CLUSTER ASSIGNMENT IN MULTI-AGENT SYSTEMS

Miel Sharf¹ and Daniel Zelazo²

07.05.2022 Asian Control Conference

KTH Royal Institute of Technology
² Technion - Israel Institute of Technology

CLUSTERING IN MULTI-AGENT SYSTEMS

Synchroscope for A/C electrical power systems

Car following

Agreement v. Clustering

DIFFUSIVELY COUPLED NETWORKS

Node dynamics

$$\begin{split} \Sigma_i: \ \dot{x}_i(t) &= f_i(x_i(t), u_i(t)), \\ y_i(t) &= h_i(x_i(t), u_i(t)). \end{split}$$

Edge dynamics

$$\begin{split} \Pi_e: \quad \dot{\eta}_e(t) &= \phi_e(\eta_e(t), \zeta_e(t)), \\ \mu_e(t) &= \psi_e(\eta_e(t), \zeta_e(t)). \end{split}$$

The network is denoted by the triple $(\mathcal{G}, \Sigma, \Pi)$.

- steady-state I/O relation: $y_i \in k_i(u_i)$, $\mu_e \in \gamma_e(\zeta_e)$
- Assumption: The agents Σ_i are output-strictly MEI-Passive and the controllers Π_e are MEI-Passive

WEAKLY EQUIVALENT SYSTEMS

• We want to understand how symmetries in a multi-agent system affect the steady-state of system

Weakly Equivalent Systems

Two systems are called weakly equivalent if they have the same steady-state relation

Examples of WES:

$$\begin{split} \Upsilon_1: \ y &= u & \Upsilon_2: \begin{cases} \dot{x} &= -x + u, \\ y &= x \end{cases} \\ \Upsilon_3: \begin{cases} \dot{x} &= -10x + u, \\ y &= 10x \end{cases} & \Upsilon_4: \begin{cases} \dot{x} &= -x + \sinh(u), \\ y &= \arcsinh(x) \end{cases} \\ \Upsilon_5: \begin{cases} \dot{x} &= -x + u, \\ y &= 0.5(x + u) \end{cases} \\ \text{all have } k(\mathbf{u}) &= (u) \end{split}$$

WEAKLY EQUIVALENT SYSTEMS

• We want to understand how symmetries in a multi-agent system affect the steady-state of system

Weakly Equivalent Systems

Two systems are called weakly equivalent if they have the same steady-state relation

Examples of WES:

Weak Symmetries

Let $(\mathcal{G}, \Sigma, \Pi)$ be a multi-agent system. A weak automorphism of the MAS is a map $\psi : \mathcal{V} \to \mathcal{V}$ such that

- 1. If $i \to j$ is an edge, then so is $\psi(i) \to \psi(j)$ (graph automorphism)
- 2. Σ_i is weakly equivalent to $\Sigma_{\psi(i)}$
- 3. Π_e is weakly equivalent to $\Pi_{\psi(e)}$
- 4. The map ψ preserves edge orientations

The group of weak automorphisms is denoted $Aut(\mathcal{G}, \Sigma, \Pi)$.

- note ${\rm Aut}(\mathcal{G},\Sigma,\Pi)$ is a subgroup of ${\rm Aut}(\mathcal{G})$ (automorphism group of \mathcal{G})

Theorem [S&Z2016]

Consider the diffusively-coupled system $(\mathcal{G}, \Sigma, \Pi)$, and suppose the passivity assumption holds. Then for any steady-state output y of the closed-loop and any weak automorphism $\psi \in \operatorname{Aut}(\mathcal{G}, \Sigma, \Pi)$, it follows that $P_{\psi} y = y$, where P_{ψ} is the permutation matrix representation of ψ .

- shows such a MAS converges to a cluster configuration (when $0 \notin \gamma_e(0)$)
- clusters determined by the orbits of the weak automorphism group

CLUSTER SYNTHESIS - EXAMPLE

- Given 5 LTI agents: $G(s) = \frac{1}{s+1}$
- Goal: cluster of size 3 at y = 1 and cluster of size 2 at y = 0.

- orient edges from $1,2 \mbox{ to } 3,4,5$
- choose controllers equal to $\mu_e = -1.2 + \zeta_e$.

CLUSTER ASSIGNMENT

Problem 1

Consider a collection of n homogeneous agents $\{\Sigma_i\}_{i\in\mathcal{V}}$, and let r_1, \ldots, r_k be positive integers which sum to n. Find a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and homogeneous edge controllers $\{\Pi_e\}_{e\in\mathcal{E}}$ such that the closed loop network converges to a clustered steady-state, with a total of k clusters of sizes r_1, \ldots, r_k .

- Assumption: Controllers Π_e are chosen such that they are MEI-Passive and $0 \notin \gamma_e(0)$

Problem 2

Given positive integers r_1, \ldots, r_k , determine if there exists an oriented graph \mathcal{G} such that it is weakly connected and the action of $\operatorname{Aut}(\mathcal{G})$ on \mathcal{G} has orbits of sizes r_1, \ldots, r_k . If a graph exists, then construct it.

- graphs satisfying above properties are denoted as of type $OS(r_1,\ldots,r_k)$

Theorem

Let $r_1, \ldots r_k$ be any positive integers, and let $n = r_1 + \cdots + r_k$

i) Any directed graph of type $OS(r_1, \ldots, r_k)$ has at least m edges, where

$$m = \min_{\mathcal{T} \text{ tree on } k \text{ vertices}} \sum_{\{i,j\} \in \mathcal{T}} \operatorname{lcm}(r_i, r_j).$$
(1)

ii) There exist a directed graph of type $OS(r_1, \ldots, r_k)$ with at most M edges, where

$$M = \min_{\substack{\mathcal{T} \text{ path on} \\ k \text{ vertices}}} \left(\sum_{\{i,j\} \in \mathcal{T}} \operatorname{lcm}(r_i, r_j) \right) + \min_{i \in \mathcal{V}} r_i.$$
(2)

- lower bound can be found using any algorithm finding a minimal spanning tree, e.g. Kruskal's algorithm (polynomial time)
- upper bound requires solving variant of the traveling salesman problem (NP-hard)

ALGORITHM

Algorithm 1 Building OS-type graphs

Input: A collection r_1, \ldots, r_k of positive integers summing to n, and a path \mathcal{T} on k vertices. **Output:** A graph \mathcal{G} of type $OS(r_1, \ldots, r_k)$. 1: Let $\mathcal{G} = (\mathbb{V}, \mathcal{E})$ be an empty graph. 2: for j = 1, ..., k and $p = 1, ..., r_i$ do 3: Add a node with label v_p^j to \mathbb{V} . 4: for any edge $\{i, j\}$ in \mathcal{T} do 5: **for** $p = 1, ..., lcm(r_i, r_j)$ **do** Add the edge $v_{p \mod r_i}^i \to v_{p \mod r_i}^j$ to \mathbb{E} . 6: 7: Compute $i^* = \arg\min\{r_i\}$. If $r_{i^*} = 1$, go to step 10. 8: for $p = 1, ..., r_{i^{\star}}$ do Add the edge $v_p^{i^*} \to v_{(p+1) \mod r_{i^*}}^{i^*}$ to \mathbb{E} . 9: 10: **Return** $\mathcal{G} = (\mathbb{V}, \mathbb{E})$.

Corollary

Suppose that all cluster sizes r_1, \dots, r_k are equal, and bigger than 1. Then there exists a graph of type $OS(r_1, \dots, r_k)$ with at most $n = r_1 + \ldots + r_k$ edges.

Corollary

Let r_1, \dots, r_k be positive integers such that $k \ge 2$ and that for every j, l, either r_j divides r_l or vice versa. Then there exists a graph of type OS (r_1, \dots, r_k) with $n = r_1 + \dots + r_k$ edges.

Corollary

Let r_1, \dots, r_k be positive integers such that $r_j \leq q$ for all j, and let $n = r_1 + \dots + r_k$. Then there exists a graph of type $OS(r_1, \dots, r_k)$ with at most $n + O(q^3)$ edges.

consider collection of n = 15 identical agents

 $\dot{x} = -x + u + \alpha, \ y = x$

(α is random variable) identical controllers

$$\mu = a_1 + a_2(\zeta + \cos(\zeta)),$$

 $(a_1, a_2 \text{ random variables})$

construct graph with five equally-sized clusters

EXAMPLE

$$r_1 = r_2 = r_3 = r_4 = r_5 = 3$$

consider collection of n = 10 identical agents

 $\dot{x} = -x + u + \alpha, \ y = x$

(α is random variable) identical controllers

$$\mu = a_1 + a_2(\zeta + \cos(\zeta)),$$

 $(a_1, a_2 \text{ random variables})$

construct graph with $r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4$

EXAMPLE

$$r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4$$

11

- explored the cluster assignment problem for MAS
- provide a characterization of graphs with an automorphism group containing orbits of a prescribed size
- provide a constructive algorithm for to find such graphs

Questions?