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WHAT ABOUT SENSING?

Desired Output
Response

»| Comparison

- T
> >

A

THE "DYNAMICS™ OF THE SENSOR IN A CONTROL SYSTEM IS
LESS IMPORTANT THAN THE QUANTITY IT IS MEASURING



Courtesy of P. Robuffo Giordano and A. Franchi

Solutions to coordination problems in multi-robot systems are highly dependent on
the sensing and communication mediums available!




TurtleBot I

Sensing

 GPS

« Relative Position
Sensing

* Range Sensing

« Bearing Sensing

Communication

* Internet
* Radio
* Sonar
e MANet



EXAMPLE: FORMATION CONTROL

“robots” - modeled as kinematic point mass
Ti = Uj

Assumptions | o

e GLOBAL COORDINATE FRAME

e RELATIVE POSITION MEASUREMENTS
e DISTANCE MEASUREMENTS

e NO SENSING CONSTRAINTS (360°)

e SENSING

Formation
e SPECIFIED BY DISTANCES BETWEEN
PAIRS OF ROBOTS ’ =

dz'j c R
Control
wp =y (i —asl* — ) (25 — )
o THE “DISTANCE CONSTRAINED"
FORMATION CONTROL PROBLEM




EXAMPLE: FORMATION CONTROL

DISTANCE CONSTRAINED

Formation Control
e SPECIFIED BY DISTANCES BETWEEN L Z 2 2 N
PAIRS OF ROBOTS e (s = ;] dzg)(% ;)

dijER

1~

e FINAL FORMATION WILL BE A X (0)
TRANSLATION OR ROTATION OF SHAPE
SATISFYING DISTANCE CONSTRAINTS

e AGENTS REQUIRE RELATIVE POSITION AND x,(0
DISTANCES X, (0)

NEGLECTS RANGE CONSTRAINT OF RELATIVE
POSITION SENSORS



EXAMPLE: FORMATION CONTROL

“robots” - modeled as kinematic point mass
Ti = Uj
Assumptions

e GLOBAL COORDINATE FRAME
e BEARING MEASUREMENTS

e NO SENSING CONSTRAINTS (360°) [

e SENSING

Formation
e SPECIFIED BY BEARING VECTORS

95 €R?, lgis| =1
Control

Ui = — Z(I - gijgg;‘)g;kj

1~

[Zhao,Zelazo2016]

THE “"BEARING ONLY"
FORMATION CONTROL PROBLEM



EXAMPLE: FORMATION CONTROL

BEARING ONLY

Formation Control

e SPECIFIED BY BEARING VECTORS U; = — Z(I — gijgfz;)g;}
95 € R, lgill =1

e FINAL FORMATION WILL BE A
TRANSLATION OR SCALING OF SHAPE
SATISFYING BEARING CONSTRAINTS

e AGENTS REQUIRE BEARING
MEASUREMENTS

NEGLECTS FIELD-OF-VIEWS CONSTRAINT OF RELATIVE
BEARING SENSORS



GRASP Lab

Motion capture systems allow us to “simulate” ideal sensors and test our
control strategies




REAL SENSORS, REAL CHALLENGES
=
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- sensing is typically physically
attached to the body frame of the
robot

=

- sensing is inherently directed

- knowledge of common inertial
frame is not a realistic assumption
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- sensing is inherently limited



FIELD-0F-VIEW CONSTRAINTS
pi=—3" (I ~ (py —pz')(pj.—pz')T> gt

. 2
= lp; — pil

- bearing measurement only available when
neighbor is in field-of-view of camera

Bearing only control law with limited view constraint

1) agents faces in direction of motion

g TECHNION
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REAL SENSING MEANS DIRECTED INFORMATION

HOW DO WE ADAPT OUR EXISTING THEORY TO HANDLE
REAL SENSING?



FORMATION CONTROL

Given a team of robots endowed with the ability to sense/
communicate with neighboring robots, design a control for
each robot using only local information that moves the team
into a desired formation shape.




Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness”
or “flexibility” of structures formed by rigid bodies connected by
flexible linkages or hinges.

Distance Rigidity Bearing Rigidity

- maintain distance pairs - maintain angles (shape)

- rigid body rotations and - rigid body translations
translations and dilations

e
M 25M NPLINTIMX NDTINY NLMIPAN £CC2014
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SE(2) RIGIDITY THEORY

A framework

e A DIRECTED GRAPH
e A MAPPING TO A METRIC SPACE

g :(Vag)
p Y —R?
Y Y —= St

a directed edge indicates availability
of relative bearing measurement
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SE(2) RIGIDITY THEORY

A framework

e A DIRECTED GRAPH
e A MAPPING TO A METRIC SPACE

G = (V&) o
IZZ .Y — St g X(Uﬁ\

_ COS(¢u) Sin(wu) ] Pv — Pu _ . .
T [ sin(t)  cos(tn) | Tpu —pul bearings are expressed in the

L g L body frame of a point
T(u)?*

directed bearing rigidity function
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EQUIVALENCE AND CONGRUENCE

|g‘ — 3 - (local) bearings determined by the edge-set
should be the same



EQUIVALENCE AND CONGRUENCE
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£ =6 - all (local) bearings pairs should be the same




INFINITESIMAL MOTIONS IN SE(2)

Infinitesimal motions are bearing preserving (in local frame)
motions of the framework.

SE(2) Rigidity
- maintain bearings in local frame

- rigid body rotations and scaling +
coordinated rotations

[Zelazo et al. ECC2014]
[Schiano et al. ICRA2016]



AN EXAMPLE: THE TRIANGLE
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equivalent but not congruent



AN EXAMPLE: THE TRIANGLE

O,

// 4 SE(2) preserving infinitesimal motions
K@]

>

we need 5 edges for triangle!



INFINITESIMAL RIGIDITY

A framework is infinitesimally rigid if every
infinitesimal motion is trivial

Distance Function Bearing Function
1 ' ) —p(vs
FD(p) — 5 Hp(v’b) _p(U])HQ FB(p) — ||]I;E’UZ))—p((’UJ§H
Distance Rigidity h_datrix _ Bearing Rigi_dity Matrix
OFp(p) 0F's(p)
R — R p—

p(p) 9 B(p) 9
infinitesimal motions are precisely the motions that
satisfy

OF (p
R(p)d, = ( )5p =0

Op




INFINITESIMAL RIGIDITY

Distance Function_ _ Bearing Fun_ction

Fop) = 5 | Ip(w) ~ ) Folp) = | s
Distance Rigidity h_/Iatrix _ Bearing Rigi_dity Matri;(
Ro(p) = Z2 Ro(p) = 220
( THEOREM N

A framework is infinitesimally (distance, bearing) rigid
\if and only if the rank of the rigidity matrix is 2n-3. Y

3 trivial motions in the plane




INFINITESIMAL RIGIDITY

Directed Bearing Function

Fsp(2)(p, ) =% T (w;)guv
SE(2) Bearing Rigidity Matrix
Rsp(2) (p, ) = 6F%]?;)$, V)
/ THEOREM N

A framework is infinitesimally SE(2) rigid if and only if
\the rank of the rigidity matrix is 3n-4. Y




SE(2) FORMATION CONTROL

The SE(2) bearing-based formation control problem is to
design a (distributed) control law that drives the agents to a
desired spatial configuration determined by interagent
bearings measured in the local body frame of each agent.

A gradient controller

1 >k
O(p, ) = 5 Z i — )
(1,j)EE

b
P

=~V (V) = Rspez) (p. ¥)" b5

U; = T(@DZ)TpZ control expressed in local frame



SE(2) FORMATION CONTROL

The SE(2) bearing-based formation control problem is to
design a (distributed) control law that drives the agents to a
desired spatial configuration determined by interagent
bearings measured in the local body frame of each agent.

A gradient controller

P. P..
pi = D i+ ) Ty =) ]

(2,)€€ Ip; = pil (J,8)ee Ipi — pjl|
¢z’ = — Z (T;;)TT% . >

(1,7)€E

X requires distances

X reqguires communication (‘
X requires relative orientation




a scale-free SE(2) formation control

T(%)sz — _Z b, ng +Z T

(2,7)€E (7,2)€E
Vi = — Z (Tfj)T"“gj,
(2,7)EE

proof

0 = FSE(Q) (p7 @D) - bE

(S RSE(Q) RSE(Q) 5

scale-free rigidity

D-semistability, Lyapunov, LaSalle

Tjq ]Z

stability analysis depends
on the SE(2) bearing
rigidity of the formation!



SE(2) FORMATION CONTROL

[Zelazo, Franchi, Giordano2015]
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REAL SENSING MEANS DIRECTED INFORMATION

HOW DO WE ADAPT OUR EXISTING THEORY TO HANDLE
REAL SENSING?



A Rigidity-Based Decentralized Bearing Formation
Controller for Groups of Quadrotor UAVs

F. Schiano, A. Franchi, D. Zelazo and P. Robuffo Giordano
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[Schiano, Franchi, Zelazo, Giordano2016]



FIELD-OF-VIEW CONSTRAINTS

Bearing only control law with limited view constraint

1) agents faces in direction of motion

2) agent faces the middle of its neighbours

w; — W(:,(_“” EjEM(p(t)) 7ij(p(t))
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FIELD-OF-VIEW CONSTRAINTS

“robots™ - modeled as kinematic point
mass with heading

p | | u
Y] w
Assumptions

e GLOBAL COORDINATE FRAME
e BEARING MEASUREMENTS

e FIELD OF VIEW CONSTRAINTS
e SENSING

Formation
e SPECIFIED BY BEARING VECTORS

g;; € R?, [lgis]l =1

Control
ui =—>» (I —gi9.;)9;,
i~]
1
W; = |M(p( ))| | Z 7@j(p(t))

o ALWAYS FACE IN THE MIDDLE OF THE
NEIGHBORS YOU ARE SENSING

STABILITY?
CONVERGENCE?

z, 4
Formations on directed cycles with bearing-only
measurements

Minh Hoang Trinh'©0 | Dwaipavan Mukherjee*” | Daniel Zelazo®™" | Hyo-Sung Ahn'®

[JRNC2017



OUTLOOKS

Do we need to develop rigidity theory
extensions for every kind of sensor?

G. Stacey and R. Mahony, "The Role of Symmetry in Rigidity Analysis: A Tool
for Network Localisation and Formation Control," in IEEE Transactions on
Automatic Control, vol. PP, no. 99, pp. 1-1.

Extensions for directed sensing network

control and estimation algorithms

THEORY APPLICATION
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The 2nd International Symposium on
Formation Control and Multi-Agent Systems

Date: June 9-10, 2018
Venue: University of Sheffield, UK

The 2nd International Symposium on Formation Control and Multi-Agent Systems will
be held at the University of Sheffield, UK on June 8-9, 2018. This symposium aims to
create a forum for scientists and engineers throughout the world to present their
latest research findings and encourage discussions on formation control and multi-
agent systems.

Topic of the Year:
20 Years of Multi-Agent Formation Control The Future of Formation Control

http://formationcontrol.group.shef.ac.uk



