cluster assignment in multi-agent systems

Miel Sharf 1 and Daniel Zelazo 2

07.05.2022 Asian Control Conference

 1 KTH Royal Institute of Technology 2 Technion - Israel Institute of Technology

clustering in multi-agent systems

Synchroscope for A/C electrical power systems

Car following

Agreement v. Clustering

diffusively coupled networks

Node dynamics

$$
\Sigma_i: \dot{x}_i(t) = f_i(x_i(t), u_i(t)),
$$

$$
y_i(t) = h_i(x_i(t), u_i(t)).
$$

Edge dynamics

$$
\Pi_e: \quad \dot{\eta}_e(t) = \phi_e(\eta_e(t), \zeta_e(t)),
$$

$$
\mu_e(t) = \psi_e(\eta_e(t), \zeta_e(t)).
$$

The network is denoted by the triple $(\mathcal{G}, \Sigma, \Pi)$.

- steady-state I/O relation: $y_i \in k_i(u_i)$, $\mu_e \in \gamma_e(\zeta_e)$
- Assumption: The agents Σ_i are output-strictly MEI-Passive and the controllers Π_e are MEI-Passive

weakly equivalent systems

• We want to understand how symmetries in a multi-agent system affect the steady-state of system

Weakly Equivalent Systems

Two systems are called weakly equivalent if they have the same steady-state relation

Examples of WES:

$$
\begin{aligned}\n\Upsilon_1: \ y &= u & \Upsilon_2: \begin{cases}\n\dot{x} &= -x + u, \\
y &= x\n\end{cases} \\
\Upsilon_3: \begin{cases}\n\dot{x} &= -10x + u, \\
y &= 10x\n\end{cases} & \Upsilon_4: \begin{cases}\n\dot{x} &= -x + \sinh(u), \\
y &= \operatorname{arcsinh}(x)\n\end{cases} \\
\Upsilon_5: \begin{cases}\n\dot{x} &= -x + u, \\
y &= 0.5(x + u)\n\end{cases} \\
\text{all have } k(u) &= (u)\n\end{aligned}
$$

weakly equivalent systems

• We want to understand how symmetries in a multi-agent system affect the steady-state of system

Weakly Equivalent Systems

Two systems are called weakly equivalent if they have the same steady-state relation

Examples of WES:

Weak Symmetries

Let (G, Σ, Π) be a multi-agent system. A weak automorphism of the MAS is a map $\psi : \mathcal{V} \to \mathcal{V}$ such that

- 1. If $i \rightarrow j$ is an edge, then so is $\psi(i) \rightarrow \psi(j)$ (graph automorphism)
- 2. Σ_i is weakly equivalent to $\Sigma_{\psi(i)}$
- 3. Π_e is weakly equivalent to $\Pi_{\psi(e)}$
- 4. The map ψ preserves edge orientations

The group of weak automorphisms is denoted $Aut(G, \Sigma, \Pi)$.

• note $Aut(G, \Sigma, \Pi)$ is a subgroup of $Aut(G)$ (automorphism group of \mathcal{G})

Theorem [S&Z2016]

Consider the diffusively-coupled system (G, Σ, Π) , and suppose the passivity assumption holds. Then for any steady-state output y of the closed-loop and any weak automorphism $\psi \in \text{Aut}(\mathcal{G}, \Sigma, \Pi)$, it follows that P_{ψ} y = y, where P_{ψ} is the permutation matrix representation of ψ .

- shows such a MAS converges to a cluster configuration (when $0 \notin \gamma_e(0)$
- clusters determined by the orbits of the weak automorphism group

cluster synthesis - example

- Given 5 LTI agents: $G(s) = \frac{1}{s+1}$
- Goal: cluster of size 3 at $y = 1$ and cluster of size 2 at $y = 0$.

- orient edges from $1, 2$ to $3, 4, 5$
- choose controllers equal to $\mu_e = -1.2 + \zeta_e$.

cluster assignment

Problem 1

Consider a collection of n homogeneous agents $\{\Sigma_i\}_{i\in\mathcal{V}}$, and let r_1, \ldots, r_k be positive integers which sum to n. Find a graph $G = (V, \mathcal{E})$ and homogeneous edge controllers $\{\Pi_e\}_{e \in \mathcal{E}}$ such that the closed loop network converges to a clustered steady-state, with a total of k clusters of sizes r_1, \ldots, r_k .

• Assumption: Controllers Π_e are chosen such that they are MEI-Passive and $0 \notin \gamma_e(0)$

Problem 2

Given positive integers r_1, \ldots, r_k , determine if there exists an oriented graph G such that it is weakly connected and the action of $Aut(\mathcal{G})$ on $\mathcal G$ has orbits of sizes r_1, \ldots, r_k . If a graph exists, then construct it.

• graphs satisfying above properties are denoted as of type $OS(r_1, \ldots, r_k)$

Theorem

Let $r_1, \ldots r_k$ be any positive integers, and let $n = r_1 + \cdots + r_k$

i) Any directed graph of type $OS(r_1, \ldots, r_k)$ has at least m edges, where

$$
m = \min_{\mathcal{T} \text{ tree on } k \text{ vertices}} \sum_{\{i,j\} \in \mathcal{T}} \text{lcm}(r_i, r_j). \tag{1}
$$

ii) There exist a directed graph of type $OS(r_1, \ldots, r_k)$ with at most M edges, where

$$
M = \min_{\substack{\mathcal{T} \text{ path on} \\ k \text{ vertices}}} \left(\sum_{\{i,j\} \in \mathcal{T}} \text{lcm}(r_i, r_j) \right) + \min_{i \in \mathcal{V}} r_i. \tag{2}
$$

- lower bound can be found using any algorithm finding a minimal spanning tree, e.g. Kruskal's algorithm (polynomial time)
- upper bound requires solving variant of the traveling salesman problem (**NP**-hard) 8

algorithm

Algorithm 1 Building OS -type graphs

Input: A collection r_1, \ldots, r_k of positive integers summing to *n*, and a path T on *k* vertices. **Output:** A graph G of type $OS(r_1, \ldots, r_k)$. 1: Let $\mathcal{G} = (\mathbb{V}, \mathcal{E})$ be an empty graph. 2: for $j = 1, ..., k$ and $p = 1, ..., r_j$ do 3: Add a node with label v_n^j to \overline{V} . 4: for any edge $\{i, j\}$ in $\mathcal T$ do 5: **for** $p = 1, ..., \text{lcm}(r_i, r_j)$ **do** Add the edge v_n^i mod $r_i \rightarrow v_n^j$ mod r_i to E. $6:$ 7: Compute $i^* = \arg \min\{r_i\}$. If $r_{i^*} = 1$, go to step 10. 8: for $p = 1, ..., r_{i^*}$ do 9: Add the edge $v_p^{i^*} \rightarrow v_{(p+1) \mod r_i}^{i^*}$ to E. 10: **Return** $\mathcal{G} = (\mathbb{V}, \mathbb{E})$.

Corollary

Suppose that all cluster sizes r_1, \cdots, r_k are equal, and bigger than 1. Then there exists a graph of type $OS(r_1, \ldots, r_k)$ with at most $n = r_1 + ... + r_k$ edges.

Corollary

Let r_1, \dots, r_k be positive integers such that $k \geq 2$ and that for every j, l, either r_i divides r_i or vice versa. Then there exists a graph of type OS (r_1, \ldots, r_k) with $n = r_1 + \ldots + r_k$ edges.

Corollary

Let r_1, \dots, r_k be positive integers such that $r_i \leq q$ for all j, and let $n = r_1 + \cdots + r_k$. Then there exists a graph of type $OS(r_1, \ldots, r_k)$ with at most $n+O(q^3)$ edges.

consider collection of $n = 15$ identical agents

 $\dot{x} = -x + u + \alpha, \ y = x$

 (α) is random variable) identical controllers

$$
\mu = a_1 + a_2(\zeta + \cos(\zeta)),
$$

 $(a_1, a_2$ random variables)

construct graph with five equally-sized clusters

example

$$
r_1 = r_2 = r_3 = r_4 = r_5 = 3
$$

consider collection of $n = 10$ identical agents

 $\dot{x} = -x + u + \alpha, \ y = x$

 (α) is random variable) identical controllers

$$
\mu = a_1 + a_2(\zeta + \cos(\zeta)),
$$

 $(a_1, a_2$ random variables)

construct graph with $r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4$

example

$$
r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4
$$

- explored the cluster assignment problem for MAS
- provide a characterization of graphs with an automorphism group containing orbits of a prescribed size
- provide a constructive algorithm for to find such graphs

Questions?