networked System

Attacker

θ + δθ

pi(θi + δθi )

hi(x)

ẋi=
∑
j∈Ni

pij(θij + δθij)hij(x)

θ
θ

Attacker Network Manager

i

Then the perturbed consensus protocol (PCP) can be described by

ẋi = − ∑
j∈Ni

pij(θij + δθij)hij(x), i = 1, . . . , n

where δθij = [δθi ]j and δθi satisfies δθ = vec(δθi ).
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Channel tampering: multi-edge attack problem

Problem

Design pij such that the PCP reaches agreement

independently from the value of θ

while the MAS is subject to an attack δθ striking all the edges in E∆,
that is δθij = 0 for all (i, j) ∈ E \ E∆

Moreover, provide resilience guarantees for a given perturbation set ∆θ in
terms of the maximum allowed magnitude (say ρθ∆) for the norm of δθ.
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Robustness to channel tampering

Further (crucial!) assumptions on the decoding functions:

(i) values [pi(θ)]j = pij(θij), with θij = [θi]j , satisfy

pij(θ) =

{
wij , if (i, j) ∈ E
0, otherwise

for all (i, j) ∈ E and are not constant w.r.t. θij .

(ii) pij(θ) is concave for all admissible θ

(iii) pij is Lipschitz continuous and differentiable w.r.t. θ, implying

∃Kij ≥ 0: |p′ij(θij)| ≤ Kij , ∀(i, j) ∈ E
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Robustness to channel tampering (cont’d)
With the previous assumptions holding and setting K∆ := max

(u,v)∈E∆
{Kuv}:

Theorem (Agreement of the PCP under single edge perturbation)

For an injection attack δθ on edge all the edges in E∆ the PCP achieves
agreement if

∥∥δθ
∥∥
∞ < ρθ∆ = (K∆RE∆(G))−1,

independently from the values taken by any admissible codeword θ.

Sketch of the proof: follows immediately from
∥∥∆W

∥∥ < R−1
E∆(G).

The three assumptions (i)-(iii) are sufficient and necessary to figure out

the worst case scenario in which the absolute slope of each puv, (u, v) ∈ E∆,
is maximum, i.e. the absolute slope reaches K∆ for any given θ.

Up to minor changes this result is also valid for discrete-time consensus.
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Further analysis and
numerical results
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A trade-off: information hiding vs robust stability

Observation: if E∆ = {(u, v)}, the Lipschitz constant Kuv plays a crucial
role in either improving information hiding or robust stability!

Considering puv(θuv) = buvθuv, the perturbation on θuv is directly
“amplified” by Kuv = |buv|. Let’s focus on this case.

• if Kuv increases then the image of puv = buvθuv reaches more values

w.r.t. to some fixed neighborhood of θuv

Kuv then encrpytion capabilities of puv

• if Kuv increases then the value of ρθuv = (KuvRuv(G))−1 decreases

Kuv then encrpytion capabilities of puv

Kuv then robust stability of PCP
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The resilience gap

Let us define the quantities: R⋆
E∆(G) = max

(u,v)∈E∆
{R(u,v)(G)};

Rtot
E∆(G) = tr

[
P⊤R⊤

(T ,C)(R(T ,C)WR⊤
(T ,C))

−1R(T ,C)P}
]
.

It is known that:
R⋆

E∆(G) ≤ RE∆(G) ≤ Rtot
E∆(G)

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

The following ratio is named resilience gap

g(G, E∆) = 1−
R⋆

E∆(G)
RE∆(G)

∈ [0, 1).

This quantity measures the emerging amount of conservatism related to
the fact that multiple edges are under attack.

Observation

If
i) |E∆| = 1, or

ii) 2 ≤ |E∆| ≤ n− 1 = |E| then g(G, E∆) = 0
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Numerical simulations

1

1

3

2

2

12

3

4

5

6

Decoding function: p∆(η) =





K∆

(
4
13

√
η + 1 + 1

)
, if η ≥ 3;

K∆

(
− 2

13η
2 + η

)
, if 0 ≤ η < 3;

K∆η, if η < 0;

Edges under attack: E1 = {(1, 2)}, E2 = {(1, 2), (3, 5), (4, 6)}
Couple of values for K∆: K1 = 2, K2 = 6

LEADER / FOLLOWERS
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Numerical simulations (cont’d)

K∆ = K1 K∆ = K2

Semi-autonomous network dynamics:

ẋ = (LB(G)⊗ ID)x+ (B ⊗ ID)u,

where LB(G) = L(G) + diag(B1|Vl|) and B ∈ Rn×|Vl| such that [B]iℓ > 0,

if agent i belongs to the leader set Vl = {1}; [B]iℓ = 0, otherwise. 21 of 25



Conclusions
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Final remarks

the secure-by-design consenus protocol rests on novel methods
(e.g. network manager, objective coding, information localization) to
preserve integrity, synchronization and performance of networks

the previously devised single-edge attack case has been broadened to
a scenario with multiple threats

small-gain-theorem-based stability guarantees based on the
effective resistance are given, which depend on both network
topology and encryption system employed

trade-off between information hiding & robust stability is discussed

the conservatism arising from a multiplicity of threats is addressed

future works: extending this approach to nonlinear consensus and
formation control protocols
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