$62nd$ IEEE CONFERENCE ON DECISION AND CONTROL

A Robustness Analysis to Structured Channel Tampering over Secure-by-design Consensus Networks

Marco Fabris and Daniel Zelazo

December 13th, 2023

UNIVERSITÀ DEGLI STUDI DI PADOVA

Overview and preliminaries

Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information system of an individual or organization.

Example of cyber-attacks target: networked control systems

Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information system of an individual or organization.

Example of cyber-attacks target: networked control systems

MAS: set of agents situated in a shared environment, constituting a networked control system having the purpose to attain a common task.

Cyber-attacks and Multi-Agent Systems (MASs)

Cyber-attacks: malicious and deliberate attempts to breach the information system of an individual or organization.

Example of cyber-attacks target: networked control systems

MAS: set of agents situated in a shared environment, constituting a networked control system having the purpose to attain a common task.

Distinctive features:

- distributed architecture
- autonomy
- scalability
- robustness to failure

Centralized

Graph-based network model

The secure smart networks under analysis are defined as n -agent systems modeled through graph theoretical tools.

Notation

- **u** weighted undirected graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$, $|\mathcal{V}| = n$, $|\mathcal{E}| = m$
- vertex set: $\mathcal{V} = \{1, \ldots, n\}$
- \blacksquare edge set: $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- \blacksquare *i*-th neighborhood: $\mathcal{N}_i = \{j \in \mathcal{V} \setminus \{i\} \mid (i, j) \in \mathcal{E}\}\$
- **a** spanning tree: $\mathcal{T} \subseteq \mathcal{G}$
- **the cut-set matrix of G** w.r.t. T and $C = \mathcal{G} \setminus \mathcal{T}$: $R_{(\mathcal{T},\mathcal{C})}$
- weight on edge (i, j) : $w_{ij} \in \mathbb{R}$ if $(i, j) \in \mathcal{E}$
- **u** weight matrix: W s.t. $[W]_{kk} = w_{ij}$, $k = (i, j)$
- incidence matrix: $E \in \mathbb{R}^{n \times m}$
- weighted Laplacian matrix: $L(G) = EWE^\top$

Weighted consensus protocol

- n homogeneous agents with dyanmic state $x_i = x_i(t) \in \mathbb{R}^D$, $i = 1, \ldots, n$
- ensemble state: $\mathbf{x} = \text{vec}_{i=1}^n(x_i) \in X \subset \mathbb{R}^N$, with $N = nD$

Weighted consensus protocol

- n homogeneous agents with dyanmic state $x_i = x_i(t) \in \mathbb{R}^D$, $i = 1, \ldots, n$
- ensemble state: $\mathbf{x} = \text{vec}_{i=1}^n(x_i) \in X \subset \mathbb{R}^N$, with $N = nD$

Definition (Weighted Consensus)

An *n*-agent network achieves consensus if $\lim_{t\to+\infty} \mathbf{x}(t) \in \mathcal{A}$, where $\mathcal{A} = (\text{span}(\mathbb{1}_n) \otimes \omega)$, $\omega \in \mathbb{R}^D$, is called *agreement set*.

Weighted consensus protocol

- n homogeneous agents with dyanmic state $x_i = x_i(t) \in \mathbb{R}^D$, $i = 1, \ldots, n$
- ensemble state: $\mathbf{x} = \text{vec}_{i=1}^n(x_i) \in X \subset \mathbb{R}^N$, with $N = nD$

Definition (Weighted Consensus)

An *n*-agent network achieves consensus if $\lim_{t\to+\infty} \mathbf{x}(t) \in \mathcal{A}$, where $\mathcal{A} = (\text{span}(\mathbb{1}_n) \otimes \omega)$, $\omega \in \mathbb{R}^D$, is called *agreement set*.

Proposition

For a MAS described by an undirected and connected graph $\mathcal G$ the network state x driven by dynamics

$$
\dot{\mathbf{x}} = -\mathbf{L}(\mathcal{G})\mathbf{x}
$$
, with $\mathbf{L}(\mathcal{G}) = L(\mathcal{G}) \otimes I_D$,

fulfills weighted consensus.

Weighted consensus protocol: classic example

Rendez-vous, $n = 5$, $D = 2$.

The Secure-by-Design Consensus Protocol

Edge weight encryption: motivations

Edge weight values affect convergence performances of consensus. Practical motivations suggesting their encryption:

preserving privacy, in general;

- **Example 1** ensuring performances of existing applications, e.g. decentralized estimation, opinion dynamics;
- **achieving synchronization** for a group of agents subject to Byzantine attacks through learning-based control techniques.

Edge weight encryption: motivations

Edge weight values affect convergence performances of consensus. Practical motivations suggesting their encryption:

preserving privacy, in general;

- \blacksquare ensuring performances of existing applications, e.g. decentralized estimation, opinion dynamics;
- **achieving synchronization** for a group of agents subject to Byzantine attacks through learning-based control techniques.

We want to embed edge weight encryption into consensus networks and study the related robustness

Meaning: robust stability to small-magnitude perturbations altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$

Meaning: robust stability to small-magnitude perturbations altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\wedge} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T}, \mathcal{C})}^{\top} (R_{(\mathcal{T}, \mathcal{C})} W R_{(\mathcal{T}, \mathcal{C})}^{\top})^{-1} R_{(\mathcal{T}, \mathcal{C})} P \right\|$

Meaning: robust stability to small-magnitude perturbations altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\wedge} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T}, \mathcal{C})}^{\top} (R_{(\mathcal{T}, \mathcal{C})} W R_{(\mathcal{T}, \mathcal{C})}^{\top})^{-1} R_{(\mathcal{T}, \mathcal{C})} P \right\|$

Uncertain consensus protocol: $\dot{\mathbf{x}} = -L(\mathcal{G}_{\wedge W})\mathbf{x}$, where Δ^W is a (structured diagonal) disturbance and $L(G \wedge w) = E(W + \Delta^W)E^{\top}$

Meaning: robust stability to small-magnitude perturbations altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\wedge} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T}, \mathcal{C})}^{\top} (R_{(\mathcal{T}, \mathcal{C})} W R_{(\mathcal{T}, \mathcal{C})}^{\top})^{-1} R_{(\mathcal{T}, \mathcal{C})} P \right\|$

Uncertain consensus protocol: $\dot{\mathbf{x}} = -L(\mathcal{G}_{\wedge W})\mathbf{x}$, where Δ^W is a (structured diagonal) disturbance and $L(G \wedge w) = E(W + \Delta^W)E^{\top}$

For the uncertainty Δ^W on \mathcal{E}_{Δ} then **robust consensus** is guaranteed if $\left\Vert \Delta^{W}\right\Vert <\mathcal{R}_{\mathcal{E}_{\Delta}}^{-1}(\mathcal{G})$

Meaning: robust stability to small-magnitude perturbations altering the agent dynamics

Effective resistance (EF): $\mathcal{R}_{uv}(\mathcal{G}) = [L^{\dagger}(\mathcal{G})]_{uu} - 2[L^{\dagger}(\mathcal{G})]_{uv} + [L^{\dagger}(\mathcal{G})]_{vv}$ Generalized EF w.r.t. the subset $\mathcal{E}_{\wedge} \subseteq \mathcal{E}$ of uncertain edges:

 $\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \left\| P^{\top} R_{(\mathcal{T}, \mathcal{C})}^{\top} (R_{(\mathcal{T}, \mathcal{C})} W R_{(\mathcal{T}, \mathcal{C})}^{\top})^{-1} R_{(\mathcal{T}, \mathcal{C})} P \right\|$

Uncertain consensus protocol: $\dot{\mathbf{x}} = -L(\mathcal{G}_{\wedge W})\mathbf{x}$, where Δ^W is a (structured diagonal) disturbance and $L(G \wedge w) = E(W + \Delta^W)E^{\top}$

For the uncertainty Δ^W on \mathcal{E}_{Δ} then **robust consensus** is guaranteed if Π Δ^W $\parallel <\mathcal{R}^{-1}_{\mathcal{E}_\Delta}(\mathcal{G})$ known small-gain theorem result

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

Introduction of the network manager

One method to increase security among networks is adopting the so-called network manager.

The network manager

- \blacksquare is not a global controller
- **is used to secure distributed** algorithms running on MASs
- **defines tasks: within consensus,** the task corresponds to (encrypted) edge weight selection
- \blacksquare its goal is to guarantee robust consensus convergence

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called codeword. Decoding functions p_i are used by agents to interpret θ .

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called codeword. Decoding functions p_i are used by agents to interpret θ .

Assumptions on the structure of

codeword and decoding functions:

- \bullet $\theta^{(k)} := [\theta_i]_j = \theta_{ij}$ such that $\theta_{ij} = \theta_{ji}$, for $k = 1, \ldots, m$
- \bullet $\theta^{(k)}$ is meaningful if $k = (i, j) \in \mathcal{E}$
- \bullet θ_{ii} takes arbitrary value
- \bullet $p_{ij}(\theta) = p_{ij}(\theta_{ij})$

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called codeword. Decoding functions p_i are used by agents to interpret θ .

Assumptions on the structure of

codeword and decoding functions:

- \bullet $\theta^{(k)} := [\theta_i]_j = \theta_{ij}$ such that $\theta_{ij} = \theta_{ji}$, for $k = 1, \ldots, m$
- \bullet $\theta^{(k)}$ is meaningful if $k = (i, j) \in \mathcal{E}$
- θ_{ii} takes arbitrary value
- \bullet $p_{ij}(\theta) = p_{ij}(\theta_{ij})$

Objective coding: a task is described by an encoded parameter $\theta \in \mathbb{R}^{n^2}$ called codeword. Decoding functions p_i are used by agents to interpret θ .

Assumptions on the structure of

codeword and decoding functions:

- \bullet $\theta^{(k)} := [\theta_i]_j = \theta_{ij}$ such that $\theta_{ij} = \theta_{ji}$, for $k = 1, \ldots, m$
- \bullet $\theta^{(k)}$ is meaningful if $k = (i, j) \in \mathcal{E}$
- θ_{ii} takes arbitrary value

 \bullet $p_{ij}(\theta) = p_{ij}(\theta_{ij})$

Information localization: $h_{ij}(\mathbf{x}) := \text{col}_j[h_i(\mathbf{x})] = \begin{cases} x_i - x_j, & (i, j) \in \mathcal{E} \\ 0, & (i, j) \in \mathcal{E} \end{cases}$ $\mathbf{H}(\mathbf{x}) = \text{diag}_{i=1}^n (h_i(\mathbf{x})) \begin{cases} \mathbf{0}_D, & \text{otherwise} \end{cases}$
11 of 25

Secure-by-design consensus dynamics

Assume that decoding functions $p_i, \, i=1,\ldots,n,$ obey this rule:

$$
[p_i(\theta)]_j = p_{ij}(\theta) = \begin{cases} w_{ij}, & (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}
$$

Secure-by-design consensus dynamics

Assume that decoding functions $p_i, \, i=1,\ldots,n,$ obey this rule:

$$
[p_i(\theta)]_j = p_{ij}(\theta) = \begin{cases} w_{ij}, & (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}
$$

Then the **nominal consensus protocol** can be thus rewritten as

$$
\dot{x}_i = -\sum_{j \in \mathcal{N}_i} p_{ij}(\theta) h_{ij}(\mathbf{x}), \quad i = 1, \dots, n
$$

Secure-by-design consensus dynamics

Assume that decoding functions $p_i, \, i=1,\ldots,n,$ obey this rule:

$$
[p_i(\theta)]_j = p_{ij}(\theta) = \begin{cases} w_{ij}, & (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}
$$

Then the nominal consensus protocol can be thus rewritten as

$$
\dot{x}_i = -\sum_{j \in \mathcal{N}_i} p_{ij}(\theta) h_{ij}(\mathbf{x}), \quad i = 1, \dots, n
$$

or, equivalently, setting $\mathbf{p} = \text{vec}(p_i)$ and recalling that $\mathbf{H}(\mathbf{x}) = \text{diag}(h_i(\mathbf{x}))$

$$
\dot{\mathbf{x}} = -\mathbf{H}(\mathbf{x})\mathbf{p}(\theta)
$$

Model for the channel tampering

Attack is a codeword deviation: $\delta^\theta \in \bm{\Delta}^\theta = \left\{\delta^\theta \ : \ \left\|\delta^\theta\right\|_\infty \leq \bar{\delta}^\theta\right\}$

Model for the channel tampering

Attack is a codeword deviation: $\delta^\theta \in \bm{\Delta}^\theta = \left\{\delta^\theta \ : \ \left\|\delta^\theta\right\|_\infty \leq \bar{\delta}^\theta\right\}$

Model for the channel tampering

Attack is a codeword deviation: $\delta^\theta \in \bm{\Delta}^\theta = \left\{\delta^\theta \ : \ \left\|\delta^\theta\right\|_\infty \leq \bar{\delta}^\theta\right\}$

Then the perturbed consensus protocol (PCP) can be described by

$$
\dot{x}_i = -\sum_{j \in \mathcal{N}_i} p_{ij} (\theta_{ij} + \delta_{ij}^{\theta}) h_{ij}(\mathbf{x}), \quad i = 1, \dots, n
$$

where $\delta_{ij}^{\theta}=[\delta_{i}^{\theta}]_{j}$ and δ_{i}^{θ} satisfies $\delta^{\theta}=\mathrm{vec}(\delta_{i}^{\theta}).$

13 of 25

Channel tampering: multi-edge attack problem

Problem

Design p_{ij} such that the PCP reaches agreement

- \blacksquare independently from the value of θ
- while the MAS is subject to an attack δ^{θ} striking all the edges in \mathcal{E}_{Δ} , that is $\delta_{ij}^\theta=0$ for all $(i,j)\in\mathcal{E}\setminus\mathcal{E}_{\Delta}$

Channel tampering: multi-edge attack problem

Problem

Design p_{ij} such that the PCP reaches agreement

- \blacksquare independently from the value of θ
- while the MAS is subject to an attack δ^{θ} striking all the edges in \mathcal{E}_{Δ} , that is $\delta_{ij}^\theta=0$ for all $(i,j)\in\mathcal{E}\setminus\mathcal{E}_{\Delta}$

Moreover, provide resilience guarantees for a given perturbation set $\boldsymbol{\Delta}^{\theta}$ in terms of the maximum allowed magnitude (say ρ^{θ}_{Δ}) for the norm of $\delta^{\theta}.$

Further (crucial!) assumptions on the decoding functions:

Further (crucial!) assumptions on the decoding functions:

$$
(i) \text{ values } [p_i(\theta)]_j = p_{ij}(\theta_{ij}), \text{ with } \theta_{ij} = [\theta_i]_j, \text{ satisfy}
$$

$$
p_{ij}(\theta) = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}
$$

for all $(i, j) \in \mathcal{E}$ and are **not constant** w.r.t. θ_{ij} .

Further (crucial!) assumptions on the decoding functions:

$$
(i) \text{ values } [p_i(\theta)]_j = p_{ij}(\theta_{ij}), \text{ with } \theta_{ij} = [\theta_i]_j, \text{ satisfy}
$$

$$
p_{ij}(\theta) = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}
$$

for all $(i, j) \in \mathcal{E}$ and are **not constant** w.r.t. θ_{ij} .

(*ii*) p_{ij} (θ) is **concave** for all admissible θ

Further (crucial!) assumptions on the decoding functions:

$$
(i) \text{ values } [p_i(\theta)]_j = p_{ij}(\theta_{ij}), \text{ with } \theta_{ij} = [\theta_i]_j, \text{ satisfy}
$$

$$
p_{ij}(\theta) = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}
$$

for all $(i, j) \in \mathcal{E}$ and are **not constant** w.r.t. θ_{ij} .

(*ii*) $p_{ij}(\theta)$ is **concave** for all admissible θ

(iii) p_{ij} is Lipschitz continuous and differentiable w.r.t. θ , implying $\exists K_{ij} \geq 0: |p'_{ij}(\theta_{ij})| \leq K_{ij}, \forall (i,j) \in \mathcal{E}$

Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting $K_{\Delta}:=\max\limits_{(u,v)\in\mathcal{E}_{\Delta}}\{K_{uv}\}$:

Theorem (Agreement of the PCP under single edge perturbation)

For an injection attack δ^θ on edge all the edges in \mathcal{E}_Δ the PCP achieves agreement if

$$
\left\|\delta^{\theta}\right\|_{\infty} < \rho_{\Delta}^{\theta} = (K_{\Delta} \mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}))^{-1},
$$

independently from the values taken by any admissible codeword θ .

Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting $K_{\Delta}:=\max\limits_{(u,v)\in\mathcal{E}_{\Delta}}\{K_{uv}\}$:

Theorem (Agreement of the PCP under single edge perturbation)

For an injection attack δ^θ on edge all the edges in \mathcal{E}_Δ the PCP achieves agreement if

$$
\left\|\delta^{\theta}\right\|_{\infty} < \rho_{\Delta}^{\theta} = (K_{\Delta} \mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}))^{-1},
$$

independently from the values taken by any admissible codeword θ .

Sketch of the proof: follows immediately from $\left\| \Delta^W \right\| < \mathcal{R}^{-1}_{\mathcal{E}_{\Delta}}(\mathcal{G}).$ The three assumptions $(i)-(iii)$ are sufficient and necessary to figure out the worst case scenario in which the absolute slope of each p_{uv} , $(u, v) \in \mathcal{E}_{\Delta}$, is maximum, i.e. the absolute slope reaches K_{Δ} for any given θ .

Robustness to channel tampering (cont'd)

With the previous assumptions holding and setting $K_{\Delta}:=\max\limits_{(u,v)\in\mathcal{E}_{\Delta}}\{K_{uv}\}$:

Theorem (Agreement of the PCP under single edge perturbation)

For an injection attack δ^θ on edge all the edges in \mathcal{E}_Δ the PCP achieves agreement if

$$
\left\|\delta^{\theta}\right\|_{\infty} < \rho_{\Delta}^{\theta} = (K_{\Delta} \mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G}))^{-1},
$$

independently from the values taken by any admissible codeword θ .

Sketch of the proof: follows immediately from $\left\| \Delta^W \right\| < \mathcal{R}^{-1}_{\mathcal{E}_{\Delta}}(\mathcal{G}).$ The three assumptions $(i)-(iii)$ are sufficient and necessary to figure out the worst case scenario in which the absolute slope of each p_{uv} , $(u, v) \in \mathcal{E}_{\Delta}$, is maximum, i.e. the absolute slope reaches K_{Δ} for any given θ .

Up to minor changes this result is also valid for **discrete-time** consensus. 16 of 25

Further analysis and numerical results

A trade-off: information hiding vs robust stability

Observation: if $\mathcal{E}_{\Delta} = \{(u, v)\}\$, the Lipschitz constant K_{uv} plays a crucial role in either improving information hiding or robust stability!

Considering $p_{uv}(\theta_{uv}) = b_{uv}\theta_{uv}$, the perturbation on θ_{uv} is directly "amplified" by $K_{uv} = |b_{uv}|$. Let's focus on this case.

A trade-off: information hiding vs robust stability

Observation: if $\mathcal{E}_{\Delta} = \{(u, v)\}\$, the Lipschitz constant K_{uv} plays a crucial role in either improving information hiding or robust stability!

Considering $p_{uv}(\theta_{uv}) = b_{uv}\theta_{uv}$, the perturbation on θ_{uv} is directly "amplified" by $K_{uv} = |b_{uv}|$. Let's focus on this case.

• if K_{uv} increases then the image of $p_{uv} = b_{uv}\theta_{uv}$ reaches more values w.r.t. to some fixed neighborhood of θ_{uv}

$$
K_{uv}
$$
 \uparrow then encryption capabilities of p_{uv}

A trade-off: information hiding vs robust stability

Observation: if $\mathcal{E}_{\Delta} = \{(u, v)\}\$, the Lipschitz constant K_{uv} plays a crucial role in either improving information hiding or robust stability!

Considering $p_{uv}(\theta_{uv}) = b_{uv}\theta_{uv}$, the perturbation on θ_{uv} is directly "amplified" by $K_{uv} = |b_{uv}|$. Let's focus on this case.

• if K_{uv} increases then the image of $p_{uv} = b_{uv}\theta_{uv}$ reaches more values w.r.t. to some fixed neighborhood of θ_{uv}

$$
K_{uv} \uparrow
$$
 then encryption capabilities of p_{uv}

 \bullet if K_{uv} increases then the value of $\rho^\theta_{uv} = (K_{uv}\mathcal{R}_{uv}(\mathcal{G}))^{-1}$ decreases

 K_{uv} then robust stability of PCP

The resilience gap

Let us define the quantit

ntities:
$$
\mathcal{R}^{\star}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \max_{(u,v) \in \mathcal{E}_{\Delta}} \{ \mathcal{R}_{(u,v)}(\mathcal{G}) \};
$$

$$
\mathcal{R}^{tot}_{\mathcal{E}_{\Delta}}(\mathcal{G}) = \text{tr} \left[P^{\top} R^{\top}_{(\mathcal{T},\mathcal{C})}(R_{(\mathcal{T},\mathcal{C})}WR^{\top}_{(\mathcal{T},\mathcal{C})})^{-1}R_{(\mathcal{T},\mathcal{C})}P \} \right].
$$

It is known that:

$$
\mathcal{R}^\star_{\mathcal{E}_\Delta}(\mathcal{G}) \leq \mathcal{R}_{\mathcal{E}_\Delta}(\mathcal{G}) \leq \mathcal{R}^\text{tot}_{\mathcal{E}_\Delta}(\mathcal{G})
$$

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

The resilience gap

Let us define the quantities:

$$
\begin{aligned}\n\text{ntities:} \qquad & \mathcal{R}_{\mathcal{E}_{\Delta}}^{\star}(\mathcal{G}) = \max_{(u,v)\in\mathcal{E}_{\Delta}} \{ \mathcal{R}_{(u,v)}(\mathcal{G}) \}, \\
\mathcal{R}_{\mathcal{E}_{\Delta}}^{tot}(\mathcal{G}) &= \text{tr}\left[P^{\top} R_{(\mathcal{T},\mathcal{C})}^{\top} (R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^{\top})^{-1} R_{(\mathcal{T},\mathcal{C})} P \} \right].\n\end{aligned}
$$

It is known that:

$$
\mathcal{R}^\star_{\mathcal{E}_\Delta}(\mathcal{G}) \leq \mathcal{R}_{\mathcal{E}_\Delta}(\mathcal{G}) \leq \mathcal{R}^{tot}_{\mathcal{E}_\Delta}(\mathcal{G})
$$

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

The following ratio is named *resilience gap*

$$
g(\mathcal{G}, \mathcal{E}_{\Delta}) = 1 - \frac{\mathcal{R}_{\mathcal{E}_{\Delta}}^{\star}(\mathcal{G})}{\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G})} \in [0, 1).
$$

This quantity measures the **emerging amount of conservatism** related to the fact that multiple edges are under attack.

The resilience gap

Let us define the quantities:

$$
\begin{aligned}\n\text{ntities:} \qquad & \mathcal{R}_{\mathcal{E}_{\Delta}}^{\star}(\mathcal{G}) = \max_{(u,v)\in\mathcal{E}_{\Delta}} \{ \mathcal{R}_{(u,v)}(\mathcal{G}) \}, \\
\mathcal{R}_{\mathcal{E}_{\Delta}}^{tot}(\mathcal{G}) &= \text{tr}\left[P^{\top} R_{(\mathcal{T},\mathcal{C})}^{\top} (R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^{\top})^{-1} R_{(\mathcal{T},\mathcal{C})} P \} \right].\n\end{aligned}
$$

It is known that:

$$
\mathcal{R}^\star_{\mathcal{E}_\Delta}(\mathcal{G}) \leq \mathcal{R}_{\mathcal{E}_\Delta}(\mathcal{G}) \leq \mathcal{R}^\text{tot}_{\mathcal{E}_\Delta}(\mathcal{G})
$$

[D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017]

The following ratio is named *resilience gap*

$$
g(\mathcal{G}, \mathcal{E}_{\Delta}) = 1 - \frac{\mathcal{R}_{\mathcal{E}_{\Delta}}^{\star}(\mathcal{G})}{\mathcal{R}_{\mathcal{E}_{\Delta}}(\mathcal{G})} \in [0, 1).
$$

This quantity measures the **emerging amount of conservatism** related to the fact that multiple edges are under attack.

Observation

If\ni)
$$
|\mathcal{E}_{\Delta}| = 1
$$
, or\nii) $2 \leq |\mathcal{E}_{\Delta}| \leq n - 1 = |\mathcal{E}|$ \nthen\n $g(\mathcal{G}, \mathcal{E}_{\Delta}) = 0$

Numerical simulations

Decoding function:
$$
p_{\Delta}(\eta) = \begin{cases} K_{\Delta} \left(\frac{4}{13} \sqrt{\eta + 1} + 1 \right), & \text{if } \eta \geq 3; \\ K_{\Delta} \left(-\frac{2}{13} \eta^2 + \eta \right), & \text{if } 0 \leq \eta < 3; \\ K_{\Delta} \eta, & \text{if } \eta < 0; \end{cases}
$$

Edges under attack: $\mathcal{E}_1 = \{(1,2)\}, \quad \mathcal{E}_2 = \{(1,2), (3,5), (4,6)\}\$ Couple of values for K_{Δ} : $K_1 = 2$, $K_2 = 6$

Numerical simulations (cont'd)

Semi-autonomous network dynamics:

$$
\dot{\mathbf{x}} = (L_B(\mathcal{G}) \otimes I_D)\mathbf{x} + (B \otimes I_D)\mathbf{u},
$$

where $L_B(\mathcal{G})=L(\mathcal{G})+\text{diag}(B1\!\!1_{|\mathcal{V}_l|})$ and $B\in\mathbb{R}^{n\times|\mathcal{V}_l|}$ such that $[B]_{i\ell}>0,$ if agent i belongs to the leader set $V_l = \{1\}$; $[B]_{il} = 0$, otherwise. 21 of 25

Conclusions

Final remarks

- the secure-by-design consenus protocol rests on novel methods (e.g. network manager, objective coding, information localization) to preserve integrity, synchronization and performance of networks
- **the previously devised single-edge attack case has been broadened to** a scenario with multiple threats
- **small-gain-theorem-based stability guarantees** based on the effective resistance are given, which depend on both network topology and encryption system employed
- **trade-off** between information hiding & robust stability is discussed
- **the conservatism** arising from a multiplicity of threats is addressed
- **future works**: extending this approach to nonlinear consensus and formation control protocols

THANK YOU FOR YOUR **ATTENTION**

References

- **J.** Lunze, Networked control of multi-agent systems, Edition MoRa, 2019
- D. Zelazo and M. Bürger, On the Robustness of Uncertain Consensus Networks, TCNS, 2017
- M. Fabris and D. Zelazo, Secure Consensus via Objective Coding: Robustness Analysis to Channel Tampering, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022
- D.J. Klein and M. Randić, Resistance distance, Journal of Mathematical Chemistry, 1993
- M. Fabris, G. Michieletto and A. Cenedese, A General Regularized Distributed Solution for the System State Estimation from Relative Measurements, IEEE L-CSS, 2022
- A. Chapman, Semi-Autonomous Networks: Effective Control of Networked Systems through Protocols, Design, and Modeling, Springer, 2015