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Why a tutorial on graph theory in systems and control?
networks are all around us
this trend will continue, e.g., internet of things, next generation mobility

networked robotics and aerospace systems will play an ever increasing role
in the society at all levels

system and control theory can play a significant role in this new era of
networked systems ...

however, we need to start blending in combinatorial /discrete mathematics
in mainstream control theory even more ...

This tutorial is framed around this objective ...
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networked systems are coupled through information exchange
inter-agent information exchange is through sensing and communication
the collective dynamics is a function of "agent” dynamics and the
information-induced coupling

we can synthesize collective behavior by making the control action on each
agent a function of the information available to the agent (sense,
communicated, etc.)

a powerful abstraction for encoding “interactions” in a network
is that of a graph
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a finite, undirected, simple graph, or a graph for short, is built upon a finite
set of "nodes” or vertex set V = {vi,va,...,v,}
the edge set is a subset of the two-element subsets of V, i.e., £ C [V]
the graph is then specified by G = (V,€)

for example, we can have G = (V,&) where

V={1,2,3} and &={{1,2},{2,3}}

2

a simpler representation
however would be 2

3
Some natural constructs based on the correspondence between set theoretic and
graph-theoretic representation can now be defined— examples: paths, walks,
cycles, etc.
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a path a cycle a walk

graphs can be used in general to encode relations between objects, e.g.,
existence of communication or sensing links, routes, etc.
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Birth of Graph Theory

bridges of Konigsberg and Euler’s abstraction:

this is an important step, as it stripes away all particular details related to the
Konigsberg bridges that are not relevant to the problem at hand! so now we
have a graph! what are we looking for now? We want to find out if there is a
closed walk traversing all edges of the graph exactly once. If such a walk exists
we call the graph Eulerian.

Theorem J

A connected graph G is Eulerian if and if only every vertex has an even degree.
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As we aim to embed graph/networks in dynamic systems, it is natural to work
with linear algebraic representation. For example, a graph can be represented as,

U4

o /\

U3

A(G) =

S O = O
_—= O =
_ O = O
O = = O

U2
the adjacency matrix for the n-node graph G = (V,€) is the n x n matrix:

1 if viv;€E,
0 otherwise.

A= {
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note that the adjacency for the graph is symmetric by construction
there are other matrices associated with the graph, for example, let d(v) be the
number of neighbors of vertex v (its degree) and define the degree matrix as,

dvi) 0 0
( 0 d(vy) - 0 \
A(G) =

\ 0 0 d(vn) )
note that the adjacency and the degree matrices are both square, say, n x n,

where n is the number of nodes

Another useful matrix representation is the Laplacian:

graph Laplacian has been very popular in multiagent networks!
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Yet another matrix representation can in fact capture the orientation of the

edge as well: suppose the graph has n nodes and m edges: the n x m incidence
matrix E(G) is defined as

—1 if v; is the tail of e;,
E(G)=[Eij], where E;j=<¢ 1 if v; is the head of ej,
0 otherwise.

g \ [ -1 -1 0

U1 v L O 1 O

o | EG =11 o 1

o | 0 0 -1

note that for different orientations on the edges we get a different incidence
matrix! (same dimension though!)

Let us see what happens when we consider E(G)E(G)! for some arbitrary
orientation. First notice that the resulting matrix will be n X n.
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A compact formula for matrix multiplication is of course:

[ABi; =Y AyBy;
k

[E(G) M= ZE )iE(G

which is —1 when i and j are incident on the same edge k, that is if they are
neighbors! Moreover,

[lf ll — }E::«lz lkslz

counts the number of edges incident on node i, i.e., its degree! so guess what:

L(G) =E(9)E(G)"

independent of the orientation that you have given to the incidence matrix!
This also shows that L(G) is positive semi-definite, since for all x € R™:

X' L(G)x =x"E(G)E(G) x=|E(G)" x> 20

which means that not only are the eigenvalues of the Laplacian real numbers (as

the Laplacian is symmetric) but also non-negative
Mehran Mesbabhi
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For Laplacian, we can order the eigenvalues as follows,

0<A(G) <A@ <..4(9);

in this case, Ay refers to the kth smallest eigenvalue of the (graph) Laplacian ...

By construction, L(G)1 =0 for any graph (why?). So 4,(G) =0.
A natural question (with many consequences) is whether A;(G) > 07

In other words, we need to characterize the null space of L(G):
N(L(G)) = {z e R*|L(G)z = 0}

What are the vectors in N (L(G)) except the subspace generated by 1,
namely,

A={x|x=0ol, a € R}
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in order to answer this question, notice that if z€ N(L(G)), then
L(G)z=E(G)E(G)'z=0

that is,

Z'E(G)EG)z=0
or |[E(G)Tz]|>=0o0r E(G)'z=0 or z' E(G) = 0. This means that if ij € E, then
zi = zj; so if the graph is connected,

U=202=...=n

that is z= o1 for some a! And in fact, if we think of z as

z:V(G) - R"
then z is constant on each (connected) component of G. What that means is
that for each component we get one extra dimension for the null space of L(G).
Lemma

Let G have ¢ connected components (when ¢ = 1 the graph is connected). Then
rank L(G) is n—c.
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and in fact, rank L(G) =n—1 if and only if G is connected! this is our first
encounter with how the “linear algebra” of the Laplacian tells us something
about the structure of the graph.

another way to say the same thing is that

G is connected if and only if 1,(G) >0

a natural question now is whether more positive A, captures some qualitative
notion of "more” connectivity? For example, we can define the node
connectivity of G, denoted by kp(G) as the minimum number of nodes that
needs to be removed from the graph before the graph becomes disconnected.

Courant-Fisher to the rescue:

(G)= min x'L(G)x
x11)||x||=1

So this means that

(G) <x"L(G)x forallx L1,||x||=1
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Let us consider removing S C V' (subset of nodes) from the graph G =

denote the Laplacian of this new graph as L(G\S).

Let y be the normalized eigenvector corresponding to A>(G\S):

L(G\S)y =2A(G\S)y; Ihll=1y L1
Now define the vector
“[3]

note that ||z|| =1 and z L 1; as such A,(G) < z'L(G)z. That is,

hG)< ) )+ Y @-2)+Y Y (z -

quE(Q\S) quEQS ueSveg\S 0

7

-~

0
SO,

22(G) < M (G\S)+ ) 1 =21(G\S) +S]

ucesS
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Okay! Now suppose that S is chosen as the cutset corresponding to ko (G).
Then A,(G\S) =0 and

2(9) < x0(9)
Upshot: 1,(G) is a lower bound for node connectivity!
The bound is actually tight, for example 15(Cy) = kp(C4) =2

summary so far:
L(G) =E(9)E(G)' =A(9) —A(9)
L(G) is positive semidefinite
A2(G) > 0 iff G is connected
A2(G) is a measure of connectivity

Oh ... one last thing: trace of any matrix is the sum of its eigenvalues, so

traceL(G Zd vi) =2|E(G)]
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Complete Graph

It would be good to develop some intuition for spectra of graphs, and in
particular their dependencies on n, if any. Of course we have to start with the
complete graph on n nodes, denoted by K,:

n—1
—1
L(Kn) —

—1

—1
n—1

—1

—1

—1
—1

—1

—1
—1

n—1

—nl —117

as always, A;(K;) =0 and u; = 1/+/n. The other eigenvectors, generically
denoted by x for now, can chosen to be orthogonal to 1. So

L(K)x= (n —117)x = Ax

Hence for all these eigenvectors

The spectrum of L(K,) is thus

0,n,n,...n; check that
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2(1 —cos2kn/n), k=0,1,...n—1

2(1 —coskm/n), k=0,1,...n—1

n—?2 eigenvalues of 1, one eigenvalue of
zero (as always) and last one is
2n—1)—(n—2)=n
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so far, graphs and some linear algebra, spectra vs. structure, and examples on
how to find the spectra in closed form for certain classes of graphs. We now
what to see how this machinery actually helps us understand dynamics on
networks

Our Action Plan is as follows:
we start with a baseline dynamics/distributed algorithm called consensus
we relate consensus behavior to structure of the graph
this setup can then be extended to directed graphs

We then move on to show that this distributed algorithm can be used in many
different context to do very useful distributed tasks for us

However, it is important to note that the same line of research could
have been pursued with a different baseline/distributed protocol or view
completely from the perspective of patterned matrices independent of
particular protocol!
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Network in the Dynamics- general setup

» Graph G is composed of physical nodes V and coupling edges &

» Node i acquires information from the set of its neighbors N (i)

> Node i has a state x;(r) and neighbor information I;(r) = {x;(r)|j € N'(i)}

» Provides a naturally distributed dynamics over ¢

%i(t) = fi(xi(2),Li(t))

» some of the earlier works in distributed decision-making include: DeGroot
('74), Borkar and Varaiya ('82), Tsitsiklis ('84) ...
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Consensus Model
%) ==Y wij(xi(t) —x;(1))
JEN(i)
~ x(t) = —L(G)x(t)

where L(G) is the (weighted) Laplacian
matrix.

(@t=0

(b) t =04

v

‘(

(¢)t =08

dt=18

appears in: flocking, formation control, opinion dynamics, energy systems,

synchronization, distributed estimation, distributed optimization, among

many others!

Let us examine the convergence of the algorithm a bit more ... in terms of the

graph structure. We will assume that w;; =1 for this purpose, although our

observations generalize seamlessly to weighted graphs

Mehran Mesbahi
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Let us consider consensus on undirected networks ... spectral factorization of
the Laplacian is of the form

L(G)=UAU"

where

A0 0 ]

0 A 0
U=[u u - uy, ] and A= .

0 0 A |

as such,
x(t) = e H9x(0) =Ue M UTx(0)

= u] x(0)uy 4+ e 2] x(0) ur 4 .. .4 M) x(0) uy,
so if the graph is connected (noting that u; =1/+/n)

17 x(0)

1 at a rate proportional to A,(G)!

x(t) —
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in fact,

I = HZe " x(0) u

o;

n
= YeMal<(n-1) B et
i=2 N~~~

max; | o]

T
so if we want ||x(7) — WH < & for some € > 0, then we need

B(n—1) 1
T}/AZ(Q)“ WQ)

t > {In

higher algebraic connectivity directly translates to faster convergence (in a linear
way)!
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some observations:

Recall that A;(P,) = 2(1 —coskn/n), A2(C,) =2(1 —cos2km/n),
Az(Sn) = 1, and lz(Kn) =n

what this means is that as n — o, the rate of convergence for P, and C,
goes to zero!

in the meantime, the rate of convergence for K, grows linearly with n

however, the number of edges for P,, C,, grow linearly with n but for K, the
number of edges is O(n?)!

this thread of thought leads to the area of graph synthesis
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as a distributed subroutine for mixing
including the right inputs to consensus (not just driven by initial conditions)

consensus with nonlinear and/or state-dependent weights (used in
preserving connectivity in distributed robotics)

consensus with negative, complex-valued, and matrix weights
consensus across scales

consensus with security and privacy considerations
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Structural Stability of Linear Time-Invariant

Systems
Graph Theory in Systems and Controls: part 2

M.-A. Belabbas

LUniversity of lllinois at Urbana-Champaign
Electrical and Computer Engineering
Coordinated Science Laboratory

Conference on Decision and Control, 2018
Miami Beach, FL, USA
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Z1
d i)
dt |x3
_x4

all
0

asi

| 0

0 0 a14 s}
0 ags ags| |x2
0 as9 0 I3
a420 0 CL44_ _2174

Does there exist values of the a;;’s that yield asymptotically stable

dynamics? If so, we call the system structurally stable.

Does there exist values of the a;;'s and b;’s that yield controllable

dynamics? If so, we call the system structurally controllable.

Recall: Linear time-invariant dynamics is asymptotically stable iff

the eigevalues of the system matrix have strictly negative real parts.

Graph theory is the natural framework to study structural stability.

M.-A. Belabbas (University of lllinois)

Strcutural Stability

CDC18
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* entries are arbitrary real

0 entries are fixed to zero

N
I
¥ OO % O

* ¥ X ¥ O
O *x O % %

S % Xk ¥ X

OO O O ¥

Definition (Zero-pattern (ZP))

Set E;; to be the n x n matrix with all entries 0 except for the ¢jth one,
which is 1. We call a zero pattern a vector space Z of matrices

A= Z aijEz-j.

(i,7)EN

Does the ZP contain stable (Hurwitz) matrices?

We call a ZP that contains Hurwitz matrices stable
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Think of a ZP as an adjacency matrix with

00— 0

* — 1

There is a bijection between zero patterns Z and digraphs
G=(V,E)withV ={vy,...,v,} and E = N.

* 00 x 0 as1 aqs

« 00 0 0

0 « 00 0 w1 e ()

0 0 * O * a21é2> aq3
L+ 00 0 @

We call a graph Hurwitz or stable if the corresponding ZP is stable.

How to determine if a graph is Hurwitz? How to create
Hurwitz graphs?
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x % 0
x 0 =*
x 0 0
0 0 =«
x 0 0

M.-A. Belabbas (University of lllinois)

O O *x OO

O *x O O O
* O % O *

Which graph is stable?

Strcutural Stability

oSO O O *

S OO x O

* O * O O

O % O O *

CDC18
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Lemma

A digraph G is stable only if every strongly connected component has a
node with a self-loop

ﬁ\ Not stable: the strongly connected component
G———8 {2, 3} has no nodes with a self-loop.

This is not the end of the story...

S : The graph is strongly connected and has a
@\/» self-loop, yet not stable.

— need to find the graphical structure that enables stability
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k-cycle in GG: a sequence of k distinct nodes

connected by edges. @
Two cycles are disjoint if they have no nodes in
common.
k-decomposition in G: union of disjoint cycles @/
covering k nodes.
A k-decomposition is given by cycles 1-cycle =
S1,...,.5; if the S; are disjoint and 2-cycle: (2 3)
St + -+ + |Si| = k. 3-cycle: (456)
- N 3-decomp.: (1)(23) or
Hamiltonian cycle (resp. decomposition): (456)
n-cycle (resp. decomposition). 4-decomp.: (1)(456)

5-decomp.: (23)(456)
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Theorem’

A digraph G is stable only if it contains a k-decomposition for each
k=1,2,...,n

* x 0 0 =x
0O 0 = 0 O
* 0 0 % 0
0 0 0 0 =
1+ 0 0 x 0]

1-decomp.: (1), 2-decomp.: (15), 3-decomp.:(1)(45) but no
4-decomp. — not stable.

1B. “Sparse Stable Systems”, Systems and Control Letters, 2013

M.-A. Belabbas (University of lllinois) Strcutural Stability CDC18 8.1/ 28



Sk symmetric group on k characters.
For o € Sk, let o(i) be the position of the ith in the permutation.
e.g. 0:{1,2,3,4} -+ {2,1,4,3} then o(1) =2 and o(3) = 4.

It is known that A is Hurwitz only if all coefficients of its
characteristic polynomial are non-zero.

Characteristic polynomial of A is given by

n—1 n—k
det(Ix— A) = Y (=3 3T (=17 [] aiwiy
k=0 oc€ESH_k i=1
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Each term Hle a; »(i) corresponds to a
k-decomposition.

Said otherwise: each permutation in Sy

corresponds to a k-decomposition: ‘J

e.g. permutation in S5 that sends {4, 5,6}
to {5, 6,4} is depicted in red.
permutation in S5 that sends {1, 2, 3} to @/

{1, 3,2} is depicted in blue+green.

Conclusion: no k-decompositions = 5
degree n — k term in characteristic
polynomial of any matrix in Z is zero = @\/’

graph and ZP are not stable p(s) =
s3 — CL1182 + 0s — a12a923a31 -
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Theorem?

A digraph G is stable if it contains a sequence of nested
k-decomposition for each k =1, 2,...,n.

We say that a k-decomposition K is nested in K5 if the node set of K3
is included in the one of K5

[« %« 0 0 O]
x 0 x 0 0
*x 0 0 % 0
0O 0 % 0 =«

1« 0 0 0 0]

1-decomp.: (1), 2-decomp.: (12), 3-decomp.:(123),
4-decomp.:(12(34), 5-decomp.:(12345).
2B. “Sparse Stable Systems”, Systems and Control Letters, 2013
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There are many graphs that are stable, but do not pass the
sufficient condition.

From our simulations, we observe that the necessary condition is
close to being sufficient: the number of graphs that pass the
necessary condition and are not stable is relatively small.

Stability is not generic. The proportion of stable matrices in a ZP
can be very small.

Hence simulations studies are “hard”; one needs to sample many
matrices in a SMS to conclude non-stability. Very unlike structural
controllability: almost all systems in a zero-pattern are controllable.
Sample one system: with probability one, it is controllable if the
zero pattern is.
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Observation: adding an edge to a stable graph yields another stable
graph.

We say that graph stability is monotone with respect to edge addition.

(% % 0]
* () =%

«x 0] 7 L* 0 %1% ry 4o
= () = x % %
= 0 0 ~ _ « 0 =

* * 0

* 0 0

stable >

This simple observation yields two interesting definitions:
Minimal stable graphs: stable graphs for which removing any edge
yields an unstable graph.
All stable graphs are “descendants” of minimal stable graphs. We
can think of them as “prime” graphs.

Robustly stable graphs: stable graphs for which removing any

96 yields a stable graph.
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Unstable D ®\©

Box — graph on three

nodes

Same # edges — same row

iy
[

]

]

—1

[ ]

1

—

1

D U U U dua U U U U U U Edge between box denotes

[ S R I—

== -

JUUURRURRUEIIIoRJUl  inclusion
. Shade: #.stable ancestors

LR THERE iy | ; # ancestors

> Minimal stable: lightest
I I I I I I I I shade. There are 7.

I I Resilience Index
[ T
Cr

'so.. 4.I Fragile Robust
=
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It is often the case that information exchange is bilateral: i <> j.

We call a graph reciprocal or symmetric of to every edge (i,j) € £
there is an edge (j,i) € F.

The corresponding ZP is symmetric:

(x % % 0 x|
*x x x 0 0
A=1|[x x 0 * 0
0 0 x 0 =«

| * 0 0 =x O_

Two cases: either the matrices in the ZP are symmetric (strongly
symmetric ZP) or not necessarily symmetric (weakly symmetric ZP).
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Definition®

A ZP is (weakly symmetric if to a free variable in position ij corresponds
a free variable in position ji. A ZP is strongly symmetric if it only
contains symmetric matrices.

Theorem?®

A strongly symmetric ZP is stable if and only if all its diagonal elements
are free.

Theorem?
A weakly symmetric ZP is stable if and only if its graph is so that

Every node is strongly connected to a self-loop
The graph contains a Hamiltonian decomposition.

SA. Kirkoryan and B. “Symmetric Sparse Systems”, CDC 2014.

M.-A. Belabbas (University of lllinois) Strcutural Stability CDC18
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The proof of the last theorem is graphical in nature. We sketch is here.
A tree graph is a graph W|thout cycles.

@ﬁf@ @@ (@ @5/::@ (
@ﬁl} @/®

@+9 @ @3 @
Tree graph — Nodes can be cycles — Edges are symmetric — fat
tree

M.-A. Belabbas (University of lllinois) Strcutural Stability CDC18 17.1/ 28



Proof idea: Given a symmetric graph G, show that if

Every node in GG is connected to a self-loop
G contains a Hamiltonian decomposition

— then there exists a sequence of nested k-decompositions,
k=1,...,n.

The conclusion above says that we satisfy the sufficient condition
presented earlier.

Proof technique: find a fat tree in GG. Fat trees provide a natural
ordering of nodes. Use the ordering to exhibit nested
k-decompositions:

We label (order) the nodes so that
{1},{1,2},{1,2,3},...,{1,...,n} all have k-decompositions. By
construction, they are nested.

M.-A. Belabbas (University of lllinois) Strcutural Stability CDC18 18.1/ 28



o—>

VAR

UVo

s Do
o b b N
(] [
oo

Draw the cycles of a Hamiltonian
decomposition of G. This is a
subgraph of G.

Connect every cycle to the cycle
with the self-loop. We can do so by
assumption 1.
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A
OOO@%%‘;‘JO
Add reciprocal edges. The resulting Ordering: Set vg at 1. Order nodes
graph is a planar subgraph of G by counter-clockwise. Skip already numbered
construction. nodes. By construction, no node lies inside

— complete ordering. Call this graph P.
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The last graph shown is a subgraph of G. We show that is satisfies the
hypothesis of Theorem 2.

There is a unique path from any node

@, 7
6
k to 1 using the plain edges of P only.

@D/ % Q Q Key observation: by construction, the

subgraph induced by the node set

@Aﬁ? ‘—@ O {1,2,...,k} is the union of the path

joining 1 to k£ and [-cycles.
e & o
M.-A. Belabbas (University of lllinois) Strcutural Stability CDC18 21.1/28



The subgraph induced by nodes

@\ ) {1,...,k} admits a Hamiltonian
(\J@ é)@ decompositiolrlw, which is thus a
k-decomposition of G.
% Depending on whether the path
O O joining 1 to & has an even or odd

number of nodes, the decomposition
is in 2-cycles (even) or self=loop+2

@”@ (©=(©
(14) cycles (odd).

B ®
Repeating the procedure for each
node k =1,...,n, we obtain nested

k-decompositions.
A n = 22-decomposition &

O O
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Random graph theory provides a different lens to look at what may
otherwise be hard problems.

We look for conditions under which a sample graph form a given
distribution is structurally stable with overwhelming probability.

The results are asymptotic in the number of nodes.

Allows us to overlook finer structural details and obtain answers
when the graph is very large.

Recall: Bernoulli distribution with parameter p: P(w =1) =p
Pw=0)=1-p,weQ={0,1}.
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Random graphs models

» We look at two random graph models for symmetric ZP

» Model 1: variable number of edges 954

1. Graph on n nodes

2. Existence of an edge between nodes ¢ and j, ¢ # j are independent Bernoulli
random variables with parameter p

3. Existence of a self-loop are independent Bernoulli r.v. with parameter gq.

» Model 2: fixed number of edges ]—“J@’ K

1. Graph on n nodes

2. Exactly M edges (3, j), chosen uniformly at random amongst all possible
edges (i,7), 1 # j.

3. Exactly K self-loops chosen uniformly at random.

Definition
We say that almost every random graph G™ has a property X, if
P(G™has X) - 1lasn — o

M.-A. Belabbas (University of lllinois) Strcutural Stability cDhC18 24.1/ 28



We consider probabilities that depend on n. We need
p(n),q(n) — 0 n — oo, otherwise random graphs a very dense.

Problem

For what magnitudes of p = p(n) and ¢ = ¢(n), is almost every random
graph G ) stable? For what magnitudes of M = M (n) and K = K (n),
is almost every random graph ;- i) stable?

Define w1, wq, such that:

p=pln) = MEE gy =2

This particular form for p(n), g(n) makes statements easier.

M.-A. Belabbas (University of lllinois) Strcutural Stability CDC18 25.1/ 28



Theorem?
Assume that q(n) < 1 — e for some e > 0

Almost every graph in G, contains a self-loop if and only if
Wy — OQ.

Almost every graph in G, contains a Hamiltonian decomposition if
and only if wy — oo.

P(gg’q isstable) -1 <= wi,ws — 0.

INn(n) 4+ w

p:p(n):T, q=q(n): s

w2

p is probability of an edge, q is probability of a self loop

4B., A. Kirkoryan, preprint; A. Kirkoryan PhD thesis

M.-A. Belabbas (University of lllinois) Strcutural Stability CDC18 26.1/ 28



Results for Model 2

Define w1, ws such that:

In(n;er)’ K = K(n) = ws.

M = M(n) = "

Theorem?
Assume that M < @ for some ¢ > 0, then

P(Ghr i isstable) =1 <=  w; — 00, wp > 1.

5B., A. Kirkoryan, preprint; A. Kirkoryan PhD thesis

Strcutural Stability CDC18 27.1/ 28

M.-A. Belabbas (University of lllinois)



Thank you for your attention!
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Symmetry and Controllability



Model

Ti(t) = —wiizi(t) + Z wipTp(t)+ui(t)

i~ P

that in general assumes the form:

z(t) = A(G)z(t) + B(S)u(t)

v

Controllability /observability: stabilization via feedback, observer design,
disturbance/noise rejection, optimal control, and pole placement



For the LTI plant (A(G,.S), B(S)) what are the structural conditions for
controllability? One approach is to link uncontrollability to symmetry

—

)
For today, we will use the edge leader follower dynamics
i = A(G,S)x + B(S)u = —(L(G) + B(S)B(S)")x + B(S)u.

(These results can be extended to the leader follower dynamics
t = A(G,R)x + B(R)u and controlled consensus dynamics
& =—L(G)xr + B(S)u)



First, what do we mean by symmetry...

Definition
An automorphism of the graph is a mapping 7 : V(G) — V(G) such that if
{t,py € E(9) < {n(i),7(p)} € £(9)

Represented as 7 : {1,2,...,n} - {1,2,...,n}, (i) =p

1 2 3 n
1 1 1 1
m(1) =(2) =(3) m(n)
Example
L% 1—+53,2—+2,3—>1

v Mapping 7 : V(G) — (Q)

2 I (1) =3, m(2) =2, 7(3) =

The edges {7 (i), 7(P)}

{1,2} - {3,2} €& {2,3} = {2,1} € £ = misan

3 automorphism




We need an algebraic representation of the automorphism 7.

Definition
A permutation matrix is a {0, 1} square matrix with one “1" and one “zero” i
each row and column.

m —permutation matrix P such that PA(G) = A(G)P

Example

N

v

=

3

Il
O~ o R oo

_ o = O O

OoO—R O OO
|
1
_ oo Ok O
O, O = O
OO = OO
|
1
SO =R O O = O
_ O = = O
SO =R O O = O




We also need a link between the automorphism and the inputs.

Definition

A system is input symmetric with respect to the input nodes if there exists a
nonidentity automorphism with input nodes invariant under its action.

Input symmetry (permutation P) w.r.t. to the input nodes <— P # I,
A(G)P = PA(G) and PB(S) = B(S).

Example

PB({v2})

PB({vs})

0 1
1

0 0 |

— Input asymmetric

—_

O =

= B({v2})

7 B({vs})




Some more preliminary work before showing our controllability conditions
For an automorphism 7 of G with permutation matrix P

A(G)P = PA(G) = deg(v) =deg(n(v)) = A(G)P = PA(G)
then as L(G) = A(G) — A(G) we have

L(G)P = PL(G).
For input symmetry PB(S) = B(S) then
PB(S)=B(S) = n({s}) ={s} forallse S

Finally,



Theorem
Input symmetry implies uncontrollability.

Proof.

For P# 1, A(G)P = PA(G) and PB(S) = B(S) = A(G,S)P = PA(G,S)
Let v be an eigenvector of A(G,S) := A then

APv=PAv = P (l)=APv

So Pu is also an eigenvector.
As A(G,S) is symmetric with a spanning set of eigenvectors then for some v,
Puv # v.
Then v — Pu is an eigenvector and (v — Pv)’ B(S) = vT B(S) — vT PTB(S);
hence

(v — Pv)" B(S) = v'B(S) —v " B(S) =0

and the pair (A(G, S), B(S)) is uncontrollable by PBH ]




Theorem

Suppose that the network dynamics assumes the form
& =A(G)r + B(G)u

is such at there exists some P € AUT(G) that commutes with the dynamics
and leaves the input invariant under its action, i.e.,

PA(G) =A(G)P PB(G) = B(9);
if A(G) is non-defective, then (A(G), B(G)) is not controllable.




No!

Consider the smallest asymmetric graph G controlled through a

1
Then A(G,R) = L(G) + I and B(R) = —1; A(G,R) has 1 as an eigenvector:
AGR1=L(G1+1=1

All other eigenvectors of A(G,R) are orthogonal to 1; now invoke PBH!
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Consensus-Seeking Networks

The consensus protocol is a canonical model
for studying complex networked systems

—1/
" e

formation system theory distributed
control over graphs optimization

Are certain information  Can system performance  How do we synthesize
structures more favorable  be characterized using good information
than others? properties of the graph? structures?

Ho cycle lengths min [|Z(6)|
Ho o< node degree get




Networks may be influenced by
selected leaders
exogenous inputs (disturbances or noises)

malicious agents

S(G,x(1),u(?),d(1))
General Dynamics o ~
i(t) = f(G,z(t),u(t),d(t)) — 0
y(t) = g(G,z(t),u(t),d(t)) d(1) —
- J

Analysis draws upon:

Large-scale Optimization:

Control theory: For large # nodes n

Input-output dynamics
Machine-learning:

For uncertain dynamics and
inputs

Graph theory:
Design and reasoning on G



The Noisy Consensus Protocol
Dynamics
#(t) = —L(G)z(t) + w(t)
y(t) = BE(H)" x(t)

» Each node corrupted by zero-mean
white Gaussian noise.

» H models the performance network
(ie, HC GorH=K,)

consensus state (average) is driven by
noise

L avg(a(t) = 17 w()

covariance exhibits a random walk

E(avg(z(t)?)) = 24

n




The Noisy Consensus Protocol

Dynamics
. w;(t) \ﬂ
y(t) = B(H)" =(t) ' ‘
» Each node corrupted by zero-mean — /
white Gaussian noise. <
» H models the performance network
(ie, HC GorH=K,) \

When driven by noise, it is meaningful
to examine how noises effect the
stead-state covariance of the relative
states

Ker(E(g)T) = span{1}

Characterized by the Ho performance )




A two-port model

() = —LG)x(t) + w(t) U (71 LB 10
E(H)"x(t) ' |

N
VS

~
N—

I

Note the system is not minimal
(unobservable) and also has unbounded
Hs norm (eigenvalue at 0) G

= Find a stable minimal realization!

_ 1 Tp_ 2.90 090 0.90 —0.40| 0.00

S = [P \/ﬁl} 1 P=0 0.90 1.90 0.90 0.60 | 0.00

3 ) STIL(@)S=| 090 090 190 060 | —0.00
z(t) =S z(t) —0.40 0.60 0.60 129 | —0.00

0.00 0.00 0.00 0.00 ‘—0.00



A connected graph can be Gg=TUcC
decomposed into a spanning

tree and the edges that

complete cycles (co-tree)

Cycles can be expressed as a
“linear combination” of edges in Theorem  cosi and royte, 2001

the tree The cycle space of G is spanned by the
fundamental cycles of G.
EC)=FE(T)R
E(G)=E(T)|I R Ker[E(G)] = Im [‘IR]
R is referred to as the Tucker R — (E(T)TE(T))_lE(T)T E(C)
representation of G with \ ~ 4

spanning tree T By




Spanning Trees and Co-Trees

I|_L|_\'_|b_xl




A two-port model

z(t) +w(t) ) b ;@  E(G)T y(t)

i(t) = —L(9) =
2(t) = B(H)" x(t) U ____________ I
| N )
= Find a stable minimal
realization!
-
St = ELU;)T]
| Vn

The Essential Edge Laplacian
70 = [avgla(y] =570 Lsn(@) = (BT)T BT + RET)




g

2 1 -1 0
1 _[EMTE(MUI+RRT) 07] |1 2 -1 0] _
ST'L(G)S = 0 ol =121 21 2 | =L
0o 0 -1 2
Edge Laplacian
L(G) = E(G)T E(G) € REEIX!

shares the same non-zero [Lc(G)]i; = £1 when edge i is

eigenvalues of L(G) adjacent to edge j

L.(T) is positive definite Ker[Le(G)] is spanned by

indexed by the edges in the graph fundamental cycles in G




Theorem [Zelazo and Mesbahi, TAC2011]

The Hy performance of the consensus protocol is
I(9)ll5 = TEMH) T EF XEFE(H)),

where

X = % (T+RRT)™

is the positive definite solution to the Lyapunov equation

L(X)=—Less(G)X — XLeos(G)T + E(T)TE(T) = 0.




Theorem [Zelazo et al., Systems & Controls Letters, 2013]
Consider the consensus protocol with G =H =T and an edge e ¢ G. Then

ST U = (T3 - 29 =1

where /(c) is the length of the fundamental cycle created by adding the edge e.

long cycles are better than short ones



COI’O' | d ry [Zelazo et al., Systems & Controls Letters, 2013]

Consider the consensus protocol with G = H = T and an edges e1,¢es ¢ G.
Then

g((ﬁ) —|—€(Cg) )
2(€(c1)b(c2) — s12) )

where s;; is the edge correlation number for cycles ¢; and c;.

IS(T U {er, e2) 2 = [Se(T)I3 (1 _

812:0 812:4

edge disjoint cycles are better



A network design problem

Given a graph G with spanning tree T, add k edges that optimizes ||3(G)]|3.

- E(H) —
m w(t) i (7’) z(t
u(t) i b, . T y(t) u(t)—{ e y(t)
L @ E@G) PN
. RR'
(9)

Cycles interpreted as a
feedback system

Can be formulated as a
mixed-integer SDP
re-weighted /1
optimization; ADMM




What is the performance when monitoring all relative state pairs?

w;(t) ¢
5




Linear Consensus as an RC-Circuit

#(t) = —L(G)z(t) + w(t)
y(t) = E(H) x(t)

CapaCItOFS <~ NOde DynamICS (integrators)

Resistors < Edge Dynamics (inear gain)

edge weights model the admittance
of the resistor
1
ri = —
W;
in steady-state, network
corresponds to a resistive circuit

Vl V2
€
) &
€4
V3 V4
g
» () »,(0)

V(1)

RC circuit

AO)



The effective resistance between two nodes u and v is the electrical resistance
measured across the nodes when the graph represents a resistive circuit.

()

(¥

U

Effective Resistance Calculation [Kiein and Randic¢ 1993]

Ruv(g) — [LT(g)]uu + 2[LT(g)]uv + [LT(Q)]UU

The total effective resistance of a graph is the sum over all pairs of nodes of

Ruv(9),



Proposition

Consider a graph G with spanning tree 7 and Tucker matrix R. Let R, satisfy
(e, —e,) = E(T)Ryy. Then the effective resistance between nodes u and v
can be computed as

Ruw(G) =R (I + RR")"'R,,.

This can be extended to derive an expression for the total effective resistance.
Let R, satisfy E(K,) = E(T)Rx,, , representing the Tucker matrix for all
possible edges, then

Riot(G) = Tr[Re, (I + RR") 'Ry, ].

Performance when H = IC,,

IS = 5 Rear(€)




Effective Resistance and Signed Networks

a signed graph is a graph with positive
and negative edge weights

Gg=0W,E,W)
W:E—-R (+) G=G,. UG

E,={ee& : W(e) >0} E_={ee& : W(e) <0}



Theorem [Zelazo and Biirger, TCNS2017]

Let G = (V, &) be a strictly positive network with edge functions ur = wir(k (i.e.,
wy >0 for all k € £) and let G = (V, €~ Ue) where e = (u,v) is a negative edge with
weight w. < 0. Then the signed consensus network reaches agreement if and only if

Jwe| < T

where 1., is the effective resistance in G between nodes uw and v.

'ruv(g)

M —

1

We

The negative edge weights effectively creates an open circuit



General Dynamics

2(t) = f(G,x(t),u(t), d(t))
y(t) = g(G,x(t), u(t), d(t))

network structure influences the
performance of network systems

in linear consensus, Ho
performance can be understood in
terms of fundamental structural
properties of the graph: trees and
co-trees

J(G,x(1),u(1),d(1))

- y(®)
d(t)
- J

effective resistance is a powerful
concept for analyzing performance
and robustness of linear consensus

design of networks leverages
combinatorial understanding of
performance with modern
optimization methods



Explore graph-theoretic
interpretations for more general
networked systems structures

Leader-follower networks

#(t) = A(G, R)a(t) + B(R)u(t)

leader selection and Hy performance

effective resistance interpretations

network design using online
optimization




Daniel Zelazo, Mehran Mesbahi, M. Ali Belabbas

CDC
Miami Beach, Florida, December 19, 2018



Networked Dynamic Systems
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Graphs at CDC

Why do we need this tutorial?

Network analysis and control

Networked control systems

MoA03.5, MoA05.6, MoA07.2, MoAQ9.6, MoA12.2, MoA12.6, MoB03.3, MoB05.3,
MoB10.6, MoB12.1, MoC03.3, MoC03.4, MoC06.1, MoC06.2, MoC13.6, MoC14.3
TuAO03.6, TuA04.3, TuB09.1, TuB09.2, TuB12.1, TuB12.2, TuB12.3, TuB12.4
TuB12.5, TuB12.6, TuB16.3, TuB16.4, TuC04.3, TuC04.6, TuC05.1, TuC09.1
TuC09.3, TuC10.5, TuC12.1, TuC12.2, TuC12.3, TuC12.4, TuC12.5, TuC12.6,
TuC18.5, TuC18.6, WeA09.2, WeA09.3, WeA09.4, WeA09.5, WeA09.6, WeA12.1,
WeA12.2, WeA12.3, WeA12.4, WeA12.5, WeA12.6, WeB03.6, WeB05.1, WeB05.4,

WeB12.5, WeB12.6, WeB13.1, WeB13.2, WeB13.3, WeB13.4, WeB14.1, WeB14.6,

MoAO01.3, MoA03.4, MoA03.5, MoA04.2, MoA04.3, MoA04.4, MoA04.5, MoA04.6,
MoAQ5.1, MoA05.3, MoA10.5, MoA12.1, MoA12.2, MoA12.3, MoA12.4, MoA12.5,
MoA12.6, MoB03.2, MoB04.3, MoB04.4, MoB04.6, MoB09.4, MoB12.1, MoB12.2,
MoB12.3, MoB12.4, MoB12.5, MoB12.6, MoB14.4, MoC03.4, MoC04.2, MoC04.3
MoC04.5, MoC09.4, MoC10.5, MoC12.1, MoC12.2, MoC12.3, MoC12.4, MoC12.5,
MoC12.6, MoC13.1, MoC13.2, MoC13.4, MoC13.5, MoC18.4, MoC19.4, TuA01.6,
TuA05.2, TuA10.1, TuA12.1, TuA12.2, TuA12.3, TuA12.4, TuA12.5, TuA12.6
TuA15.5, TuA21.3, TuB02.4, TuB04.4, TuB07.2, TuB12.4, TuB12.5, TuB14.3
TuB14.4, TuB19.3, TuC02.4, TuC03.2, TuC05.3, TuC05.5, TuC09.1, TuC11.6,
TuC13.1, TuC16.4, WeA03.1, WeA03.4, WeA03.5, WeA05.6, WeA09.3, WeA09.5,
WeA12.4, WeA12.5, WeA12.6, WeA14.4, WeA16.1, WeB01.3, WeB04.3, WeB04 .4,

WeB04.5, WeB08.1, WeB09.5, WeB10.3, WeB10.4, WeB12.3, WeB12.4, WeB13.1

WeB18.1, WeB19.3, WeB19.4, WeC07.2, WeC15.6, WeC17.3, WeC20.4, WeC21.1

WeC21.4

Control system architecture

Cooperative control

MoA17.2, MoC07.6, TuA04.5, TuB06.3, TuB12.6, WeA06.2, WeB14.3, WeC05.4
See also Large-scale Systems

MoA03.3, MoA03.4, MoA03.6, MoA11.6, MoA14.1, MoA14.2, MoA14.3, MoA14.4
MoA14.5, MoB03.1, MoB03.4, MoB05.5, MoB12.6, MoB14.1, MoB14.2, MoB14.3,
MoB14.4, MoB14.5, MoB16.5, MoB17.2, MoB17.4, MoC03.6, MoC12.2, MoC14.1
MoC14.2, MoC14.3, MoC14.4, MoC14.5, MoC14.6, MoC17.2, MoSP1.1, TuA03.2
TuA03.3, TuA05.2, TuA09.6, TuA10.6, TuA11.1, TuA12.1, TuA14.4, TuA16.5,
TuB04.1, TuB14.5, TuB17.6, TuC05.1, TuC09.2, TuC11.5, TuC11.6, TuC14.2
TuC14.3, WeA03.5, WeA05.2, WeA05.4, WeA05.5, WeA05.6, WeA14.2, WeA14.3
WeA14.5, WeB04.4, WeB12.3, WeB13.1, WeB13.2, WeB14.2, WeB14.3, WeB14.4
WeB14.5, WeC14.1, WeC20.4

The network approach to systems is here to stay. This tutorial aims to bring to
the forefront the role of graphs in these systems.




So far in this tutorial... )

graphs and modelling of network /g }
systems £ f
stability of network systems .} .}

input-output properties of network

systems e
% B
¢=m)



We are interested in morphisms between

(networks/operations) <=  (systems/properties)

Our thesis is that for control theoretic methods to have an impact in the
growing field of networks, our techniques should be modular, scalable, and offer
flexibility in their use.

Some areas that have been explored in this direction include:

structural considerations
compositional perspective/motifs
approximations

randomness

We believe this area is highly unexplored!
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Large Scale Networks

» fault detection and isolation » internet-of-things
» power distribution networks » cyber-pysical systems

» transportation networks » social networks



Extremal Graph Theory

Mantel's Theorem (1907)

2
If a graph G on n vertices contains no triangles, then it contains at most “-
edges.

The complete bipartite graphs are extremal

Extremal graph theory studies how global properties of a graph (i.e., number of
edges) relate to local substructures (i.e., a triangle subgraph)




Forbidden Subgraph Problem

Given a set H of forbidden graphs, what is the maximum number of edges in a
graph G on n nodes (denoted e(G)) such that H € G for any H € H?

Extremal Number ex(n,G) = g?g)g( e(G)

Generalize Mantel's Theorem for K,

Taran Graphs T'(n,r) - complete
r-partite graphs with n vertices

n? 1
7“<_ 1 -
e k) < 5 ( 7“—1)

avoiding paths of length k avoiding even length cycles

avoiding Hamiltonian cycles avoiding edge disjoint cycles



Extremal Networked Systems

A simple example...

A relative sensing network

I=(G)IIz = 21€l1213

Proposition

Let 3(G) be a relative sensing network with n agents such that G is K, -free.
Then the H; performance of X(G) is at most n? =1 ||3||2.

T




k-cycle in G: a sequence of k distinct nodes
connected by edges.

Two cycles are disjoint if they have no nodes in
common.

k-decomposition in G: union of disjoint cycles
covering k nodes.

A k-decomposition is given by cycles Sq,...,5; if
the S; are disjoint and |S1|+ -+ |Si| = k.

Hamiltonian cycle (resp. decomposition): n-cycle
(resp. decomposition).

1-cycle = (1)

2-cycle: (23)

3-cycle: (456)
3-decomp.: (1)(23) or
(456)

4-decomp.: (1)(456)
5-decomp.: (23)(456)



Theorem?

A digraph G is stable only if it contains a k-decomposition for each
k=1,2,...,n

O O O *x O
* O % O O
S ¥ O O ¥

* O % O *
SO O O %

An extremal question

What is the maximum number of edges in a graph G on n nodes before a
k-decomposition appears?

1B. “Sparse Stable Systems”, Systems and Control Letters, 2013
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let P be a system theoretic property, G be a class of graphs, and consider
P(G)

consider a subset of G and examine how P varies over this subset

impose algebraic operations on G and examine how P behaves with respect
to this algebra

make G a semi-lattice and examine how the ordering on G is reflected on P



Controllability of the product networks?



—>




Theorem 1: Product Controllability
The dynamics

where A(J]G;) has simple eigenvalues is controllable/observable if and only if
0J

—A(Gi)zi(t) + B(Si)ui(t)
C(Ri)xi(t)

z4(t)
yi(t)

is controllable/observable for all i.




Network Learning

» Sensing accuracy/ confidence is coupled to an edge state, i.e.,
wij(x) = g([|zi — ;]])

» Online performance with respect to edge state control

edge states: x;(t);

coordinated state y;(t)

gi(t) = Y wi(2)(y;(t) — va(t)
JEN(4)

z;(t) = f(x:)

wij

Questions: time-scale analysis, learning, gradient flow on space of graphs




Graph Theory Systems Theory

Algebraic graph theory Stability

Geometric graph theory Performance

Extremal graph theory Input-Output Properties
Probabilistic graph theory Control Synthesis
Topological graph theory Control Architectures

Thank you!



