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Motivation

A collection of dynamic systems that use sensed relative state
information to achieve higher level objectives.

Applications

formation control

localization

environmental surveillance

. . .

’absolute’ inertial measurements are often not available (deep
space, gps-denied environments)
however, relative measurements are available and can be very
accurate
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Relative Sensing Networks

implicit presence of a ‘network’ induced by sensing structure

Performance and design of networks:

Influence of topology on performance

Optimal topologies

Sparsity vs connectivity

Heterogeneity of dynamics
Σi

Σj

Σk

Σl
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Modeling of Relative Sensing Networks

A B

C D

∫
G

w(t) yG(t)

RSNs couple all agents through their outputs, described by an
underlying sensing graph G.

G = (V, E),
V node set (i.e. agents)
E edge set

[yG(t)]k =yi(t)− yj(t)
yG(t) =(E(G)T ⊗ I)y(t), E(G) ∈ Rn×|E|

incidence matrix captures difference
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Modeling of Relative Sensing Networks

A B

C D

∫
G

w(t) yG(t)

State space model

Σ(G) :


ẋ(t) = Ax(t) + Bw(t)
y(t) = Cx(t) + Dw(t)
yG(t) = (E(G)T ⊗ I)Cx(t)

Transfer function

Tw 7→G(s) = (E(G)T ⊗ I)H(s) with H(s) = diag(H1, H2, . . . ,Hn)

and Hi := Ci(sI −Ai)−1Bi

Performance ?
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Performance Analysis of RSNs

H∞-norm captures how finite energy exogenous signals are
amplified at the monitored outputs.

Theorem ( H∞-Performance of RSNs)

The H∞-norm of a heterogenous RSN is bounded from above by

‖Tw 7→G‖∞ ≤ ‖E(G)TQ‖2

where Q = diag(‖H1‖∞, . . . , ‖Hn‖∞).
Zelazo and Mesbahi, 2011

graph-centric characterization of H∞-norm

H∞ performance is dependent on graph structure

for SISO systems, this bound is tight
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From Analysis to Synthesis

Open Question:

Given n agents, how can we design RSNs with an optimal sensing
structure?
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Design of Relative Sensing Networks

Optimization problem
minimization of the spectral norm of the weighted incidence matrix

min
G

‖QE(G)‖2

subject to: G is connected

mixed integer problem

minimizing the upper bound

consider edge weights wi ≥ 0 (wi = 0→ no edge)

W = diag(w1, . . . , w|E|)

Gc complete graph

semidefinite optimization problem

Schuler et. al, Design of Sparse Relative Sensing Networks 8



Design of Relative Sensing Networks

Optimization problem
minimization of the spectral norm of the weighted incidence matrix

min
wi≥0

‖QE(Gc)W‖2

subject to: G is connected

mixed integer problem

minimizing the upper bound

consider edge weights wi ≥ 0 (wi = 0→ no edge)

W = diag(w1, . . . , w|E|)
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Reformulation as SDP

Performance constraint

‖WE(Gc)TQ‖22 ≤ γ2[
γ2I QE(Gc)W

WE(Gc)TQ I

]
≥ 0.

Connectivity constraint

λ2(G) > 0

eigenvector associated with λ1(G) = 0 is 1

P TE(Gc)WE(Gc)TP > 0, Im(P) = span(1⊥)

Boyd, 1998
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Optimization Problem

Semidefinite optimization problem (with γ as an upper bound)

min
wi≥0,γ2>0

γ2

subject to

[
γ2I QE(Gc)W

WE(Gc)TQ I

]
≥ 0 performance constraint

P TE(Gc)WE(Gc)TP > 0 connectivity constraint

Example
complete graph

1 0.35

2

0.27

3

1.85

4

0.43

5

1.64

6

1.24

7

7.48

8

0.17

9

2.93

10

2.81

→

optimal performance

1 0.35

2

0.27

3

1.85

4

0.43

5

1.64

6

1.24

7

7.48

8

0.17

9

2.93

10

2.81

without sparsity constraint, all wi 6= 0
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Design of Sparse Relative Sensing Networks

Definition (0-norm)

The 0-norm of a vector w ∈ Rn with w = [wT1 , . . . , w
T
|E|]

T is
defined as

‖w‖0 = {number of wi|wi 6= 0}.

min
wi≥0

‖w‖0

subject to

[
γ2I QEW (Gc)

WE(Gc)TQ I

]
≥ 0

P TE(Gc)WE(Gc)TP > 0

and γ fixed

objective function is non-convex → combinatorial problem
convex relaxation by re-weighted `1-optimization
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Sparsity Promoting Optimization

feasible set

see also Candès, Wakin and Boyd, 2008

Lin, Fardad and Jovanovic̀, 2011
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Sparsity Promoting Optimization

feasible set

F ∗

min ‖x‖2
subject to x ∈ feasible set

convex optimization problem

does not deliver sparse solutions

see also Candès, Wakin and Boyd, 2008

Lin, Fardad and Jovanovic̀, 2011
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Sparsity Promoting Optimization

feasible set

F ∗

feasible set

F ∗

feasible set

F ∗

min

n∑
i=1

mi|xi|

subject to x ∈ feasible set
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delivers sparse solutions for semidefinite programs
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Sparsity Promoting Optimization

feasible set

F ∗

feasible set

F ∗

feasible set

F ∗

feasible set

F ∗

min ‖x‖p, 0 < p < 1

subject to x ∈ feasible set

non-convex optimization problem
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Sparse Design of Relative Sensing Networks

Semidefinite optimization problem

min
wi≥0

n∑
i=1

miwi

subject to

[
γ2I QE(Gc)W

WE(Gc)TQ I

]
≥ 0

P TE(Gc)WE(Gc)TP > 0

Maximum weight on each edge

0 ≤ wi ≤ wi,max

resulting graph is always a tree
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Tradeoff Between Connectivity and Sparsity

Maximization of weighted connectivity
agent dynamic represents node weight

max
wi≥0,µ>0

µ

subject to P T (EWET − µQ)P > 0

Shafi, Arcak and El Ghaoui, 2010

Sparsity vs connectivity

min
wi≥0,µ>0

(1− α)

n∑
i=1

miwi−αµ, α ∈ (0, 1)

subject to

[
γ2I QE(G)W

WE(G)TQ I

]
≥ 0

P T (EWET − µQ)P > 0
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Optimization Algorithm

Algorithm 1 Sparse Topology Design

1 Set h = 0 and choose m
(0)
i for i = 1, . . . , |E| and ν > 0.

2 Solve the minimization problem to find the optimal solution

w
(h)
i .

3 Update the weights

m
(h+1)
i = (w

(h)
i + ν)−1.

4 Terminate on convergence, otherwise set h = h+ 1 and go to
Step 2.

Weights: initial weights m
(0)
i can promote desired sub-graphs
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Example: Homogenous RSN

Promotion of sub-graphs (e.g. path)
10 agents, γ = 10, m0

path = 10−4
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Example: Heterogenous RSN

Topology optimization
10 random agents with ‖Hi‖∞ ∈ [0.17, 7.48], γ = 10
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Conclusion and Outlook

design of sparse relative sensing networks

consideration of performance,
connectivity and sparsity constraints

homogenous and heterogenous agent
dynamics

fast convergence of algorithm

suitable for large networks

promotion of sub-graphs

Σi

Σj

Σk

Σl

Next steps: Extensions to design of robust relative sensing
networks.

Thank you!
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