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HOW DO WE CONTROL MULTI-AGENT SYSTEMS?

centralized approach decentralized/distributed approach

communication

/ controller o

ST
B g e
-

not scalable
not robust



What is the right control architecture?



HOW DO WE CONTROL MULTI-AGENT SYSTEMS?

communica tion

What is the right control architecture?

» of each agent
» of the information exchange layer
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CONTROL ARCHITECTURES

MULTI-ROBOT SYSTEM
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CONTROL ARCHITECTURES

MULTI-ROBOT SYSTEM

Environment

Controlled Variables

» dynamics and the

information exchange layer
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MULTI-AGENT SYSTEM ARCHITECTURES
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» the networked system

» dynamics for coordination

» information exchange
architectures



NETWORKED DYNAMIC SYSTEMS
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NETWORKED DYNAMIC SYSTEMS

Agent Dynamics

dynamics $ { T = [i(wi,u;)
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NETWORKED DYNAMIC SYSTEMS

Agent Dynamics

dynamics $ T = [i(wi,u;)
(%) A Ly = ha(wg, ug)
o—t @ Y Controller Dynamics
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NETWORKED DYNAMIC SYSTEMS

Agent Dynamics
T = fi(Ts, uq)
yi = hi(xq, u;)
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Controller Dynamics

He:{

Information Exchange Network

7.76 — Qbe(??ea Ce)
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A Graph
G = (Vv 8)
Incidence Matrix
E(G) € RIVIXIE]
1 0
-1 1
EG) =1 ¢ i
0 0




DIFFUSIVELY COUPLED NETWORKS

Kumamoto Model

dynamics
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DIFFUSIVELY COUPLED NETWORKS

Kumamoto Model

dynamics
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SYNCHRONIZATION - A NETWORK OPTIMIZATION PERSPECTIVE
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What properties should the agent and controller

dynamics posses to solve the synchronization
problem?



SYNCHRONIZATION - A NETWORK OPTIMIZATION PERSPECTIVE
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SYNCHRONIZATION - A NETWORK OPTIMIZATION PERSPECTIVE

dynamics . .
5 Synchronization
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interaction

protocol » assume agents and controllers
admit steady-state solutions




SYNCHRONIZATION - A NETWORK OPTIMIZATION PERSPECTIVE

dynamics . .
5) Synchronization
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protocol » assume agents and controllers

admit steady-state solutions

STEADY-STATE INPUT-OUTPUT RELATIONS




INPUT-OUTPUT RELATIONS

E:{ r = Ax + Bu

y=Cr+Du = FW={yly=(-CA" B+ D)u}

SISO and Stable 4

/Qu
/

2‘{ii =k =1{(0,y), y € R}
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CONSISTENCY OF STEADY-STATES

The network enforces a relation on the steady-state

%u_(t) Y y ()
E(G) EG)"
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CONSISTENCY OF STEADY-STATES

The network enforces a relation on the steady-state

u € k_l(y)
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CONSISTENCY OF STEADY-STATES

The network enforces a relation on the steady-state

u € k_l(y)
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CONSISTENCY OF STEADY-STATES

The network enforces a relation on the steady-state
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CONSISTENCY OF STEADY-STATES

The network enforces a relation on the steady-state

(e EG)Tk(-E(G)n) ue k™(y)

Z |

11

ue —E(G)v(EG)"y)

0€y (1) — E(G) k(—E(G)u) 0€k™(y) +E(G)7 (E(G)"y)

What are the solutions, if they exist, of this
system of non-linear inclusions?



INTEGRATING THE CONSISTENCY EQUATIONS
INTEGRAL FUNCTIONS OF STEADY-STATE 1/0 RELATIONS

example -_—

e v=k(u) =sgn(u)
o K(u)=u
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OPTIMIZATION PERSPECTIVE

ce E(G) k(-EG)n)




MONOTONE RELATIONS AND CONVEXITY

Theo rem [Rockafellar, Convex Analysis]

The sub-differential for the closed proper
convex functions onR are the maximal
monotone relations fromR toRR .

Maximal Monotone Relations
complete non-decreasing curves in IR?

V4 V4 V4

“up” and "to the right”



INTEGRATING THE CONSISTENCY EQUATIONS
INTEGRAL FUNCTIONS OF STEADY-STATE 1/0 RELATIONS

when steady-state I/O relations are maximally
monotone, their integral functions are convex!

K & K™ I & |

convex dual convex dual



NETWORK OPTIMIZATION PERSPECTIVE

OPP Conve¢x>dual OFP
when the steady-state input-output relations a
maximally monotone, the solutions of network
consistency equations are the optimal solutions of
the convex dual network optimization problems!



SYNCHRONIZATION - A NETWORK OPTIMIZATION PERSPECTIVE

dynamics
» assume agents and controllers
oY admit steady-state solutions
r T N » assume steady-state input-output
E(G) maps are maximally monotone
N J

> if the network system has a
steady-state, it is an optimal
solution of the OPP and OFP

interaction problems
protocol

Under what conditions does the network system
actually converge to these steady states?



a “classic” result...

» assume there exists constant signals u,y, u,¢ st. u=—Epu,,( =E'y

 each dynamic system is output strictly passive with respect to u;, y;
d
o Si(i(8)) < (wilt) = yi)(ua(t) = w) = pillyi(®) = yill

« each controller is passive with respect to Cg, L

d

ﬁwl«(ﬁk(t)) < (,uk(t) — Mk)(Ck(t) — Ck)

Theorem [Arcak 2007]
Suppose the above assumptions are satisfied. Then the
network output converges to the constant valuey; i.e,

lim y(t) =y



MEIP SyStems [Burger, Z, Allgower 2014]

The dynamical SISO system

z(t) = flz(t), u(t), w)
y(t) = h(z(t),u(t),w)

is mazimal equilibrium independent passive if there exists a maximal monotone
relation k, C R? such that for all (u,y) € k, there exists a positive semi-definite
storage function S(x(t)) satisfying

d

Z8(x(t)) < (y(t) = y)(u(t) - v).

Furthermore, it is output-strictly maximal equilibrium independent passive if
additionally there is a constant p > 0 such that

%S(az(t)) < (y(t) — y)(u(t) — u) — plly(t) — y|1>

[Hines et. al. Automatica 2011]



NETWORKED MEIP SYSTEMS

» assume agents are output strictly MEIP

» assume controllers are MEIP

Th eo rem [Burger, Z, Allgower 2014]

Assume the above assumptions hold. Then the signals u(t),y(t),((t) and pu(t)

converge to the constant signals u, 7, é and (1 which are optimal solutions to the
problems (OFP) and (OPP):

Optimal Potential Problem Optimal Flow Problem
min 3 ; K (ys) + 2 Te(Ce) || min Do Kylus) + 3. Te(e)
y7 u)
st. Ely=¢ st. u—+ EFu=0.




MONOTONICITY AND PASSIVITY-BASED COOPERATIVE CONTROL

<

dynamics

interaction )
protocol

an analysis result - convergence of
network system and solutions of a pair

of network optimization problems
[Automatica ‘14, TAC ‘17 (under review)]

a synthesis result - it is possible to
design the controllers to achieve a
desired steady by shaping the

network optimization problems
[L-CSS "17]

cooperative control of passivity-short
systems - optimization framework
relates regularization to output-

feedback passivation of the agents
[L-CSS ‘18 (under review)]
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COORDINATION OBJECTIVES

rendezvous formation control localization

Does the control strategy need to change with different
sensing/communication?

Are there common architectural requirements for information
exchange that do not depend on the choice of sensing?



COORDINATION OBJECTIVES

rendezvous formation control localization

Does the control strategy need to change with different
sensing/communication?

Are there common architectural requirements for information
exchange that do not depend on the choice of sensing?



FORMATION CONTROL

Given a team of robots endowed with the ability to sense/
communicate with neighboring robots, design a control for
each robot using only local information that moves the team
to a desired geometric pattern.




FORMATION CONTROL

Given a team of robots endowed with the ability to sense/
communicate with neighboring robots, design a control for
each robot using only local information that moves the team
to a desired geometric pattern.




FORMATION DETERMINATION = SENSOR SELECTION
HOW TO DEFINE A SHAPE

distances

di3
A di2
&2 do3
&1 A &3

o - bearings
(0,0) iy
absolute position
913 923
> <

di12




EXAMPLE: FORMATION CONTROL

DISTANCE CONSTRAINED

Formation Control
e SPECIFIED BY DISTANCES BETWEEN
_ 2 2
PAIRS OF ROBOTS ui =Y (lpi — pslI> = d3;)(pj — ps)
di; € R " Krick2009]

e FINAL FORMATION WILL BE A
TRANSLATION OR ROTATION OF SHAPE
SATISFYING DISTANCE CONSTRAINTS p1(0)

e AGENTS REQUIRE RELATIVE POSITION AND
DISTANCES

P; — Di p2(0)



EXAMPLE: FORMATION CONTROL

BEARING ONLY

Formation Control
e SPECIFIED BY BEARING VECTORS u; = — Z(I — gijg;‘;?)g;kj
* 2 * || )~ ]
g9;; € R, HQin—l o

[Zhao, Z 2016]

e FINAL FORMATION WILL BE A
TRANSLATION OR SCALING OF SHAPE
SATISFYING BEARING CONSTRAINTS gis =% [ 1

e AGENTS REQUIRE BEARING
MEASUREMENTS 9;2:[(1)]

_ p] - pz 912(0) g13(0)
Ipi — s P1(0)

Gij



INFORMATION EXCHANGE NETWORK AND
FORMATION DETERMINATION



INFORMATION EXCHANGE NETWORK AND
FORMATION DETERMINATION

e



SENSORS, GRAPHS, AND SHAPES

Given a desired formation shape, a sensing modality and its
corresponding formation controller, will all information
exchange networks (graphs) solve the formation control
problem?



SENSORS, GRAPHS, AND SHAPES

Given a desired formation shape, a sensing modality and its
corresponding formation controller, will all information
exchange networks (graphs) solve the formation control
problem?

The triangle the square
(distance constrained) (bearing only)
@ ?—»
/ Ne -\
g T\
/' A[MISSING BEARING
/ l—» —9

A MISSING DISTANCE



SENSORS, GRAPHS, AND SHAPES

For a given sensing modality, what kind of information
exchange networks can (uniquely) determine a formation
shape?



SENSORS, GRAPHS, AND SHAPES

For a given sensing modality, what kind of information
exchange networks can (uniquely) determine a formation
shape?

RIGIDITY THEORY



SENSORS, GRAPHS, AND SHAPES

For a given sensing modality, what kind of information
exchange networks can (uniquely) determine a formation
shape?

RIGIDITY THEORY

Rigidity is a combinatorial theory for characterizing the
“stiffness” or “flexibility” of structures formed by rigid
bodies connected by flexible linkages or hinges.



BEARING RIGIDITY THEORY

A framework

e A GRAPH
e A MAPPING TO A METRIC SPACE

A
o ‘\ 1
@ p(v2) p(vs)

[Zhao, Z 2016]




BEARING RIGIDITY THEORY

A framework

- A GRAPH Z N\ e
e A MAPPING TO A METRIC SPACE 4 1
é/ A N
@ @ p(UQ) p(’l)g)
G
Two frameworks are equivalent if Po (Uj) — Po (Uz) _ P1 (Uj) — P1 (Uz)
(G.ps) (G.p1) po(05) — ool ~ Tlpa(v;) = pr (0]
V{v;,v;} € E
. po(vj) — po(vs) B p1(vs) — p1(vs)
Two frameworks are congruent if =
lpo(v;) —po(vi)|l  lp1(v;) — pr(wi)|
(G.po) (G,p1)
Vvi,v; €V

[Zhao, Z 2016]



BEARING RIGIDITY THEORY

A framework is globally rigid if every framework that
is equivalent to it is also congruent.

Va\

A bearing rigid graph can only scale and translate to
ensure all bearings between all nodes are preserved
(i.e., preserve the shape)!

[Zhao, Z 2016]



BEARING RIGIDITY THEORY

A framework is globally rigid if every framework that
is equivalent to it is also congruent.

Q—\C

A bearing rigid graph can only scale and translate to
ensure all bearings between all nodes are preserved
(i.e., preserve the shape)!

[Zhao, Z 2016]



INFINITESIMAL RIGIDITY

A framework is infinitesimally rigid if every

infinitesimal motion is trivial

Bearing Function Distance Function

Fp(p) = ||§E5§)):£<(ffj§” Fp(p) = Ip(vi) — p(v;)
Bearing Rigi_dity Matrix Distance Rigidity h_llatrix

_ 0FB(p) ~ OFp(p)
Rp(p) = 9 Rp(p) = 9

Rigidity matrix is the linear term in the Taylor series

expansion of the Distance/Bearing functions

OF (p)

F(p+5p):F(p) | Ip

0p + h.o.t.

I°




INFINITESIMAL RIGIDITY

A framework is infinitesimally rigid if every

infinitesimal motion is trivial

Bearing Function Distance Function
| pn—p@) _
Fp() = | foton=pte, Fp(p) =

Bearing Rigidity Matrix

Ip(vs) — po;)

Distance Rigidity h_llatrix
_ OFg(p) ~ OFp(p)
Rp(p) = 9 Rp(p) = 9

infinitesimal motions are precisely R(p)5, — OF (p)

the motions that satisfy

I°




INFINITESIMAL RIGIDITY

Bearing Function

p(v;)—p(v;)

Fp(p) = T =p(o,

Bearing Rigidity Mt

Ra(p) = 220
Theorem

Distance Function

Fp(p) =

1
2

Ip(vs) — p(v;)

Distance Rigidity Matrix

Rp(p)

_ 9Fp(p)

Op

A framework is infinitesimally (distance, bearing) rigid
if and only if the rank of the rigidity matrix is 2n-3.

3 trivial motions in the plane

|




INFINITESIMAL RIGIDITY

For a given sensing modality, what kind of information
exchange networks can (uniquely) determine a formation
shape?

sl INFINITESIMALLY RIGID

Theorem znuo, 22016

An infinitesimally bearing rigid framework can be
uniquely determined up to a translation and scaling factor



INFINITESIMAL RIGIDITY

Infinitesimally bearing rigid frameworks




EXAMPLE: FORMATION CONTROL

“robots” - modeled as kinematic point mass
Ti = Uj

Distance Control
wi = > (llpi — pslI> = d5;) (p; — pi)
1~ ]

& =—Rp(p)" Rp(p)p — Rp(p)* d°

[Krick2009]

Bearing Control

ui =— > (I —gi595)9;

1~

A T %
L = RB(p) 4] [Zhao, Z 2016]



EXAMPLE: FORMATION CONTROL

“robots” - modeled as kinematic point mass

Ti = U
Distance Control
Uq = Z(Hp@ Dy | dij)(pj Pi) locally exponentially stable
i~ undesirable equilibriums

0= —RD (p)TRD (p)p B RD (p)Td2 [Krick2009]

Bearing Control
T
Uj = — E (I = gz’jgij)g;kj N
i~ ] almost global stability

1 undesirable equilibriums
[Zhao, Z 2016]

= —Rgp(p)' g*



BEARING RIGIDITY THEORY
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BEARING RIGIDITY THEORY

[Zhao,Zelazo2017]



BEARING RIGIDITY THEORY

[Zhao,Zelazo2017]



RIGIDITY AS AN ARCHITECTURAL REQUIREMENT

Controlled Variables
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Environment
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RIGIDITY THEORY FOR MULTI-ROBOT COORDINATION

» bearing rigidity theory for formation

/21 A . .
@ control and localization
O > [Automatica ‘16, TAC 16, TCNS ‘17, CSM 18]
\_ E”/
>  multi-robot coordination for state-
information dependent and directed sensing
exchange network [IJRR ‘14, ECC '14, CDC 15, IJRNC ‘18, TAC '18]
(i15) » implementation on robotic testbed

[IJRR 14, IROS ‘17, IFAC '18 (to be submitted)]

-
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NETWORKED DYNAMIC SYSTEMS
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RESEARCH HORIZONS

Security, Robustness, and Fault Detection
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» what is the right way to study and deS|gn
secure networked systems?

» how can understand robustness and
uncertainty for networked systems?

» how can we detect and isolate faults in a
large network?



RESEARCH HORIZONS

Multi-Robot Coordination

ement of agents

» how to bridge theory to implementation -
coordination using cheap sensing

» higher level coordination tasks -
constrained deployment, finite-time multi-
objective coordination
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Multi-Robot Coordination

ement of agents

» how to bridge theory to implementation -
coordination using cheap sensing

» higher level coordination tasks -
constrained deployment, finite-time multi-
objective coordination



ACKNOWLEDGEMENTS ®* CoNeCt

’ \ Cooperstive Netuuorks
</ and Controls Lab

A e ;
2
AQ i - s
= @ 2
® ®
German-israeli = =
. Saiiain 4 o
G I Foundation for Scientific 2 | P
Research and Development < _I ¥
o Ao
’Ence ¥©

3 \ U

The

s St LAAS-CNRS

= G
== II!I

Prof. Dr.-Ing
Aot Dr. Shiyu Zhao Grangly ntuteo

Frank Allgower

Dr. Mathias Burger



