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A PHYSICS WARM-UP



A MASS-SPRING NETWORK

» A fixed network of (linear)
springs

» springs connected to masses
with position p; € R? and
mass m;

» r masses have a fixed
position (anchors)
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A MASS-SPRING NETWORK

» A fixed network of (linear)
springs

» springs connected to masses
with position p; € R? and
mass m;

» r masses have a fixed
position (anchors)

Determine the positions of

the free masses that mini-

mize the total potential en-

ergy of the mass-spring net-
L work.
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A MASS-SPRING NETWORK

» Potential Energy due to gravity
mingi
> Elastic Potential Energy of springs

1
gkz‘j(\lpi - pjll —ri;)°

an optimization problem (take 1)

. 1
min Zmingi+Z§kij(||pi — ;|| — ri5)?
i

i~

s.t.p;=p;,i=1,...,r (fixed nodes)
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A MASS-SPRING NETWORK

/ » Potential Energy due to gravity
N (nodes)
® migip, i=1,...,n
lﬂl > > Elastic Potential Energy of springs
/ (edges)
P, 1
J kel —pll=ref e=1,....m
——

Ge

an optimization problem (take 2)

T

. = 1
min Z(ming + Ip; (pi)) + Z mig’ pi + Z Eke(”@” - Te)2

Pirke 7 i=r+1 e

s.t.pi —pj = Ce, Ve = (4, )
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A MASS-SPRING NETWORK

A Convex Program!

an optimization problem (take 2)

r

. - 1
min Y (mag"pi + Lo (p1) + Y mig pi + Y ki ([IGel = re)?

b
ire i=r+1 e

s.t.pi —pj = Ce, Ve = (4,7)
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A MASS-SPRING NETWORK - THE DYNAMICS

» dynamic model for the masses » springs couple masses together
. Pj—Pq
B ] [uemo [ Sebsn i rii
pi 0 0f 1P ! M. bij (P5 — Pi)
DI };i , ©i=1,...,r (anchors) =2 kii (Ui — Y;5)
Yi =
el , i=r4+1,...,n
i
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A MASS-SPRING NETWORK - THE DYNAMICS

» dynamic model for the masses » springs couple masses together
. Pj—Pq
| e e
Ppi Pi . .
‘ ILe - bij(D; — pi)
pIFEE };l , ©=1,...,r (anchors) = > kij(yi —vj)
Yyi = o
1'” , i=r4+1,...,n
i
Mass Dynamics
Py
oy, 5, _Y
B .En
An example of a
iffusi T Diffusi o g
couies B E" i diffusively coupled
network!
I,
L I -
# : ¢
1L,
6/54
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A MASS-SPRING NETWORK - THE DYNAMICS

Y. Ty
» System Equilibrium - T

0 =pi ol p\
0 =mig+ 3 kij(llpi — pill = i) i =poy l
inj

Spring Dynamics

Minimum Total Potential Energy Principle (MTPE)

Equilibrium configurations extremize the total potential energy. Stable
equilibriums correspond to minimizers of the total potential energy.
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LESSONS AND TOOLS

Dynamics
» Diffusively Coupled Network

Mass Dynamics

P
Tu’— = L
P
Diffusive E ET Diffusive
Coupling Coupling
I
I —
H : ¢

.Hm

> Dissipasivity Theory
1 | )
Viz) =5 > el t5 > kijllpi—psl3

inj
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LESSONS AND TOOLS

Dynamics Optimization
» Diffusively Coupled Network > Convex Optimization
= min J(p,
w, Ty Y min - J(p, )
- B s.t.pi —p; =C,Ve=(4,7)
ol ET S » Optimality Conditions
0€dJ(p,C)
el

.Hm

> Dissipasivity Theory
1 | )
Viz) =5 > el t5 > kijllpi—psl3

inj
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LESSONS AND TOOLS

Dynamics Optimization
» Diffusively Coupled Network > Convex Optimization

= min J(p,

w, Ty Y min - J(p, )

- B s.t.pi —p; =C,Ve=(4,7)
Capig B ET S » Optimality Conditions
I, ya Ca. o
e )
I — . .

H . ¢ MTPE Principle ensures that

Spring Dynarics the dynamics of the diffusively

coupled network solve the
optimization problem, and

1 : 1 vice versa.
Viz) =5 > ||Z?z‘H2+§ > kijllpi—pslis ce versa

inj

> Dissipasivity Theory

r
.
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THE QUESTION

> What class of systems can be “solved” by examining a related
optimization problem?

» What class of optimization problems can be be “solved” by a
dynamical system?

Mass Dynamics

oY, ! .
Zn
Diffusive T Diffusive
Coupling E E Coupling
II;
I 11, —
K o ¢
1L,

Spring Dynamics 9/54



DIFFUSIVELY COUPLED NETWORKS



A NETWORK MODEL

A network system is comprised of
dynamical systems that interact with
eachother over an information
exchange network (a graph).

2
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A NETWORK MODEL

Agent dynamics:

U; ' &= fi(wi, ui
1_’. E . _:y..t Zi : ( )
t Yi= hq(%ﬂh)
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A NETWORK MODEL

Agent dynamics:
U; Yi - {i‘i: filzi, ui)

e i —*>
Yi= hq(%ﬂh)

Information Exchange Network:
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A NETWORK MODEL

Agent dynamics:

u; Yi

Information Exchange Network:

Controller dynamics:

Ce He
(]

o &= fi(xs, u;)
Yi= hq(%ﬂh)

G=(V,E)
(), - {:l:l (i,7) € E
0 0.W
ET1=0

- :{ﬁe:@(ne,ce)
He= we(nev Ce)
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DIFFUSIVE COUPLING

» Consensus Dynamics

- vnamics b= — Y wir; — ;)
., 1~
U : Yy
e __ » Kumamoto Model
- .
0; =~k > sin(0; —0,))
E ET Y
» Traffic Dynamics
m
T -'He ‘C_ Uz = K; ‘/;—0 —v; + V;-l Z tanh(/)/ — /),‘)
.Hm 1~
controllers > Neural Network

CVi=f(Vi,hi) + > i (V; = V)
(3,11, G) invj
h; = Q(Vuhi) 12/54



STEADY-STATE NETWORK SOLUTIONS

dynamics

51

g\ib )} L
- m What properties must the sys-
tems ¥; and II. possess such that
E ET (32,11, G) admits and converges to a
steady-state solution?
m
| - - u(t) — u
“ “.
- ° y(t) = 5
controllers C(t) -
p(t) =

> Consensus: y = al (¢ =0) All signals converge to a constant

» Formation: ¢ # 0 constant steady-state
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NETWORK OPTIMIZATION MEETS
PASSIVITY THEORY



STEADY-STATE INPUT-OUTPUT MAPS

aynamics Assumption 1
~ N Each agent 2; and controller II, admit
Y. m Y forced steady-state solutions.
- i Zn
E ET
I, I
I m -
K ¢

1
controllers
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STEADY-STATE INPUT-OUTPUT MAPS

aynamics Assumption 1
_8 Each agent 2; and controller II, admit
. m forced steady-state solutions.
- i Zn
E ET  The steady-state input-output map
associated with X is the set
! consisting of all steady-state input-output
T He,.' < pairs (u,y) of the system.
1L,
controllers
i € ki(u; Re €7ce)
u; y—(u) Vi {, o——> ..
Uq Z'L Yi Ce_, He __He
U; < —— Y ; {, < —— . .
u; € kfl(}’z‘) Ce GTZI(He)
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INPUT-OUTPUT RELATIONS

i = Az + Bu
y=Cx+ Du
= k(u) ={y| (-CA™'B+ D)u}
—_————

@

u

SISO and stable linear system
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INPUT-OUTPUT RELATIONS

= Az + Bu T=u
y=Cx+ Du y=ux
= k(u) = {y| (-CA™'B+ D)u} =k={(0,y), y € R}
—_————
y
y
«

u

SISO and stable linear system simple integrator
15/54



NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states
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NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

E~(y
u ,,,,,,,,,,,,,,,,, A y
%1
ol B y
B ET ue kfl(Y)
I,
I 1L,
7 : ¢
i,
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NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

u y
| .
g—UD ’ ¥ Ll ;
E ET \ ue —Ey(ETy)
1'[1. !
L I
H . ¢
1L,
"""""""""""""""""" C: ETY

7(0) 16/54



NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

k'71
u v y

P}

C\Lb 52 y
i ue kfl(y)
E ET u€ —E’Y(ETy)
0€ k~'(y) + Ey(E™y)

I, I

1 11, -
a . ¢
1,
— =ET
Q) C=EY
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NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

u] k1
_Eu =u & ,,,,,,,,,,,,,,,, y u (v) y
L' Tu_ = L’
ET E BT \
o
e f . _
1L, o .
S R — (=Ey
cevH(w) uekl(y)
¢ € ETk(-Ew) u€ —Ey(ETy)
0c "/71(]"—) _ET]C(—ELL) 0e kil(y) +E"/<ETy)
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SOLUTION OF NETWORK EQUATIONS

The network system (3, IT, G) admits a steady-state if and only if there
exists a solution to the system of non-linear inclusions

0€k™'(y) + Ey(ETy)
0€y (W) — ETk(-En)

» When do solutions exist?
» How do we find them?

17/54



A MASS-SPRING NETWORK
N\

A Convex Program!

Minimum Total Potential Energy Problem

r

n
. 1
min (mig" pi + Ips (pi)) + mig pi + Y kij (|G|l — re)?
Pi,Ce - * i1 2

i = @

s.t.pi —pj = (e, Ve = (3,5)
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A MASS-SPRING NETWORK
N\

A Convex Program!

Minimum Total Potential Energy Problem

min 3 Ji(pi) + 3 Te(Ce)

Pi Ce

s.t.ETp:C

18/54



A MASS-SPRING NETWORK

A Convex Program!

Minimum Total Potential Energy Problem
min J(p) + T(E"p)
First-order Optimality Condition:
0 € 8J(p) + EOT(ETp)

18/54



SOLUTION OF NETWORK EQUATIONS

The network system (3, 11, G) admits a steady-state if and only if there
exists a solution to the system of non-linear inclusions

0€ k™' (y) + Ev(ETy)
0€v (1) — ETk(—Ew)

First-order Optimality Condition:

Network equations are the first-order optimality conditions of a
corresponding optimization problem!

19/54



SOLUTION OF NETWORK EQUATIONS

The network system (3, 11, G) admits a steady-state if and only if there
exists a solution to the system of non-linear inclusions

0€ k™' (y) + Ev(ETy)
0€v (1) — ETk(—Ew)

First-order Optimality Condition:

Network equations are the first-order optimality conditions of a
corresponding optimization problem!

19/54



INTEGRAL FUNCTIONS

Definition

Let k; be the input-output relation for system X,. Define the function

K; : R — R such that 0K, (u;) = k;(u;) and K = )", K;. The function K is
called the D

Similarly,
0K} (vi) = k; ZK*
Ole(Ce) = Ye(Ce), ZF
O} (ke) = 72 (e) T* = ZFE

20/54



INTEGRAL FUNCTIONS

k(u), K(u)

—y = K(u) = sgn(u)



NETWORKS AND OPTIMIZATION

dynamics
po’
oy, s Y
- T
E ET
"
h II. . -—
p ¢
controllers
4 3\
Steady-state values u, y, ¢ and p are the solutions of the following pair of optimization
problems?:
min  STKI(vi)+ D Te(C) || min T Ki(w) + DOTE(ke)
s.t. ETy = (. s.t. u=-—FuW.
First-order Optimality Condition First-order Optimality Condition
0€ k1 (y) + Bv(ETY) 0€y 1 (n) — ETk(—En)
G J

1[Bﬂrger, Z, Allgower, 2014] 21/54



MONOTONE MAPS AND CONVEXITY

A

Not Monotone Monotone but not maximal
Maximal monotone function Maximal monotone relation

A relation on R is monotone
if they are non-decreasing curves in R?
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MONOTONE MAPS AND CONVEXITY

A

Not Monotone

/

Maximal monotone function

Monotone but not maximal

Maximal monotone relation

Theorem

The subdifferentials of convex functions on R are maximally monotone
relations from R to R.®

a[R. T. Rockafellar, Convex Analysis. Princeton University Press, 1997]
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NETWORKS AND OPTIMIZATION

dynamics

Zy

OL> i = L
F
E ET
’[ I,
-.He -~
12 mo ¢
controllers
If the input-output maps k; and ~. are , then the steady-state values
u,y, ¢ and w are the solutions of the following pair of g
Optimal Flow Problem (OFP) || Optimal Potential Problem (OPP)
min oK) + D Te(Ce) || min 37 K(ui) + O TE(ke)
s.t. ETy = s.t. u=—Fku.

1 [Biirger, Z, Allgower, 2014]
23/54



NETWORK OPTIMIZATION

Flux (fte)

E——

- > P ~
A e N
\ ; .
[ Flux/Flow Dual ,/ Potential A
I | - | )
' Divergence , Variables ' Tension

/

Divergence (u.) Potential (Yn)
Tension ({¢)
Optimal Flow Problem! Optimal Potential Problem'!
v €] VI €]
min Z OV (u,) + Z O () || min Z CP%y,) + Z CtN(¢,)
W n=1 e=1 ¥:€ n=1 e=1
s.t. u+ Ep=0. s.t. Ely =1t

1[RA T. Rockafellar, Network Flows and Monotropic Optmizations. John Wiley and Sons, Inc., 1984] 24/54



STEADY-STATE NETWORK SOLUTIONS

dynamics

P

9L. 5, Y
- ‘= Diffusively coupled dynamic net-
works can be associated to static
E ET network optimization problems!
m
I 11, -—
® ¢

controllers

Monotone steady-state maps < Network Duality

25/54



MONOTONE DIFFUSIVE NETWORKS

dynarmics Assumption 1

~ N Each agent 2; and controller II, admit
N ] 4 forced steady-state solutions.

Assumption 2
E ET  The input-output maps of each agent, &;,
and controller, ., are maximally

Lt monotone.

1
controllers

Under what conditions does the network actually converge to these
steady states?

26/54



PASSIVITY FOR DYNAMICAL SYSTEMS

,,,,,,,,,,,,

Definition [Khalil 2002]
A system is passive if there exists a C'! storage function S(x) such that

uly>8= Z—Sf(x,u), V(z,u) € R" x RP
%

Moreover, it is said to be

» Input-strictly passive if S < u”y — uT ¢(u) and uT ¢(u) > 0,Yu # 0
» Output-strictly passive if S < uTy —y7p(y) and yT p(y) > 0,Yy # 0

27154



PASSIVITY FOR DYNAMICAL SYSTEMS

Definition

Let X be a SISO system with a constant input-output steady-state pair
(u,y). The system is said to be input-output (p, v)-passive wrt (u,y) if
there exists a storage function S(z) and numbers p,v € R, such that
pv < 1/4 and

8= 22 (o) < (5= )= w) = ply — 3)? — v~ ),

for any trajectory u, y.

] &= f(z,u) y_
7 y:h(xru)

,,,,,,,,,,,,

uly ****>ZS

28/54



PASSIVITY FOR DYNAMICAL SYSTEMS

Definition

Let 2 be a SISO system with a constant input-output steady-state pair
(u,y). The system is said to be input-output (p, v)-passive wrt (u,y) if
there exists a storage function S(z) and numbers p, v € R, such that
pv < 1/4 and

§= 22 fw,uw) < (= y)(u— ) — ply ~ y)? — v(u— ),

for any trajectory u, y.

> p=v =0 = passivity
» p,v > 0 = strict input/output passivity
» p,v < 0 = passive short

28/54



INTERCONNECTION OF PASSIVE SYSTEMS

> Parallel Interconnection
> Negative Feedback Interconnection
» Symmetric Interconnection

1 Passive : I Passive :
! y
l 3 l U— 2 =Y
! —_ 1
: .o : !
U —r— =Y ' i
1
| A w l
1
| o ! | 2 ke !
1 1 ! 1
L 1 L 1
L ]
! I
U
U— ET o A E : y
L— 1
! 1
! |
! 1
! |
1
w |
1 22 1
: Passive :

29/54



A CONVERGENCE RESULT

Theorem!
Consider the network system (X, 11, G) comprised of SISO agents and
controllers. Suppose that there are vectors u;, y;i, (. and . such that

i) the systems %; are output strictly-passive with respect to u; and y;;
ii) the systems II, are passive with respect to ¢, and p;
iii) the vectors u,y, ¢ and p satisfy u = —fpand ¢ = £7y.

Then the output vector y(¢) converges to y as t — oc.

1[Arcak, 2007], [Biirger, Z, Allgower, 2014]
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A CONVERGENCE RESULT

Theorem!

Consider the network system (X, 11, G) comprised of SISO agents and
controllers. Suppose that there are vectors u;, y;i, (. and . such that

i) the systems %; are output strictly-passive with respect to u; and y;;
ii) the systems II, are passive with respect to ¢, and p;
iii) the vectors u,y, ¢ and p satisfy u = —fpand ¢ = £7y.

Then the output vector y(¢) converges to y as t — oc.

> requires passivity w.r.t. to specific equilibrium configuration

1[Arcak, 2007], [Biirger, Z, Allgower, 2014]
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EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

EIP!
A SISO system X : u — y is said to be equilibrium-independent

input-output (p, v)-passive if it is input-output (p, v)-passive with
respect to any equilibrium (u, k(u)).
EIP systems (p, v > 0) have monotone steady-state input-output maps!

S < (y—y)T(u—u) = k monotonically increasing function

31/54
1 [G.H. Hines et al., 2011], [M. Sharf, A. Jain, Z., 2020]



EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

EIP!

A SISO system X : u — y is said to be equilibrium-independent
input-output (p, v)-passive if it is input-output (p, v)-passive with
respect to any equilibrium (u, k(u)).

EIP systems (p, v > 0) have monotone steady-state input-output maps!

S < (y—y)T(u—u) = k monotonically increasing function

y > Passive with respect to ¢/ = {0} and
any output value y € R with storage
function S(z) = 1(z — y)2.

A » The equilibrium input-output map
k={(0,y) : y € R} is not a single
valued function and hence the
integrator is NOT EIP.

(t) = u(t),y(t) = 2(t)

1 [G.H. Hines et al., 2011], [M. Sharf, A. Jain, Z., 2020]
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MAXIMALLY EQUILIBRIUM-INDEPENDENT PASSIVITY (MEIP)

MEIP!
A dynamical SISO system 3 is maximal equilibrium independent passive
if the following conditions hold:
> The system X is passive with respect to any steady-state (u,y) € k.
» The relation % is maximally monotone.

[M. Biirger et al., 2014]

32/54



MEIP NETWORKS

dynamics

it

u, g Y Assumption 1
T_ e Each agent 2; and controller II, admit
forced steady-state solutions.
E ET
Assumption 2
L " The agent dynamics X; are output-strictly
B - T MEIP and the controllers are MEIP.

Assume Assumptions 1 and 2 hold. Then the signals u(t), y(¢), ¢(¢), u(¢) converge to the
solutions of the following pair of convex dual optimization problems:

Optimal Flow Problem (OFP) || Optimal Potential Problem (OPP)
min DRI+ Te(Ce) || min DD Ki(ui) + > ST (ke)
s.t. ETy =G s.t. u=—Fku.

33/54
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NEW PERSPECTIVES ON PASSIVATION




MONOTONICITY AND ITS ROLE IN SYSTEMS THEORY

Systems — Monotonicity — Optimization
(Passivity) (1/0 Relations) (Convexity)

What else can we say about MEIP systems?

34/54



PASSIVITY-SHORT SYSTEMS

In practice, systems are usually passivity-short (or non-passive)!

vVvyVvyYvVYyYvVvy

Generator (always generates energy) [R. Harvey , 2016]

Oscillating systems with small or nonexistent damping [R. Harvey, 2017]
Dynamics of robot system from torque to position [D. Babu, 2018]
Power-system network (turbine-governor dynamics) [S. Trip, 2018]
Electrical circuits with nonlinear components

More general as include non-minimum phase systems and systems
with relative degree greater than 1[z. Qu, 2014]

h(:) € [o,00] with o < 0

35/54



PASSIVITY SHORT SYSTEMS AND THE NETWORK FRAMEWORK

Passive short systems can destroy
the developed network optimization framework!

System Type ‘ Relations ‘ Integral Function
MEIP k, k~! max. monotone K(u), K*(y) are convex
Input PS k is not monotone K (u) is non-convex
Output PS k~! is not monotone K*(y) is non-convex
Input-output PS | k, k~! are not monotone | May not exist

Optimal Flow Problem (OFP) Optimal Potential Problem (OPP)

min YK (i) + D Te(C) | omin D Ki(w) + Y Tk

v,C

s.t. ETy = (. s.t. u=—Fu.

36/54



FEEDBACK PASSIVATION

'd \

I 2 e For a passive-short system ¥ : u + v,
we aim to find a map 7" such that the
closed-loop system X : @ — § is pas-
(t) T (1) . . .

sive. This is known as feedback pas-
sivation.

37/54



FEEDBACK PASSIVATION

> 2

u(r)

(@)

) :Zr’

r

N\
For a passive-short system X : u — y,
we aim to find a map 7" such that the
closed-loop system X : @ — § is pas-
sive. This is known as feedback pas-
sivation.

/T\
k:u—y ' A:dey§
| |

|
7

how does feedback passivation
affect the steady-state input/output
maps?

37/54



equilibrium input-output map
an example . . -

T = —z+Jrtu IA;
y = \3/5 e

T=k"(7) =7 -¥

not a monotone input-output relation!

y
integral function

System is output passivity-short
1

3 _ _
S(z) = 1:1:4/3 —yr+ ¥

S<(y—y)(u—1a)+(y—7y)°

(passivity index p = —1)

38/54
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what is the system interpretation of
a “convexified” integral function?

1 1
K* ) — =4 =2
¥) =7 57

K*(y) = K*(¥) + %yz

(Tikhonov regularization term)

39/54



a monotone function!

what is the system interpretation of
a “convexified” integral function?

1 1
K* ) — =4 =2
¥) =7 57

K*(y) = K*(y) + %yz

(Tikhonov regularization term)

what system vyields this steady-state
/0 map?

t=—-x+Yr— JYy+tv=—x+0
~—
y=vz

39/54



— - -~ - - -~z regularization is realized by output
Vs I+ Uj [E_| P Vi feedback!
i T 1
U=v—y

| |
|70
---------- = 7=k =7

(maximally monotone!)

Theorem!
Consider the passive-short SISO dynamical system ¥ : u — y with 1/0
steady-state map k£ and output passivity index p < 0. Then for any
B > |pl, the feedback

u=v— Py
renders the system ¥ : v — y output-strictly maximally monotone EIP
with steady-state input map % satisfying

ETN) = k7N(T) + By

1[Jain,5harf, Z,2018] 40/54



MONOTONIZATION AND CONVEXIFICATION

A “better” convexification
leads to different feedback

passivation!
— kN (y)

e L) v y
— k~1(y) (Tikhonov) —0— =
o

the feedback
_ 0, x| =y3 > 1
T )= { L
— K(y) (Tikhonov) y -y, \z| = |7J | <1

the closed-loop

. {:c+\%?+v, x| > 1
€r =

v, lz] <1

y = \3/5 151/54




MONOTONIZATION OF 1/0 RELATIONS

Is it possible to find a linear transformation T : (u,y) ~ (a,y) for a
non-monotone I/O map & : u+— y such that & : @ — ¥ is monotone?

452[54



MONOTONIZATION OF 1/0 RELATIONS

Is it possible to find a linear transformation T : (u,y) ~ (a,y) for a
non-monotone I/O map & : u+— y such that & : @ — ¥ is monotone?

) il Z " For a passive-short system ¥ : u — v,
we aim to find a map 7" such that the
closed-loop system X : @ — § is pas-
i T 2t sive. This is known as feedback pas-
sivation.
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MONOTONIZATION OF 1/0 RELATIONS

Is it possible to find a linear transformation T : (u,y) ~ (a,y) for a
non-monotone I/O map & : u+— y such that & : @ — ¥ is monotone?

) il Z " For a passive-short system ¥ : u — v,
we aim to find a map 7" such that the
closed-loop system X : @ — § is pas-
i T 2t sive. This is known as feedback pas-

sivation.
J

Are these T' maps the same?
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A GEOMETRIC APPROACH

For an EI-I0P(p, v) system, for any two points (u;,y1), (ug,y2) € k, the
following inequality holds:

0< —p(y1 —y2)* + (w1 —uz)(y1 — y2) — v(u — ug)*.

Projective Quadratic Inequalities and EI-IOP

A projective quadratic inequality (PQI) is an inequality with variables
&, x € R of the form

0 < ag®+béx+cx’ = F(£, x),

for some numbers a, b, ¢, not all zero. The inequality is called non-trivial
if b2 — 4ac > 0. The associated solution set A of the PQl is the set of all
points (&, x) € R? satisfying the inequality.

> passivity inequalityisaPQl: é =u; —us, x =y1 — ¥2
» monotonicity isa PQl: 0 < (u; — ug)(y1 — y2) Witha=c=0andb=1
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A GEOMETRIC APPROACH

0 < ag® +béx +ex® = F(§,x)
A Recap:

> F(u; —ug,y1 —y2) > 0isa PQl for a EI-IOP(p, v) system
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is also a PQl for a EI-IOP(p, 7) system
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A GEOMETRIC APPROACH

0 < ag® +béx +ex® = F(§,x)
A Recap:

> F(u; —ug,y1 —y2) > 0isa PQl for a EI-IOP(p, v) system
» For the linear map 7' : (u,y) — (1,¥),

F(a; — 12,51 —32) >0

is also a PQl for a EI-IOP(p, 7) system
> F(; —1g,¥1 — ¥2) = (I — G2)(y1 — y2) corresponds to monotonicity

{ Study the effect of the map 7" on the solution sets of the PQls, T'(A) ]

AL



A GEOMETRIC APPROACH

The solution set of any non-
trivial PQl is a symmetric
double-cone.  Moreover, any
symmetric double-cone is the
solution set of some non-trivial
PaQl.

Theorem!

Let (£1,x1), (&2, x2) be non-colinear solutions of a1£2 + &x + c1x2 = 0,
and (&1, X1),(&2, X2) be non-colinear solutions of ax€2 + £x + cox? = 0.

Define 1 ~ -
&1 —52] [51 &2

- -1
T, = & L & & 1= |¢ S
X1 —X2| | X1 X2

X1 X2| [x1 X

Then one of T}, T, transforms the PQl a;£? + £x + ¢ x? > 0 to the PQI
14282 + X + Teax? > 0 for some 7 > 0.

1[Sharf, Jain, Z, 2021]
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Consider the system
Yii=—¥r+.5x+.5u, y = .5xr—.5u

Using S(z) = £(z — x)* we have

$(2) < (um)(y—y)+ 5 (a3 ()

System is EI-I0P(p, v/) with
p=-2/3,v=—-1/3

Passive-short  system  with
non-monotone  input-output
relations (not even a function!)

Output (y)
A b b 4 o 4 e s

0

Input (u)

-15 -1 -0.5 0 0.5 1 15 2
Input (u)

(@) k.

= . 9 o -
I - T S )

o

-1 0 1
Output (y)

(b) k=1 46/54



Consider the system
Yid=—x+ .5r+ .5u, y = .5 — Su

Using S(z) = ¢ (z — x)? we have

—_

2

S@) < (@=w(y—y) + gl —w?+ -y

w

System is EI-IOP(p, v) with p = —2/3, v = —1/3
Corresponding PQl:

1 2
0< —¢2 4.2
_36 +€x+3x

Find a linear map T that monotonizes the input-output relations, i.e.,
leads to the PQI

x=0
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non-colinear solutions to non-colinear solutions to original
PQl PQl ) )
v =) ) oo A2
% 0= 38 +&+3x
3 1 3 0
u © X1 -1 [x2 1

T & éé] lfl 52] B B ll 1]
L=t s _
X1 Xzl |[x1 Xz 1 2

can be used to monotonize the relation! Indeed, for (&, x) = T~'(¢, X)

1 2
O<*2 “.2
=38 o+ X

=226 = 07+ (2E — N(~E+ ) + 3 (-E+ 0P = 5%,
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Steady-state input-output maps under 71,

U u
| =T
Yy Yy

8

ol

4

.l

ol

ol

al

ol

8 L

2 1.5 1 0.5 0 0.5 1 15 2
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MONOTONIZATION TO PASSIVATIION

Theorem!

Let X be EI-IOP(p, v). If the map T monotizes the input-output relation &,
then it passivizes the system X.

) d¢
u— o g Y P 6y [ 50)
% |

T:

a bl |6p O] |1 Of[1 O|]|1l 6a
c dl |0 1| |6c 1|0 &l |0 1|
—_———  — e — —— —

Lp Lo Lp La

1[Sharf, Jain, Z, 2020]
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MONOTIZATION AND PASSIVATION

Elementary Relation between I/O Effect on Steady-State Realization Effect on Integral Functions
Transformation of ¥ and 3 Relations
1 6 . —1gc . -
La= [0 f‘] d=u+day A ®) = k7(E) + daF output- A*(y) = K*(y) + 36ay?
J=y feedback
L= B 503] d=u Ap(u) = épk(u) or post-gain Ar(y) = 1 K*(s=y) or
9=9%py Ap ) =k (9) Aw) —EBK(u)
e {51 ﬂ B Ac(®) = k(&) + doit input- AQu) = K(u) + Ldcu?
c J=y+décu feedthrough
) 0 _ - .
o= {8 a=bpu Ap!(5) = 6pk1(y) or pre-gain A*() = 8pK* () or
y=yv ,\D(ﬁ)=k(%ﬁ) A(u) = —K —u)
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PASSIVATION, MONOTONIZATION AND CONVEXIFICATION

EI-IOP(p, v) Non-monotone Non-existent

2——k K

T T T

)\ Y .
MEIP Maximally Convex
monotone

Passivation Monotonization Convexification

(system) (VO Maps) (integral functions)
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PASSIVATION OF DIFFUSIVELY-COUPLED NETWORKS OF EIPS SYSTEMS

J
Elm MEIP

7 [ 1 S IS
B /\“ [=2] 0 B /\“ [ | ik

L S| L Sl .
E o |ET E o ET

11, II 11, I1
H [Me] ¢ H [Me] ¢

» Without loss of generality assume that the systems at nodes are EIPS (applicable if
some of the systems are EIPS)

» Loop Transformation results in a pair of regularized network optimization problems

J = diag(T;)
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CONCLUDING REMARKS




A MONOTONE VIEW

Systems ' ' Monotonicity ' ' Optimization
(Passivity) (1/0 Relations) (Convexity)

New perspectives on networks and passivity

> networks of EIP agents can be understood through solutions of a
pair of static dual optimization problems

> passivity and monotonicity of input-output maps are essential

> passivation means monotonization - monotonization means
convexification
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