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Multi-Robot Systems

Formation Control is one of the canonical problems 
in multi-agent and multi-robot coordination
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Challenges in Multi-Robot Systems

Solutions to formation 
control problems in multi-
robot systems are highly 
dependent on the sensing 
and communication 
mediums available!

selection criteria depends on  
mission requirements, cost,  
environment…

• GPS 
• Relative Position 

Sensing 
• Range Sensing 
• Bearing Sensing

Sensing Communication

• Internet 
• Radio 
• Sonar 
• MANet 
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Challenges in Multi-Robot Systems

Solutions to coordination 
problems in multi-robot 
systems are highly dependent 
on the sensing and 
communication mediums 
available!

selection criteria depends on  
mission requirements, cost,  
environment…

In real-world implementations, formation control must 
be achieved with impartial or imperfect information 

about the state of the entire formation
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Formation Control Strategies

x

y
(xi, yi)

(0, 0)

• formation specified in a global 
coordinate system 

• each agent assigned to a point in 
formation 

• assumes GPS-type measurements

d

pi pjpj � pi

• formation specified by inter-agent 
distances 

• agents tasked at maintaining 
distances to certain neighbors 

• assumes distance sensing and 
relative-position information in a 
common reference frame
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Distance-Based Formation Control

ṗi = ui

ui = �
X

j⇠i

�
kpi � pjk2 � d2ij

�
(pi � pj)

Distance-Based Formation Control Law

• convergence to desired formation 
shape depends on the structure of 
the underlying sensing/
communication network 

• local stability analysis

[Krick2007, Anderson2008, Dimarogonas2008, Dörfler2010]

Rigidity Theory
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Graph Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness” 
or “flexibility” of structures formed by rigid bodies connected by 
flexible linkages or hinges.

A rigid graph can only rotate and translate to ensure all 
distances between all nodes are preserved (i.e., preserve 
the shape)!

NOT rigid! 
There is a motion that preserves  
distances between nodes in the graph 
but the shape is not preserved!



CDC 2015 - Workshop on Taxonomies of Interconnected Systems 
Dec. 14, 2015  Osaka, Japan

 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Rigidity Theory

Bearing (Parallel) Rigidity
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- rigidity for undirected graphs 
- directed graph extensions - persistence 

[Hendrickx, Anderson, Yu] 
- distance-only extensions [Cao] 

- requires range sensing 
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Rigidity Theory - Bearing Extensions
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TurtleBotII with Kinect Sensor

recently, there is an interest in 
bearing-based formation control

- (relatively) cheaper sensing 
‣ vision-based sensors 
‣ angle-of-arrival sensors 
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Bearing Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness” 
or “flexibility” of structures formed by rigid bodies connected by 
flexible linkages or hinges.

A bearing rigid graph can scale and translate to ensure 
bearings between all nodes are preserved (i.e., preserve 
the shape)!
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Bearing Rigidity Theory
bar-and-joint frameworks

G = (V, E)
p : V ! 2

G

a graph

(G, p) p

p(v1)

p(v2)

p(v3)

(0, 0) x

y

g13

relative bearing vector

gij =
p(vj)� p(vi)

kp(vj)� p(vi)k
When is a framework bearing rigid?

3

Consider an arbitrary orientation of the graph G and denote

ek , pj � pi, gk , ek/kekk, 8k 2 {1, . . . ,m} (3)

as the edge vector and the bearing for the kth directed edge.
Denote e = [eT1 , . . . , e

T
m]T and g = [gT1 , . . . , g

T
m]T. Note e

satisfies e = H̄p where H̄ = H ⌦ Id. Define the bearing

function FB : Rdn
! Rdm as

FB(p) ,
⇥
gT1 · · · gTm

⇤T
2 Rdm.

The bearing function describes all the bearings in the frame-
work. The bearing rigidity matrix is defined as the Jacobian
of the bearing function,

R(p) , @FB(p)

@p
2 Rdm⇥dn. (4)

Let �p be a variation of the configuration p. If R(p)�p = 0,
then �p is called an infinitesimal bearing motion of G(p). This
is analogous to infinitesimal motions in distance-based rigidity.
Distance preserving motions of a framework include rigid-
body translations and rotations, whereas bearing preserving
motions of a framework include translations and scalings. An
infinitesimal bearing motion is called trivial if it corresponds
to a translation and a scaling of the entire framework.

Definition 5 (Infinitesimal Bearing Rigidity). A framework

is infinitesimally bearing rigid if all the infinitesimal bearing

motions are trivial.

Up to this point, we have introduced all the fundamental
concepts in the bearing rigidity theory. We next explore the
properties of these concepts. We first derive a useful expression
for the bearing rigidity matrix.

Lemma 2. The bearing rigidity matrix in (4) can be expressed

as

R(p) = diag

✓
Pgk

kekk

◆
H̄. (5)

Proof. It follows from gk = ek/kekk, 8k 2 {1, . . . ,m} that

@gk
@ek

=
1

kekk

✓
Id �

ek
kekk

eTk
kekk

◆
=

1

kekk
Pgk .

As a result, @FB(p)/@e = diag (Pgk/kekk) and consequently

R(p) =
@FB(p)

@p
=

@FB(p)

@e

@e

@p
= diag

✓
Pgk

kekk

◆
H̄.

The expression (5) can be used to characterize the null space
and the rank of the bearing rigidity matrix.

Lemma 3. A framework G(p) in Rd
always satisfies span{1⌦

Id, p} ✓ Null(R(p)) and rank(R(p))  dn� d� 1.

Proof. First, it is clear that span{1 ⌦ Id} ✓ Null(H̄) ✓

Null(R(p)). Second, since Pekek = 0, we have R(p)p =
diag(Pek/kekk)H̄p = diag(Pek/kekk)e = 0 and hence
p ✓ Null(R(p)). The inequality rank(R(p))  dn � d � 1
follows immediately from span{1⌦Id, p} ✓ Null(R(p)).

For any undirected graph G = (V, E), denote G
 as the

complete graph over the same vertex set V , and R(p) as
the bearing rigidity matrix of the framework G(p). The next
result gives the necessary and sufficient conditions for bearing
equivalency and bearing congruency.

Theorem 1. Two frameworks G(p) and G(p0) are bearing

equivalent if and only if R(p)p0 = 0, and bearing congruent

if and only if R(p)p0 = 0.

Proof. Since R(p)p0 = diag (Id/kekk) diag (Pgk) H̄p0 =
diag (Id/kekk) diag (Pgk) e

0, we have

R(p)p0 = 0 , Pgke
0
k = 0, 8k 2 {1, . . . ,m}.

Therefore, by Definition 1, the two frameworks are bearing
equivalent if and only if R(p)p0 = 0. By Definition 2, it can
be analogously shown that frameworks are bearing equivalent
if and only if R(p)p0 = 0.

Since any infinitesimal motion �p is in Null(R(p)), it is
implied from Theorem 1 that R(p)(p + �p) = 0 and hence
G(p+ �p) is bearing equivalent to G(p).

We next give a useful lemma and then prove the necessary
and sufficient condition for global bearing rigidity.

Lemma 4. A framework G(p) in Rd
always satisfies span{1⌦

Id, p} ✓ Null(R(p)) ✓ Null(R(p)) and dn � d � 1 �

rank(R(p)) � rank(R(p)).

Proof. The results that span{1 ⌦ Id, p} ✓ Null(R(p)) and
dn � d � 1 � rank(R(p)) can be proved similarly as
Lemma 3. For any �p 2 Null(R(p)), we have R(p)�p =
0 ) R(p)(p + �p) = 0. As a result, G(p + �p) is bearing
congruent to G(p) by Theorem 1. Since bearing congruency
implies bearing equivalency, we further know R(p)(p+�p) =
0 and hence R(p)�p = 0. Therefore, any �p in Null(R(p))
is also in Null(R(p)) and thus Null(R(p)) ✓ Null(R(p)).
Since R(p) and R(p) have the same column number, it
follows immediately that rank(R(p)) � rank(R(p)).

Theorem 2 (Condition for Global Bearing Rigidity). A frame-

work G(p) in Rd
is globally bearing rigid if and only if

Null(R(p)) = Null(R(p)) or equivalently rank(R(p)) =
rank(R(p)).

Proof. (Necessity) Suppose the framework G(p) is globally
bearing rigid. We next show that Null(R(p)) ✓ Null(R(p)).
For any �p 2 Null(R(p)), we have R(p)�p = 0 ) R(p)(p+
�p) = 0. As a result, G(p+ �p) is bearing equivalent to G(p)
according to Theorem 1. Since G(p) is globally bearing rigid, it
follows that G(p+�p) is also bearing congruent to G(p), which
means R(p)(p + �p) = 0 ) R(p)�p = 0. Therefore, any
�p in Null(R(p)) is in Null(R(p)) and thus Null(R(p)) ✓

Null(R(p)). Since Null(R(p)) ✓ Null(R(p)) as shown in
Lemma 4, we have Null(R(p)) = Null(R(p)).

(Sufficiency) Suppose Null(R(p)) = Null(R(p)). Any
framework G(p0) that is bearing equivalent to G(p) satisfies
R(p)p0 = 0. It then follows from Null(R(p)) = Null(R(p))
that R(p)p0 = 0, which means G(p0) is also bearing congru-
ent to G(p). As a result, G(p) is globally bearing rigid.

Because R(p) and R(p) have the same column number,
it follows immediately that Null(R(p)) = Null(R(p)) if and
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Distributed Formation Control Law

An orthogonal projection matrix:

For any nonzero vector x 2 Rd
(d � 2), define

Px , Id � x

kxk
x
T

kxk 2 Rd⇥d
.

x
y

Pxy

Properties:

• Null(Px) = span{x} () Pxy = 0 i↵ x k y.

• P
T
x = Px and P

2
x = Px.

• Px is positive semi-definite.

5 / 20

Bearing Rigidity Theory
orthogonal projection operator

Px = I � 1

kxk2xx
T

Distributed Formation Control Law

An orthogonal projection matrix:

For any nonzero vector x 2 Rd
(d � 2), define

Px , Id � x

kxk
x
T

kxk 2 Rd⇥d
.

x
y

Pxy

Properties:

• Null(Px) = span{x} () Pxy = 0 i↵ x k y.

• P
T
x = Px and P

2
x = Px.

• Px is positive semi-definite.

5 / 20

- “parallel” vectors have the 
same relative bearing vectors 

-  arbitrary dimensions 
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Bearing Rigidity Theory

A framework is infinitesimally rigid if all the infinitesimal motions  
are trivial (i.e., translations and scalings).

A framework is bearing infinitesimally rigid if and only if the rank 
of the bearing rigidity matrix is dn-d-1.

Theorem

Bearing Rigidity Matrix

R(p(V)) = @FB(G)
@p(V) =

2

6664

. . .
Pgij

kp(vi)�p(vj)k
. . .

3

7775
�
E(G)T ⌦ I

�
2 Rmd⇥nd

[Zhao and Zelazo, TAC2015]
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Distance and Bearing Rigidity

[Zhao and Zelazo, TAC2015]
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(a) (b) (c) (d)

Fig. 2: Examples of non-infinitesimally bearing rigid frameworks. The red
arrows (solid) stand for non-trivial infinitesimal bearing motions and the blue
arrows (dashed) for the associated orthogonal infinitesimal distance motions.

(a) (b) (c) (d)

Fig. 3: Examples of infinitesimally bearing rigid frameworks.

of generality, assume p̃i = [pTi , 0]
T (8i 2 V) where the zero

vector is (d̃� d)-dimensional. Then,

g̃k =


gk
0

�
, Pg̃k =


Pgk 0
0 Id̃�d

�
, 8k = {1, . . . ,m}.

The bearing rigidity matrix of G(p̃) is R(p̃) =
diag

�
Id̃/kekk

�
diag (Pg̃k) (H ⌦ Id̃), where

diag (Pg̃k) (H ⌦ Id̃)

= diag

✓
Pgk 0
0 Id̃�d

�◆
H ⌦


Id 0
0 Id̃�d

�
.

Permutate the rows of diag (Pg̃k) (H ⌦ Id̃) to obtain

A =


diag (Pgk)H ⌦

⇥
Id 0

⇤

I(d̃�d)mH ⌦
⇥
0 Id̃�d

⇤
�
,


A1

A2

�
.

Since the permutation of the rows does not change the
matrix rank, we have rank(R(p̃)) = rank(A). Because the
rows of A1 are orthogonal to the rows of A2, we have
rank(A) = rank(A1) + rank(A2). As a result, considering
rank(A1) = rank(diag (Pgk)H ⌦ Id) = rank(R(p)) and
rank(A2) = rank(H ⌦ Id̃�d) = (d̃� d)(n� 1), we have

rank(R(p̃)) = rank(R(p)) + (d̃� d)(n� 1).

It can be easily verified using the above equation that
rank(R(p̃)) = d̃n � d̃ � 1 if and only if rank(R(p)) =
dn� d� 1.

Figure 2 shows examples of non-infinitesimal bearing rigid
frameworks. The frameworks in Figure 2 are not infinitesi-
mally bearing rigid because there exist non-trivial infinitesimal
bearing motions (see, for example, the red arrows). Figure 3
shows some two- and three-dimensional infinitesimally bear-
ing rigid frameworks. It can be verified that each of the
frameworks satisfies rank(R(p)) = dn� d� 1.

A. Connections to Distance Rigidity Theory

The bearing rigidity theory and the distance rigidity theory
study similar problems of whether the shape of a framework

can be uniquely determined by the inter-neighbor bearings
and inter-neighbor distances, respectively. It is meaningful
to study the connections between the two rigidity theories.
The following theorem establishes the equivalence between
infinitesimal bearing and distance rigidity in R2.

Theorem 8. In R2
, a framework is infinitesimally bearing

rigid if and only if it is infinitesimally distance rigid.

Proof. See Appendix A.

Two remarks on Theorem 8 are given below. Firstly, Theo-
rem 8 cannot be generalized to R3 or higher dimensions. For
example, the three-dimensional cubic and hexagonal pyramid
frameworks in Figure 3(c)-(d) are infinitesimally bearing rigid
but not distance rigid. In particular, the rank of the distance
rigidity matrices of the two frameworks are 13 and 12, respec-
tively, whereas the required ranks for infinitesimal distance
rigidity are 18 and 15, respectively. Secondly, Theorem 8
suggests that we can determine the infinitesimal distance
rigidity of a framework by examining its infinitesimal bearing
rigidity. For example, it may be tricky to see the frameworks
in Figure 2(c)-(d) are not infinitesimally distance rigid, but it
is obvious to see the non-trivial infinitesimal bearing motions
and conclude they are not infinitesimally bearing rigid.

An immediate corollary of Theorem 8 describes the relation-
ship between infinitesimal bearing motions and infinitesimal
distance motions of frameworks in R2. Let Q⇡/2 2 SO(2)
be a rotation matrix that can rotate a vector in R2 by ⇡/2.
For any �p = [�pT1 , . . . , �p

T
n ]

T
2 R2n, denote �p? =

[(Q⇡/2�p1)
T, . . . , (Q⇡/2�pn)

T]T 2 R2n.

Corollary 1. The vector �p is an infinitesimal bearing motion

of a framework G(p) in R2
if and only if �p? is an infinitesimal

distance motion of G(p).

Proof. See Appendix A.

Given a framework in R2, Corollary 1 suggests that for
any infinitesimal bearing motion, there exists a perpendicular
infinitesimal distance motion, and the converse is also true.
Corollary 1 is illustrated by Figure 2 (indicated by the red
(solid) and blue (dashed) arrows).

To end this section, we briefly compare the proposed
bearing rigidity theory with the well-known distance rigidity
theory. In the distance rigidity theory, there are three kinds of
rigidity: (i) distance rigidity, (ii) global distance rigidity, and
(iii) infinitesimal distance rigidity. The relationship between
them is (ii))(i) and (iii))(i). Note (ii) and (iii) do not
imply each other. The global distance rigidity can uniquely
determine the shape of a framework, but it is usually difficult
to mathematically examine [22], [23]. Infinitesimal distance
rigidity can be conveniently examined by a rank condition (see
Lemma 14 in Appendix A), but it is not able to ensure a unique
shape. As a comparison, the proposed infinitesimal bearing
rigidity not only can be examined by a rank condition (Theo-
rem 4) but also can ensure the unique shape of a framework
(Theorem 6). In addition, the rank condition for infinitesimal
distance rigidity requires to distinguish the cases of n � d and
n < d (Lemma 14), while the rank condition for infinitesimal
bearing rigidity does not. Finally, an infinitesimally distance

non-infinitesimally bearing rigid

infinitesimally bearing rigid
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Fig. 2: Examples of non-infinitesimally bearing rigid frameworks. The red
arrows (solid) stand for non-trivial infinitesimal bearing motions and the blue
arrows (dashed) for the associated orthogonal infinitesimal distance motions.
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Fig. 3: Examples of infinitesimally bearing rigid frameworks.

of generality, assume p̃i = [pTi , 0]
T (8i 2 V) where the zero

vector is (d̃� d)-dimensional. Then,

g̃k =


gk
0

�
, Pg̃k =


Pgk 0
0 Id̃�d

�
, 8k = {1, . . . ,m}.

The bearing rigidity matrix of G(p̃) is R(p̃) =
diag

�
Id̃/kekk

�
diag (Pg̃k) (H ⌦ Id̃), where

diag (Pg̃k) (H ⌦ Id̃)

= diag

✓
Pgk 0
0 Id̃�d

�◆
H ⌦


Id 0
0 Id̃�d

�
.

Permutate the rows of diag (Pg̃k) (H ⌦ Id̃) to obtain

A =


diag (Pgk)H ⌦

⇥
Id 0

⇤

I(d̃�d)mH ⌦
⇥
0 Id̃�d

⇤
�
,


A1

A2

�
.

Since the permutation of the rows does not change the
matrix rank, we have rank(R(p̃)) = rank(A). Because the
rows of A1 are orthogonal to the rows of A2, we have
rank(A) = rank(A1) + rank(A2). As a result, considering
rank(A1) = rank(diag (Pgk)H ⌦ Id) = rank(R(p)) and
rank(A2) = rank(H ⌦ Id̃�d) = (d̃� d)(n� 1), we have

rank(R(p̃)) = rank(R(p)) + (d̃� d)(n� 1).

It can be easily verified using the above equation that
rank(R(p̃)) = d̃n � d̃ � 1 if and only if rank(R(p)) =
dn� d� 1.

Figure 2 shows examples of non-infinitesimal bearing rigid
frameworks. The frameworks in Figure 2 are not infinitesi-
mally bearing rigid because there exist non-trivial infinitesimal
bearing motions (see, for example, the red arrows). Figure 3
shows some two- and three-dimensional infinitesimally bear-
ing rigid frameworks. It can be verified that each of the
frameworks satisfies rank(R(p)) = dn� d� 1.

A. Connections to Distance Rigidity Theory

The bearing rigidity theory and the distance rigidity theory
study similar problems of whether the shape of a framework

can be uniquely determined by the inter-neighbor bearings
and inter-neighbor distances, respectively. It is meaningful
to study the connections between the two rigidity theories.
The following theorem establishes the equivalence between
infinitesimal bearing and distance rigidity in R2.

Theorem 8. In R2
, a framework is infinitesimally bearing

rigid if and only if it is infinitesimally distance rigid.

Proof. See Appendix A.

Two remarks on Theorem 8 are given below. Firstly, Theo-
rem 8 cannot be generalized to R3 or higher dimensions. For
example, the three-dimensional cubic and hexagonal pyramid
frameworks in Figure 3(c)-(d) are infinitesimally bearing rigid
but not distance rigid. In particular, the rank of the distance
rigidity matrices of the two frameworks are 13 and 12, respec-
tively, whereas the required ranks for infinitesimal distance
rigidity are 18 and 15, respectively. Secondly, Theorem 8
suggests that we can determine the infinitesimal distance
rigidity of a framework by examining its infinitesimal bearing
rigidity. For example, it may be tricky to see the frameworks
in Figure 2(c)-(d) are not infinitesimally distance rigid, but it
is obvious to see the non-trivial infinitesimal bearing motions
and conclude they are not infinitesimally bearing rigid.

An immediate corollary of Theorem 8 describes the relation-
ship between infinitesimal bearing motions and infinitesimal
distance motions of frameworks in R2. Let Q⇡/2 2 SO(2)
be a rotation matrix that can rotate a vector in R2 by ⇡/2.
For any �p = [�pT1 , . . . , �p

T
n ]

T
2 R2n, denote �p? =

[(Q⇡/2�p1)
T, . . . , (Q⇡/2�pn)

T]T 2 R2n.

Corollary 1. The vector �p is an infinitesimal bearing motion

of a framework G(p) in R2
if and only if �p? is an infinitesimal

distance motion of G(p).

Proof. See Appendix A.

Given a framework in R2, Corollary 1 suggests that for
any infinitesimal bearing motion, there exists a perpendicular
infinitesimal distance motion, and the converse is also true.
Corollary 1 is illustrated by Figure 2 (indicated by the red
(solid) and blue (dashed) arrows).

To end this section, we briefly compare the proposed
bearing rigidity theory with the well-known distance rigidity
theory. In the distance rigidity theory, there are three kinds of
rigidity: (i) distance rigidity, (ii) global distance rigidity, and
(iii) infinitesimal distance rigidity. The relationship between
them is (ii))(i) and (iii))(i). Note (ii) and (iii) do not
imply each other. The global distance rigidity can uniquely
determine the shape of a framework, but it is usually difficult
to mathematically examine [22], [23]. Infinitesimal distance
rigidity can be conveniently examined by a rank condition (see
Lemma 14 in Appendix A), but it is not able to ensure a unique
shape. As a comparison, the proposed infinitesimal bearing
rigidity not only can be examined by a rank condition (Theo-
rem 4) but also can ensure the unique shape of a framework
(Theorem 6). In addition, the rank condition for infinitesimal
distance rigidity requires to distinguish the cases of n � d and
n < d (Lemma 14), while the rank condition for infinitesimal
bearing rigidity does not. Finally, an infinitesimally distance

4

only if rank(R(p)) = rank(R(p)).

The following result shows that bearing rigidity and global
bearing rigidity are equivalent notions.

Theorem 3 (Condition for Bearing Rigidity). A framework

G(p) in Rd
is bearing rigid if and only if it is globally bearing

rigid.

Proof. By definition, global bearing rigidity implies bearing
rigidity. We next prove the converse is also true. Suppose the
framework G(p) is bearing rigid. By the definition of bearing
rigidity and Theorem 1, any framework satisfying R(p)p0 = 0
and kp0 � pk  ✏ also satisfies R(p)p0 = 0, i.e.,

R(p)(p+ �p) = 0 ) R(p)(p+ �p) = 0, 8�p, k�pk  ✏,

where �p = p0 � p. It then follows from R(p)p = 0 and
R(p)p = 0 that R(p)�p = 0 ) R(p)�p = 0 for all k�pk 

✏. This means Null(R(p)) ✓ Null(R(p)) in spite of the con-
straint of k�pk. Since Null(R(p)) ✓ Null(R(p)) as shown
in Lemma 4, we further have Null(R(p)) = Null(R(p)) and
consequently G(p) is globally bearing rigid.

We next give the necessary and sufficient condition for
infinitesimal bearing rigidity.

Theorem 4 (Condition for Infinitesimal Bearing Rigidity).
For a framework G(p) in Rd

, the following statements are

equivalent:

(a) G(p) is infinitesimally bearing rigid;

(b) rank(R(p)) = dn� d� 1;

(c) Null(R(p)) = span{1⌦Id, p} = span{1⌦Id, p�1⌦ p̄},

where p̄ = (1⌦ Id)Tp/n is the centroid of {pi}i2V .

Proof. Lemma 3 shows span{1 ⌦ Id, p} ✓ Null(R(p)).
Observe 1⌦Id and p correspond to a rigid-body translation and
a scaling of the framework, respectively. The stated condition
directly follows from Definition 5. Note also that {1⌦ Id, p�
1⌦ p̄} is an orthogonal basis for span{1⌦ Id, p}.

The special cases of R2 and R3 are of particular interest.
A framework G(p) is infinitesimally bearing rigid in R2 if
and only if rank(R(p)) = 2n � 3, and in R3 if and only
if rank(R(p)) = 3n � 4. Note Theorem 4 does not require
n � d.

The following result characterizes the relationship between
infinitesimal bearing rigidity and global bearing rigidity.

Theorem 5. Infinitesimal bearing rigidity implies global bear-

ing rigidity.

Proof. Infinitesimal bearing rigidity implies Null(R(p)) =
span{1 ⌦ Id, p}. Since span{1 ⌦ Id, p} ✓ Null(R(p)) ✓

Null(R(p)) as shown in Lemma 4, it immediately follows
from Null(R(p)) = span{1 ⌦ Id, p} that Null(R(p)) =
Null(R(p)), which means G(p) is globally bearing rigid
according to Theorem 2.

The converse of Theorem 5 is not true, i.e., global bearing
rigidity does not imply infinitesimal bearing rigidity. For
example, the collinear framework as shown in Figure 2(a) is
globally bearing rigid but not infinitesimally bearing rigid.

We have at this point discussed three notions of bearing
rigidity: (i) bearing rigidity, (ii) global bearing rigidity, and
(iii) infinitesimal bearing rigidity. According to Theorem 3
and Theorem 5, the relationship between the three kinds of
bearing rigidity can be summarized as below:

infinitesimal
bearing rigidity

bearing rigidity global
bearing rigidity

We next explore two important properties of infinitesimal
bearing rigidity. The following theorem shows that infinites-
imal bearing rigidity can uniquely determine the shape of a
framework.

Theorem 6 (Unique Shape). An infinitesimally bearing rigid

framework can be uniquely determined up to a translational

and a scaling factor.

Proof. Suppose G(p) is an infinitesimally bearing rigid frame-
work in Rd. Consider an arbitrary framework G(p0) that is
bearing equivalent to G(p). Our aim is to prove G(p0) is
different from G(p) only in a translation and a scaling factor.
The configuration p0 can always be decomposed as

p0 = cp+ 1⌦ ⌘ + q, (6)

where c 2 R \ {0} is the scaling factor, ⌘ 2 Rd denotes a
rigid-body translation of the framework, and q 2 Rdn, which
satisfies q ? span{1⌦Id, p}, represents a transformation other
than translation and scaling. We only need to prove q = 0.
Since infinitesimal bearing rigidity implies that Null(R(p)) =
span{1⌦ Id, p}, multiplying R(p) on both sides of (6) yields

R(p)p0 = R(p)q. (7)

Since G(p0) is bearing equivalent to G(p), we have R(p)p0 = 0
by Theorem 1. Therefore, (7) implies R(p)q = 0. Since q ?

span{1 ⌦ Id, p} = Null(R(p)), the above equation suggests
q = 0. As a result, p0 is different from p only in a scaling
factor c and a rigid-body translation ⌘.

The following theorem shows that if a framework is in-
finitesimally bearing rigid in a lower dimension, it is still
infinitesimally bearing rigid when evaluated in a higher di-
mensional space.

Theorem 7 (Invariance to Dimension). Infinitesimal bearing

rigidity is invariant to space dimensions.

Proof. Consider a framework G(p) in Rd (n � 2, d � 2).
Suppose the framework becomes G(p̃) when the dimension is
lifted from d to d̃ (d̃ > d). Our goal is to prove that

rank(R(p)) = dn� d� 1 , rank(R(p̃)) = d̃n� d̃� 1,

and consequently G(p̃) is infinitesimally bearing rigid in Rd̃

if and only if G(p) is infinitesimally bearing rigid in Rd.
First, consider an oriented graph and write the bearings of

G(p) and G(p̃) as {gk}mk=1 and {g̃k}mk=1, respectively. Since
p̃i is obtained from pi by lifting the dimension, without loss

*this relation does not hold for 
distance rigidity
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The bearing-based formation control problem is to design a 
(distributed) control law that drives the agents to a desired spatial 
configuration determined by interagent bearings.

A gradient controller

Bearing-Based Formation Control

1 2 3 4

1

2 3

4
g⇤13

target formation

�(p) =
X

{i,j}2E

kgij � g⇤ijk2

u = �rp�(p) = RT (p)g⇤

- control requires bearings and distances!

ṗi = �
X

j⇠i

1

kpj � pik
Pgijg

⇤
ij
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A Bearing-Only Formation Controller

a bearing-only approach

ṗi(t) = �
X

j⇠i

Pgij(t)g
⇤
ij

- a distributed protocol 
- almost-global stability 

exponential stability 
- centroid and scale invariance 
- works for arbitrary dimension 
- collision avoidance

[Zhao and Zelazo, TAC2015]

stability analysis depends 
on the bearing rigidity of 
the formation!

x assumes undirected graph 
x assumes common inertial frame 
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Bearing Rigidity Theory

a bearing-only approach

ṗi(t) = �
X

j⇠i

Pgij(t)g
⇤
ij

- formation maneuvering control (TCNS ’15) 
- leader-follower setups 
- network localization problems (Automatica ‘15 (submitted))
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Bearing-Based Formation Stabilization 
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Formation Control in Local Coordinates

- sensing is typically physically attached 
to the body frame of the robot 

- sensing is inherently directed 
- knowledge of common inertial frame 

is not a realistic assumption

rigidity theory extensions for directed 
sensing graphs and local (body-frame) 
measurements

SE(2) Rigidity Theory
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SE(2) Rigidity Theory
bar-and-joint frameworks in SE(2)

G = (V, E)
p : V ! 2

 : V ! S1

(G, p, )

G

a directed graph

�(v2)

�(v3)

�(v1) = (p(v1), (v1))
(p, )

�vu

pu

pv

 v

 u

a directed edge indicates availability 
of relative bearing measurement

ruv

ruv =


cos( u) sin( u)
� sin( u) cos( u)

�
pv � pu
kpv � puk

bG(p, ) =
⇥
rTe1 · · · re|E|

⇤T
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Infinitesimal Motions in SE(2)

Rigidity is a combinatorial theory for characterizing the “stiffness” 
or “flexibility” of structures formed by rigid bodies connected by 
flexible linkages or hinges.

SE(2) Rigidity
- maintain bearings in local frame 
- rigid body rotations and scaling + 
coordinated rotations
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A framework is infinitesimally rigid if all the infinitesimal motions  
are trivial (i.e., translations, scalings, coordinated rotations).

Rigidity Theory

A framework is SE(2) infinitesimally rigid if and only if the rank of 
the directed bearing rigidity matrix is 3n-4.

Theorem

Directed Bearing Rigidity Matrix

BG(p, ) = r(p, )bG(p, )

=
h
�diag

⇣
Prvu

kpu�pvkT ( v)T
⌘
(ET ⌦ I) �diag(r?vu)E

T
out

i
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A framework is infinitesimally rigid if all the infinitesimal motions  
are trivial (i.e., translations, scalings, coordinated rotations).

Rigidity Theory

A framework is SE(2) infinitesimally rigid if and only if the rank of 
the directed bearing rigidity matrix is 3n-4.

Theorem

Directed Bearing Rigidity Matrix

BG(p, ) = r(p, )bG(p, )

Definition II.4 (Global rigidity of SE(2) Frameworks). A

framework (G, p, ) is globally rigid in SE(2) if every

framework which is bearing equivalent to (G, p, ) is also

bearing congruent to (G, p, ).

The notion of infinitesimal rigidity is characterized by the
null-space of the Jacobian of the directed bearing rigidity
function, r�bG(�(V)). In this direction, define the directed

bearing rigidity matrix, BG(�(V)) as

BG(�(V)) := r�bG(�(V)) 2 R2|E|⇥3|V|. (4)

It is worth examining the structure of this matrix in more
detail. In particular, we have that

@ rvu
@�v

=
h
� r?vu(r?vu)T

kpu�pvk T ( v)T �r?vu

i

@ rvu
@�u

=
h

r?vu(r?vu)T

kpu�pvk T ( v)T 0
i

Here, r?vu denotes a ⇡/2 counterclockwise rotation of the
vector rvu (i.e., r?vu = T (⇡/2)rvu). Furthermore, the matrix
r?vu(r

?
vu)

T is a projection matrix, and we introduce the
notation Prvu = I2 � rvurTvu = r?vu(r

?
vu)

T . For notational
convenience, we will also often work with a permutation of
the directed bearing rigidity matrix,

B̃G(�(V)) =
⇥
r�pbG(�(V)) r� bG(�(V))

⇤

=
h
�diag

⇣
Prvu

kpu�pvkT ( v)T
⌘
E

T � diag
�
r?vu

�
ET

out

i
.(5)

Definition II.5 (Infinitesimal Rigidity in SE(2)). An

SE(2) framework (G, p, ) is infinitesimally rigid if

Null [BG(�(V))] = Null
⇥
BK|V|(�(V))

⇤
. Otherwise, it is

infinitesimally roto-flexible in SE(2).

Definition II.5 leads to the following result which relates
the infinitesimal rigidity of an SE(2) framework to the rank
of the directed bearing rigidity matrix.

Theorem II.6 ( [17]). An SE(2) framework is infinitesimally

rigid if and only if rk[BG(�(V))] = 3|V|� 4.

For an infinitesimally rigid SE(2) framework, the null
space of the directed bearing rigidity matrix is also well
understood. It corresponds to the rigid body translations
and dilations of the framework, in addition to coordinated

rotations. The translations and dilations correspond precisely
to the infinitesimal motions required in bearing rigidity for
frameworks embedded in R2 [13]. A coordinated rotation
consists of a rotation of each agent about its own body axis
at the same angular speed coupled with a rigid-body rotation
of the framework in R2 so as to leave unchanged all the
relative bearings. These coordinated rotations are the non-
trivial solution to the equation

� diag
✓

Prvu

kpu � pvk
T ( v)

T

◆
E

T
p = diag

�
r?vu

�
ET

out . (6)

The solutions define the coordinated rotation subspace,

R� =

⇢
p
 

�
|


p
 

�
is a solution of (6)

�
.

It was shown in [17] that dim{R�} = 1 if and only if the
SE(2) framework is infinitesimally rigid.

Proposition II.7. For an infinitesimally rigid SE(2) frame-

work,

Null[B̃G(�(V))] = span

⇢
1V ⌦ I2

0

�
,


�p

0

�
,R�

�
.

We are also able to define the notion of minimally in-
finitesimal rigid SE(2) frameworks. In fact, this definition
follows from Theorem II.6 since an infinitesimally rigid
SE(2) framework will require at least |E| = 3|V|�4 edges.

Definition II.8 (Minimal Infinitesimal Rigidity in SE(2)). An

SE(2) framework (G, p, ) is minimally infinitesimally rigid
if for any G0

obtained by removing any edge from G, the

resulting framework (G0, p, ) is infinitesimally roto-flexible

in SE(2).

Finally, observe that the directed bearing rigidity matrix
is defined in terms of the bearing vectors expressed in the
local frame of each agent (rvu), and the distance between
agents. We also define the scale-free directed bearing rigidity
matrix. This is motivated by the desire to implement control
strategies that do not depend on range, as we will see in the
sequel. The scale-free bearing rigidity matrix is thus defined
as

B̂G(�(V)) =
h
�diag

�
PrvuT ( v)T

�
E

T �diag
�
r?vu

�
ET

out

i
.

(7)

Proposition II.9. For a SE(2) framework (G, p, ) with

pu 6= pv for all u, v 2 V , one has

rk[BG(�(V))] = rk[B̂G(�(V))].

Proof. The result follows directly from the relationship

B̂G(�(V)) =


diag(kpu � pvk) 0
0 I|V|

�
B̃G(�(V)).

An Illustrative Example: The Triangle

To illustrate some of the above definitions, we consider an
SE(2) framework consisting of three nodes, i.e., a triangle.

Proposition II.10. An SE(2) framework (G, p, ) consisting

of three non-collinear points is infinitesimally rigid if and

only if |E| = 5.

Proof. Assume, without loss of generality, that E =
{(v1, v2), (v1, v3), (v2, v1), (v2, v3), (v3, v1)}, i.e., the edge
(v2, v3) is “missing” from E . We show now that that the
bearing r(v2,v3) can be algebraically computed from the
other five bearing measurements. Let us define the angle
�uv = atan2(rxuv, r

y
uv), i.e., ruv = [cos(�uv) sin(�uv))]T .

It is easy to check that the following relation holds

�uv � �vu =  v �  u � ⇡ (8)
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The SE(2) bearing-based formation control problem is to design a 
(distributed) control law that drives the agents to a desired spatial 
configuration determined by interagent bearings measured in the 
local body frame of each agent.

A gradient controller

SE(2) Formation Control

�(p, ) =
X

(i,j)2E

krij � r⇤ijk2


ṗ
 ̇

�
= �r(p, )�(p, ) = BG(p, )

T b⇤G

ṗi =

for any u and v. Exploiting (8) three times we can write:

�v2v3 = �v3v2 +  v3 �  u2 � ⇡

= �v3v2 + ( v3 �  v1)� ( u2 �  v1)� ⇡

= �v3v2 + �v1v3 � �v3v1 � �v1v2 + �v2v1 � ⇡, (9)

which proves that �v2v3 , and therefore rv2v3 , can be com-
puted from the five available bearings. Therefore, measuring
five bearings is equivalent to measuring six bearings, i.e., to
having a complete measurement graph. To conclude the first
part of the proof we observe that if the agents are not aligned
then the complete graph guarantees the infinitesimal rigidity
of the framework.

In order to show the minimality we first observe that each
two rows of the bearing rigidity matrix corresponding to
each measured bearing ruv are linearly dependent. In fact,
this can be seen by noticing that (r?uv)T is in the left null-
space of the 2 ⇥ 6 matrix composed by these two rows.
Furthermore, as stated by Theorem II.6, the rank of the
bearing rigidity matrix must be in this case 3 · 3� 4 = 5 in
order to have infinitesimal rigidity. Therefore, the presence
of at least five bearing measurements is necessary in order
to have infinitesimal rigidity. This proves the minimality of
the framework and concludes the proof.

III. FORMATION CONTROL IN SE(2)

We now study a formation control problem in SE(2).
Consider a team of n agents (n � 2) in SE(2) where there is
no knowledge of a common reference frame. The dynamics
of each agent are expressed as


T ( i)T ṗi

 ̇i

�
=


ui

!i

�
, i = 1, . . . , n. (10)

Here, the control input ui is applied in the body-frame of
agent i, and wi directly controls the angular velocity of agent
i. Agents are able to sense the bearing to neighboring agents
according to a fixed directed graph G = (V, E).

We would like to design a distributed control law that
utilizes only bearing information to drive the formation to a
configuration that is congruent to the desired configuration
(i.e., admits the same directed bearing rigidity function). We
denote the desired formation in terms of desired relative
bearings between each agent,

bd
G =

⇥
(rde1)

T · · · (rdeE )
T

⇤T
.

Assumption 1. There exists an SE(2) framework

(G, pd, d) with �d(V) = (pd, d) such that

bG(�d(V)) = bd
G . Furthermore, the directed bearing

rigidity matrix B̃G(�d(V)) is minimally infinitesimally rigid

in SE(2).

In this direction, define the following potential function,

J(�(V)) = 1

2
kbG(�(V))� bd

Gk2.

We would like to examine the following gradient controller,


ṗ
 ̇

�
= �kr�J(�(V))

= �kB̃G(�(V))T
�
bG(�)� bd

G
�
, (11)

Here, k > 0 is a scalar gain used to improve the rate of
convergence of the system. For analysis purposes, we take
k = 1. Observe that by construction B̃G(�(V))T bG(�) = 0,
leading to


ṗ
 ̇

�
= B̃G(�(V))Tbd

G .

Note that this control is expressed in the global frame. The
form of the controller for each agent expressed in the local
body frame takes the form

ui = T ( i)
T ṗi = �T ( i)

T
X

(i,j)2E

T ( i)
Prij

kpj � pik
rdij

+ T ( i)
T

X

(j,i)2E

T ( j)
Prji

kpi � pjk
rdji =

=
X

(i,j)2E

Prij

kpj � pik
rdij +

X

(j,i)

T ( j �  i)
Prji

kpi � pjk
rdji

(12)

 ̇i = �
X

(i,j)2E

(r?ij)
T rdij (13)

A few comments regarding the above control strategy are
in order. Indeed, the control in (12–13) has a distributed
structure depending only on the sensing graph G. On the
other hand, this control requires communication between
agents. That is, if there is an edge (j, i) 2 E , then agent
i requires the bearing measurement rji and the desired
bearing rdji from agent j. Furthermore, the agents also require
information on their relative orientation, T ( i)TT ( j) =
T ( j �  i), as well as the range kpi � pjk between neigh-
boring agents. As well-known, this latter quantity cannot be
recovered from sole measured bearings and an independent
measurement (via, e.g., a distance sensor) would be required.
To cope with this issue, we will detail in the following a
scale-free version of controller (12) for which no distance
measurement is needed. On the other hand, the relative
orientation T ( j �  i) among neighboring pairs can be
directly obtained in terms of measured bearings thanks to
the rigidity of the framework (G, p, ). Indeed, if (G, p, )
is rigid then one could, for instance, exploit the distributed
estimation strategy illustrated in [17] for recovering the quan-
tity T ( j �  i) from the measured bearings. Alternatively,
one could make use of the geometric arguments of [22]
for algebraically obtaining T ( j �  i) from the available
bearings. An example of this algebraic procedure for the case
of 3 agents is given in the proof of Proposition II.10.

In this direction, we now propose the following scale-free
alternative control for avoiding measurement of the inter-
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for any u and v. Exploiting (8) three times we can write:

�v2v3 = �v3v2 +  v3 �  u2 � ⇡

= �v3v2 + ( v3 �  v1)� ( u2 �  v1)� ⇡

= �v3v2 + �v1v3 � �v3v1 � �v1v2 + �v2v1 � ⇡, (9)

which proves that �v2v3 , and therefore rv2v3 , can be com-
puted from the five available bearings. Therefore, measuring
five bearings is equivalent to measuring six bearings, i.e., to
having a complete measurement graph. To conclude the first
part of the proof we observe that if the agents are not aligned
then the complete graph guarantees the infinitesimal rigidity
of the framework.

In order to show the minimality we first observe that each
two rows of the bearing rigidity matrix corresponding to
each measured bearing ruv are linearly dependent. In fact,
this can be seen by noticing that (r?uv)T is in the left null-
space of the 2 ⇥ 6 matrix composed by these two rows.
Furthermore, as stated by Theorem II.6, the rank of the
bearing rigidity matrix must be in this case 3 · 3� 4 = 5 in
order to have infinitesimal rigidity. Therefore, the presence
of at least five bearing measurements is necessary in order
to have infinitesimal rigidity. This proves the minimality of
the framework and concludes the proof.

III. FORMATION CONTROL IN SE(2)

We now study a formation control problem in SE(2).
Consider a team of n agents (n � 2) in SE(2) where there is
no knowledge of a common reference frame. The dynamics
of each agent are expressed as


T ( i)T ṗi

 ̇i

�
=


ui

!i

�
, i = 1, . . . , n. (10)

Here, the control input ui is applied in the body-frame of
agent i, and wi directly controls the angular velocity of agent
i. Agents are able to sense the bearing to neighboring agents
according to a fixed directed graph G = (V, E).

We would like to design a distributed control law that
utilizes only bearing information to drive the formation to a
configuration that is congruent to the desired configuration
(i.e., admits the same directed bearing rigidity function). We
denote the desired formation in terms of desired relative
bearings between each agent,

bd
G =

⇥
(rde1)

T · · · (rdeE )
T

⇤T
.

Assumption 1. There exists an SE(2) framework

(G, pd, d) with �d(V) = (pd, d) such that

bG(�d(V)) = bd
G . Furthermore, the directed bearing

rigidity matrix B̃G(�d(V)) is minimally infinitesimally rigid

in SE(2).

In this direction, define the following potential function,

J(�(V)) = 1

2
kbG(�(V))� bd

Gk2.

We would like to examine the following gradient controller,


ṗ
 ̇

�
= �kr�J(�(V))

= �kB̃G(�(V))T
�
bG(�)� bd

G
�
, (11)

Here, k > 0 is a scalar gain used to improve the rate of
convergence of the system. For analysis purposes, we take
k = 1. Observe that by construction B̃G(�(V))T bG(�) = 0,
leading to


ṗ
 ̇

�
= B̃G(�(V))Tbd

G .

Note that this control is expressed in the global frame. The
form of the controller for each agent expressed in the local
body frame takes the form

ui = T ( i)
T ṗi = �T ( i)

T
X

(i,j)2E

T ( i)
Prij

kpj � pik
rdij

+ T ( i)
T

X

(j,i)2E

T ( j)
Prji

kpi � pjk
rdji =

=
X

(i,j)2E

Prij

kpj � pik
rdij +

X

(j,i)

T ( j �  i)
Prji

kpi � pjk
rdji

(12)

 ̇i = �
X

(i,j)2E

(r?ij)
T rdij (13)

A few comments regarding the above control strategy are
in order. Indeed, the control in (12–13) has a distributed
structure depending only on the sensing graph G. On the
other hand, this control requires communication between
agents. That is, if there is an edge (j, i) 2 E , then agent
i requires the bearing measurement rji and the desired
bearing rdji from agent j. Furthermore, the agents also require
information on their relative orientation, T ( i)TT ( j) =
T ( j �  i), as well as the range kpi � pjk between neigh-
boring agents. As well-known, this latter quantity cannot be
recovered from sole measured bearings and an independent
measurement (via, e.g., a distance sensor) would be required.
To cope with this issue, we will detail in the following a
scale-free version of controller (12) for which no distance
measurement is needed. On the other hand, the relative
orientation T ( j �  i) among neighboring pairs can be
directly obtained in terms of measured bearings thanks to
the rigidity of the framework (G, p, ). Indeed, if (G, p, )
is rigid then one could, for instance, exploit the distributed
estimation strategy illustrated in [17] for recovering the quan-
tity T ( j �  i) from the measured bearings. Alternatively,
one could make use of the geometric arguments of [22]
for algebraically obtaining T ( j �  i) from the available
bearings. An example of this algebraic procedure for the case
of 3 agents is given in the proof of Proposition II.10.

In this direction, we now propose the following scale-free
alternative control for avoiding measurement of the inter-
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stability analysis depends 
on the SE(2) bearing 
rigidity of the formation!

agent distances as in (12),

T ( i)
T ṗi = �

X

(i,j)2E

Prijr
d
ij +

X

(j,i)2E

T ( i �  j)
TPrjir

d
ji (14)

 ̇i = �
X

(i,j)2E

(r?ij)
T rdij , (15)

and we assume for the purpose of analysis that the agents are
able to acquire their relative orientation This control can be
expressed in a compact notation using the scale-free bearing
rigidity matrix as


diag(T ( i)T )ṗ
 ̇

�
=


diag(T ( i)T ) 0

0 I|V|

�
B̂G(�)

Tbd
G

(16)

It is worth noting that this control is in fact different than
the one proposed in [15]. In particular, in [15] a consensus-
type algorithm is used to align all agents to a common
orientation, thereby creating an effective common reference

frame, while the control action in (13) does not enforce any
agreement/alignment over common orientation.

Before proceeding with a stability analysis of this control,
we first present a useful result relating to the centroid of the
formation.

Proposition III.1. [15] The centroid of the formation p =
1
n (1

T ⌦ I2)p and its scale sp = 1
n

pPn
i=1 kpi � pk2 are

invariant under the dynamics (16).

Proof. In the global coordinate frame, the centroid dynamics
can be expressed as

ṗ =
(1T ⌦ I2)

n
ṗ = � (1T ⌦ I2)E diag(T ( v)Prvu)

n
bd
G = 0.

Similarly, the scale dynamics can be expressed as

ṡ =
1

n

(p � 1 ⌦ p)T

kp � 1 ⌦ pk ṗ.

From Proposition II.7, it follows that pT ṗ = 0 and (1 ⌦
p)T ṗ = 0 concluding the proof.

We are now prepared to state the main result. We will
show that for almost all initial conditions, the dynamics in
(16) asymptotically converges to the desired configuration.

Theorem III.2. Consider a minimally infinitesimally rigid

SE(2) framework (G, p(0), (0)) with directed bearing

rigidity function bG(�(V)). Consider a formation in SE(2)
specified by the vector of relative bearings bd

G satisfy-

ing Assumption 1. Then for almost all initial conditions

(p(0), (0)), the system (16) asymptotically converges to a

configuration �⇤
with bG(�⇤) = bd

G .

Proof. Without loss of generality, assume that the centroid
of the formation p(0) is at the origin. Furthermore, denote
by �d = (pd, d) a formation satisfying Assumption 1, that
is, bG(�d) = bd

G and assume pd = 0 and the scale satisfies
spd = sp(0).

Using a similar approach as found in [9], [15], we define
the new variable �p = p�pd and � =  � d. Differentiating
with respect to time yields


�̇p
�̇ 

�
= B̂G(�)

Tbd
G =

"
�E diag

⇣
T ( v)Prvu
kpu�pvk

⌘

�Eout diag
�
r?ij

�T

#
bd
G (17)

expressed in the global frame. Observe that an equilibrium
of the system corresponds precisely to the desired relative
bearings. In fact, using similar arguments used in [15], it
can be shown that the other equilibrium, corresponding to a
point reflection of the desired formation, is unstable.

The first point to observe is that (17) has a cascade
structure. In particular,

�̇ = �Eout diag
�
r?ij

�T
bd
G

does not depend on �p. Furthermore, the � dynamics have
a clear geometric interpretation since (r?ij)

T rdij = cos(⇡/2�
� i) = sin(� i). Let V =

Pn
i=1(1 � cos(� i)) be a

Lyapunov function. Then

V̇ = sin(�T )�̇ = � sin(�T )Eout sin (� )

= �
nX

i=1

di sin(� i)
2  0,

where di is the out-degree of node i (i.e. the ith row sum of
Eout. This shows the almost global asymptotic stability of
� to the origin.

Consider now the dynamics for �̇p,

�̇p = �� E diag
✓

T ( v)Prvu

kpu � pvk

◆
bd
G ,

and consider the Lyapunov function Vp = (1/2)�Tp �p. The
following is derivations are taken from [15]. Evaluating the
derivative of Vp along the trajectories of the system yields

V̇p = �Tp �̇p = �Tp B̂G(�)
Tbd

G = ��Tp E diag
�
T ( i)Prij

�
bd
G .

From (2) and the fact that rTijPrij = 0, it follows that

pT
�
E diag

�
T ( i)Prij

�
bd
G
�

= 0,

and V̇p simplifies to

�(pd)T
�
E diag

�
T ( i)Prij

�
bd
G
�
.

Using (2) again, we have

(pd)T
�
E diag(T ( i))

�
= diag(kpdj � pdi k)(bd

G)
T .

This leads to the following bound on the first term of V̇ ,

� diag(kpdj � pdi k)(bd
G)

T diag
�
Prij

�
bd
G  ↵(bd

G)
T diag

�
Prij

�
bd
G ,

where ↵ = max(kpdj � pdi k). Next, observe that from the
property of projection matrices one has

(bd
G)

T diag
�
Prij

�
bd
G=(bG(�))

T diag
⇣
Prdij

⌘
bG(�)
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Conclusions and Outlook

• coordination methods for multi-agent systems depend 
 on sensing and communication mediums 

• rigidity theory is a powerful framework for handling 
high-level multi-agent objectives under different 
sensing and communication constraints 
- bearing rigidity 
- SE(2) rigidity 
- SE(n) rigidity 

• directed sensing still has many open challenges
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