

Coordination of multi-robot systems with bearing measurements

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

CDC 2015 - Workshop on Taxonomies of Interconnected Systems: Partial and Imperfect Information in Multi-Agent Networks

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation Control is one of the canonical problems in multi-agent and multi-robot coordination

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Challenges in Multi-Robot Systems

<u>Sensing</u>

- GPS
- Relative Position
 Sensing
- Range Sensing
- Bearing Sensing

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

<u>Communication</u>

- Internet
- Radio
- Sonar
- MANet

Solutions to formation control problems in multirobot systems are *highly* dependent on the sensing and communication mediums available!

selection criteria depends on mission requirements, cost, environment...

Challenges in Multi-Robot Systems

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

selection criteria depends on mission requirements, cost, environment...

In real-world implementations, formation control must be achieved with *impartial or imperfect information* about the state of the entire formation

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation Control Strategies

- formation specified in a global coordinate system
- each agent assigned to a point in formation
- assumes GPS-type measurements
- formation specified by inter-agent *distances*
- agents tasked at maintaining distances to certain neighbors
- assumes distance sensing and relative-position information in a common reference frame

Distance-Based Formation Control Law

$$\dot{p}_{i} = u_{i}$$
$$u_{i} = -\sum_{j \sim i} \left(\|p_{i} - p_{j}\|^{2} - d_{ij}^{2} \right) \left(p_{i} - p_{j}\right)$$

[Krick2007, Anderson2008, Dimarogonas2008, Dörfler2010]

- convergence to desired formation shape depends on the structure of the underlying sensing/ communication network
- local stability analysis

Rigidity Theory

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graph Rigidity Theory

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

A *rigid* graph can only *rotate* and *translate* to ensure all distances between all nodes are preserved (i.e., preserve the shape)!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graph Rigidity Theory

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

NOT rigid!

There is a motion that preserves distances between nodes in the graph but the shape is *not* preserved!

A *rigid* graph can only *rotate* and *translate* to ensure all distances between all nodes are preserved (i.e., preserve the shape)!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Theory

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations
- rigidity for undirected graphs
- directed graph extensions persistence [Hendrickx, Anderson, Yu]
- distance-only extensions [Cao]

- requires range sensing

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Theory - Bearing Extensions 💱 Technion

TurtleBotll with Kinect Sensor

recently, there is an interest in *bearing-based* formation control

- (relatively) cheaper sensing
 - vision-based sensors
 - angle-of-arrival sensors

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Bearing Rigidity Theory

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

A *bearing rigid* graph can *scale* and *translate* to ensure bearings between all nodes are preserved (i.e., preserve the shape)!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Bearing Rigidity Theory

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

- Null $(P_x) = \operatorname{span}\{x\} \iff P_x y = 0 \text{ iff } x \parallel y.$
- $P_x^T = P_x$ and $P_x^2 = P_x$.
- P_x is positive semi-definite.
- "parallel" vectors have the same relative bearing vectors
- arbitrary dimensions

Bearing Rigidity Theory

A framework is **infinitesimally rigid** if all the infinitesimal motions are *trivial* (i.e., translations and scalings).

Theorem

A framework is **bearing infinitesimally rigid** if and only if the rank of the bearing rigidity matrix is *dn-d-1*.

Bearing Rigidity Matrix

$$R(p(\mathcal{V})) = \frac{\partial F_{\mathcal{B}}(\mathcal{G})}{\partial p(\mathcal{V})} =$$

$$\frac{P_{g_{ij}}}{\|p(v_i) - p(v_j)\|}$$

$$\left(E(\mathcal{G})^T \otimes I\right) \in \mathbb{R}^{md \times nd}$$

[Zhao and Zelazo, TAC2015]

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Distance and Bearing Rigidity

Bearing-Based Formation Control

The **bearing-based formation control** problem is to design a (distributed) control law that drives the agents to a desired spatial configuration determined by interagent bearings.

- control requires bearings and distances!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

a bearing-only approach

$$\dot{p}_i(t) = -\sum_{j\sim i} P_{g_{ij}(t)} g_{ij}^*$$

- a distributed protocol

- almost-global stability exponential stability
- centroid and scale invariance
- works for arbitrary dimension
- collision avoidance

stability analysis depends on the **bearing rigidity** of the formation!

x assumes undirected graph

x assumes common inertial frame

[Zhao and Zelazo, TAC2015]

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

formation stabilization," IEEE Transactions on Automatic Control, 2015

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

S. Zhao and D. Zelazo, "Bearing-Based Formation Maneuvering", 2015 10 0 z (meter) -10 -20 90 80 -10 70 60 50 x (meter) 0 40 30 20 10 10 y (meter) 0 -10

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

a bearing-only approach

$$\dot{p}_i(t) = -\sum_{j\sim i} P_{g_{ij}(t)} g_{ij}^*$$

- formation maneuvering control (TCNS '15)
- leader-follower setups
- network localization problems (Automatica '15 (submitted))

Zhao, Zelazo

Bearing-Based Formation Stabilization with Directed Interaction Topologies

Friday A07 9:30 - 9:50

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation Control in Local Coordinates 🐺 Technion

SE(2) Rigidity Theory

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

SE(2) Rigidity Theory

bar-and-joint frameworks in SE(2)

 (\mathcal{G}, p, ψ)

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ a directed graph $p: \mathcal{V} o \mathbb{R}^2$ $\psi: \mathcal{V} o \mathcal{S}^1$ (v3)

 (p, ψ) $\chi(v_1) = (p(v_1), \psi(v_1))$ $\chi(v_3)$ $\chi(v_2)$

a directed edge indicates availability of relative bearing measurement

$$b_{\mathcal{G}}(p,\psi) = \begin{bmatrix} r_{e_1}^T & \cdots & r_{e_{|\mathcal{E}|}} \end{bmatrix}^T$$

Infinitesimal Motions in SE(2)

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

SE(2) Rigidity

- maintain bearings in *local* frame
- rigid body rotations and scaling + coordinated rotations

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Theory

A framework is **infinitesimally rigid** if all the infinitesimal motions are *trivial* (i.e., translations, scalings, coordinated rotations).

Theorem

A framework is **SE(2) infinitesimally rigid** if and only if the rank of the directed bearing rigidity matrix is *3n-4*.

Directed Bearing Rigidity Matrix

$$\mathcal{B}_{\mathcal{G}}(p,\psi) = \nabla_{(p,\psi)} b_{\mathcal{G}}(p,\psi)$$

= $\left[-\operatorname{diag}\left(\frac{P_{r_{vu}}}{\|p_u - p_v\|} T(\psi_v)^T\right) (E^T \otimes I) - \operatorname{diag}(r_{vu}^{\perp}) E_{out}^T \right]$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Theory

A framework is **infinitesimally rigid** if all the infinitesimal motions are *trivial* (i.e., translations, scalings, coordinated rotations).

Theorem

A framework is **SE(2) infinitesimally rigid** if and only if the rank of the directed bearing rigidity matrix is *3n-4*.

Directed Bearing Rigidity Matrix

$$\mathcal{B}_{\mathcal{G}}(p,\psi) = \nabla_{(p,\psi)} b_{\mathcal{G}}(p,\psi)$$

$$\frac{\partial r_{vu}}{\partial \chi_{v}} = \begin{bmatrix} -\frac{r_{vu}^{\perp}(r_{vu}^{\perp})^{T}}{\|p_{u}-p_{v}\|}T(\psi_{v})^{T} & -r_{vu}^{\perp} \end{bmatrix}$$

$$\frac{\partial r_{vu}}{\partial \chi_{u}} = \begin{bmatrix} \frac{r_{vu}^{\perp}(r_{vu}^{\perp})^{T}}{\|p_{u}-p_{v}\|}T(\psi_{v})^{T} & \mathbf{0} \end{bmatrix}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

SE(2) Formation Control

The **SE(2) bearing-based formation control** problem is to design a (distributed) control law that drives the agents to a desired spatial configuration determined by interagent bearings measured in the local body frame of each agent.

A gradient controller

$$\Phi(p,\psi) = \sum_{(i,j)\in\mathcal{E}} ||r_{ij} - r_{ij}^*||^2$$
$$\begin{bmatrix} \dot{p} \\ \dot{\psi} \end{bmatrix} = -\nabla_{(p,\psi)} \Phi(p,\psi) = \mathcal{B}_{\mathcal{G}}(p,\psi)^T b_{\mathcal{G}}^*$$

$$\dot{p}_{i} = \sum_{(i,j)\in\mathcal{E}} \frac{P_{r_{ij}}}{\|p_{j} - p_{i}\|} r_{ij}^{d} + \sum_{(j,i)\in\mathcal{E}} T(\psi_{j} - \psi_{i}) \frac{P_{r_{ji}}}{\|p_{i} - p_{j}\|} r_{ji}^{d}$$

$$\dot{\psi}_i = -\sum_{(i,j)\in\mathcal{E}} (r_{ij}^{\perp})^T r_{ij}^d$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering CDC 2015 - Workshop on Taxonomies of Interconnected Systems Dec. 14, 2015 Osaka, Japan

x requires distances

x requires communication

x requires relative orientation

a scale-free SE(2) formation control

$$T(\psi_i)^T \dot{p}_i = -\sum_{(i,j)\in\mathcal{E}} P_{r_{ij}} r_{ij}^d + \sum_{(j,i)\in\mathcal{E}} T(\psi_i - \psi_j)^T P_{r_{ji}} r_{ji}^d$$
$$\dot{\psi}_i = -\sum_{(i,j)\in\mathcal{E}} (r_{ij}^\perp)^T r_{ij}^d,$$

stability analysis depends on the **SE(2) bearing rigidity** of the formation!

Bearing-Only Formation Control Using an SE(2) Rigidity Theory Friday A07 9:50 - 10:10

Zelazo, Robuffo Giordano, Franchi

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

An SE(2) Formation Controller

The formation reaches the desired bearings

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

- coordination methods for multi-agent systems depend on sensing and communication mediums
- *rigidity theory* is a powerful framework for handling high-level multi-agent objectives under different sensing and communication constraints
 - bearing rigidity
 - SE(2) rigidity
 - SE(n) rigidity
- directed sensing still has many open challenges

Invited Session Advertisement

Rigidity Theory for Problems in Multi-Agent Coordination

Friday A07 8:30 - 10:30

<u>Organizers</u> Daniel Zelazo Paolo Robuffo-Giordano Antonio Franchi

<u>Speakers</u>

- Z. Sun, U. Helmke, B.D.O. Anderson Rigid Formation Shape Control in General Dimensions: An Invariance Principle and Open Problems
- R. Williams, A. Gasparri, M. Soffietti, G. Sukhatme Redundantly Rigid Topologies in Decentralized Multi-Agent Networks
 - T. Eren
 - Combinatorial Measures of Rigidity in Wireless Sensors and Robot Networks
- S. Zhao, D. Zelazo Bearing-based Formation Stabilization with Directed Interaction Topologies
- D. Zelazo, P. Robuffo Giordano, A. Franchi Bearing-only Formation Control Using an SE(2) Rigidity Theory
- I. Shames, T. Summers, F. Farokhi, R.C. Shekhar Conditions and Strategies for Uniqueness of the Solutions to Cooperative Localization and Mapping Using Rigidity Theory

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Acknowledgements

UCRIVERSITY OF CALIFORNIA

Dr. Shiyu Zhao

Dr. Paolo Robuffo Giordano

Dr. Antonio Franchi

Questions?

Fabrizio Schiano

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering