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The ability to control and coordinate a 
team of robots depends on the sensing 
capabilities of each agent!

In many applications, global or relative 
state information is not available

Sensors measuring distances, however, 
are very accurate and independent of any 
coordinate frame

What is the machinery required to do coordination 
using only distance-based measurements?
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Formation Rigidity

Coordination in harsh environments
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formation specified by a set of inter-agent distances

agents can measure distance to neighbors

sensor limitations only allow a subset of available measurements
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Can the desired formation be maintained using 
only the available distance measurements?

No!
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A minimum number of distance measurements are 
required to uniquely determine the desired formation!

Graph Rigidity
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bar-and-joint frameworks

G = (V, E){
v2v3

v1

p

maps every vertex to a  
point in the plane

p(v1)

p(v2) p(v3)

x1

x2

(G, p0) (G, p1)
Two frameworks are equivalent if kp0(vi)� p0(vj)k = kp1(vi)� p1(vj)k

Two frameworks are congruent if

8 {vi, vj} 2 E

(G, p0) (G, p1)
kp0(vi)� p0(vj)k = kp1(vi)� p1(vj)k

8 vi, vj 2 V

p : V ! R2
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bar-and-joint frameworks

G = (V, E){
v2v3

v1

p

maps every vertex to a  
point in the plane

p(v1)

p(v2) p(v3)

x1

x2

p(v1)

p(v2) p(v3)

p(v4)

p(v1)

p(v2) p(v3)p(v4)

x1

x2

x1

x2

p : V ! R2
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bar-and-joint frameworks

G = (V, E){
v2v3

v1

p

maps every vertex to a  
point in the plane

p(v1)

p(v2) p(v3)

x1

x2

p : V ! R2

A framework (G, p0) is globally rigid
if every framework that is equivalent to (G, p0)
is congruent to (G, p0).
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(G, p) p(v1)

p(v2)

p(v3)

p(v4)

x1

x2

p(v5)
p(v6)

(⇠(vi)� ⇠(vj))
T (p(vi)� p(vj)) = 0

8{vi, vj} 2 E

(rotations & translations)

A framework (G, p0) is minimally rigid
if the removal of any edge results in a
non-rigid graph

An infinitesimal motion is the assignment
of a velocity vector to each node such that

A framework (G, p0) is infinitesimally rigid
if every possible motion is trivial
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15

The Rigidity Matrix p(v1)

p(v2) p(v3)

x1

x2

R(p) =

2

4
px1 � px2 py1 � py2 px2 � px1 py2 � py1 0 0
px1 � px3 py1 � py3 0 0 px3 � px1 py3 � py1

0 0 px2 � px3 py2 � py3 px3 � px2 py3 � py2

3

5

R(p) 2 R|E|⇥2|V|

Lemma 1 (Tay1984) A framework (G, p) is infinitesimally rigid
if and only if rk[R] = 2|V|� 3

p(vi) = (pxi , p
y
i )

(⇠(vi)� ⇠(vj))
T (p(vi)� p(vj)) = 0
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R(p) 2 R|E|⇥2|V|
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The Rigidity Matrix

R(p) 2 R|E|⇥2|V|
the “local” graph from the  
perspective of a single agent

G

vi vi

Gvi

E(Gvi)
local incidence matrix
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The Rigidity Matrix p(v1)

p(v2) p(v3)

x1

x2

R(p) 2 R|E|⇥2|V|

p(vi) = (pxi , p
y
i )

‘local’ incidence matrices

E(G1) =

2

4
1 1 0
�1 0 0
0 �1 0

3

5 E(G2) =

2

4
�1 0 0
1 0 1
0 0 �1

3

5 E(G3) =

2

4
0 0 �1
0 �1 0
0 1 1

3

5

Proposition 1 (Zelazo ’12) The rigidity matrix can be defined as

R(p) =
⇥
E(G1) . . . E(G|V|)

⇤
(I|V| ⌦ p(x,y))

Zelazo et al. ’12
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The Symmetric Rigidity Matrix

R = R(p)TR(p)
a symmetric positive semi-definite  
matrix with eigenvalues �1  �2  . . .  �2|V|

proof: PRPT = (I2 ⌦ E(G))


Wx Wxy

Wxy Wy

� �
I2 ⌦ E(G)T

�

use properties of incidence matrix to show first three eigenvalues  
must be at the origin

�4 the Rigidity Eigenvalue

Theorem 1 (Zelazo ’12) A framework is infinitesimally rigid if
and only if the rigidity eigenvalue is strictly positive; i.e., �4 > 0.

Zelazo et al. ’12
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The Rigidity Eigenvalue
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The Symmetric Rigidity Matrix

R = R(p)TR(p)

Weights are a function of  
relative positions

pi pj

Wx = (pxi − pxj )
2 Wxy =

(
pxi − pxj

) (
pyi − pyj

)
Wy =

(
pyi − pyj

)2

...as a weighted graph Laplacian Matrix

PRPT = (I2 ⌦ E(G))


Wx Wxy

Wxy Wy

� �
I2 ⌦ E(G)T

�
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Why is this important or useful?

- formation control 
- localization  
- exploration

Is it possible to maintain rigidity 
in a distributed manner?

- the rigidity eigenvalue 
is the tool  

Agents should move to ensure the 
rigidity eigenvalue is always positive!
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Control of a Quadrotor UAV
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yaw
�

thrust

centroid 
position

pcentroid

fully-actuated rotational dynamics

under-actuated translational dynamics 

The position of the center of mass and the yaw 
are flat outputs [Mistler & al. ISRHIC 2001] 

Any  smooth trajectory in the flat outputs space 
can be followed by the quadrotor 

(with a suitable controller)

� The UAV is abstracted as a  
point oriented in the horizontal plane

Design a velocity command for each 
quadrotor using only sensed information 

from neighbors and obstacles

ξi
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Quadrotor Sensing Constraints
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When is there a sensing link between agents?
“Weights” can be introduced on  
sensing link between agents to  
promote or discourage behaviors

D
sensing range

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

ℓuv [m]

a
u
v aij(dij) =

⎧
⎪⎨

⎪⎩

ka 0 ≤ dij ≤ d0
ka
2
(1 + cos(αadij + βa)) d0 < dij ≤ D

0 dij > D
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When is there a sensing link between agents?
“Weights” can be introduced on  
sensing link between agents to  
promote or discourage behaviors

dmin

safety zone no line-of-sight occlusion

bij(dijo) =

⎧
⎪⎨

⎪⎩

0 doij ≤ domin
kb
2
(1− cos(αbdijo + βb)) domin < dijo ≤ domax

kb dijo > domax

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

ℓuvo, ℓuv [m]

b u
v
,
c u
,
c v
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D
sensing range

dmin

safety zone

When is there a sensing link between agents?

composite weight between  
neighboring agents

no line-of-sight occlusion

Aij
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When is there a sensing link between agents?

D
sensing range

dmin

safety zone

no line-of-sight occlusion

PRPT = (I2 ⌦ E(G))


Wx Wxy

Wxy Wy

�
(I2 ⌦ E(G)T )

=


E(G)WxE(G)T E(G)WxyE(G)T
E(G)WxyE(G)T E(G)WyE(G)T

�
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The Rigidity Potential
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Key observation:  Gradient of rigidity eigenvalue 
has a distributed structure!

�4 = vT4 PRPT v4

gradient is only a 
function of relative 

quantities!

can be computed  
locally by each 

agent*

How can rigidity be maintained with only local information?
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The Rigidity Potential
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Define a scalar potential function

grows unbounded as

vanishes as 

�4 ! 0
�4 ! 1

⇠i = �@V�

@�4

✓
@�4

@pi

◆
velocity command

V�

�4 = vT4 PRPT v4



ANU - July 18, 2012

The Rigidity Potential
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D

dmin

Weighted Rigidity 
Eigenvalue

⇠i = �@V�

@�4

✓
@�4

@pi

◆
velocity command

Aij
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Observation:  The gradient 
requires that neighboring agents 
exchange their component of the 
rigidity eigenvector!

Problem:  The rigidity 
eigenvector is a global quantity!

Solution:  This control strategy requires a distributed estimation of 
the rigidity eigenvector and eigenvalue for implementation!

Idea:  Use consensus filters to implement a distributed version of 
the Power Iteration method for eigenvector estimation  
(Yang ’10, Robuffo Giordano ’11)
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Rigidity and formation control
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A constructive method for generating all  
minimally rigid graphs in the plane 
[Henneberg, 1911]
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A constructive method for generating all  
minimally rigid graphs in the plane 
[Henneberg, 1911]

Vertex Addition
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Henneberg Constructions
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A constructive method for generating all  
minimally rigid graphs in the plane 
[Henneberg, 1911]

Edge Splitting
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Example
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Example

Vertex Addition
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Example

Vertex Addition
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Henneberg Constructions
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Example

Edge Splitting
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Example

Edge Splitting
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Example

Edge Splitting
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Example

Edge Splitting
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Example

Edge Splitting
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Henneberg Constructions
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Example

Edge Splitting
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Henneberg Constructions
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Example
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Relative Sensing Networks

48

g(t)

Node-Edge  
Incidence Matrix

∥Σ(G)∥22 =
N∑

i=1

di∥Σi∥22 [Zelazo TAC ’11]

G
w(t) g(t)

Σi Σj

ΣN

G ∈ {Rigid Graphs}
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Optimal Henneberg Construction
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Proposition (H2 Optimal Vertex Addition)

Apply Vertex Addition step to “smallest” weights 

Sort the degree-weighted norms of all nodes:

dσ(1)∥Σσ(1)∥22 ≤ · · · ≤ dσ(N)∥Σσ(N)∥22

ΣuG

∥Σ(G ∪ {e1, e2})∥22 = ∥Σ(G)∥22 + 2∥Σu∥22 + ∥Σi∥22 + ∥Σj∥22
e1 = (vi, vu) e2 = (vj , vu)
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Optimal Henneberg Construction
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G

Proposition (H2 Optimal Edge Splitting)

Sort the degree-weighted norms of all nodes:

dσ(1)∥Σσ(1)∥22 ≤ · · · ≤ dσ(N)∥Σσ(N)∥22

G Σu

Apply Edge Splitting step with “smallest” weighted  
node and any other connected pair of nodes 

∥Σ(G ∪ {e1, e2, e3})∥22 = ∥Σ(G)∥22 + 3∥Σu∥22 + ∥Σk∥22

e1 = (vi, vu) e2 = (vj , vu), e3 = (vk, vu)
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Sub-Optimal Henneberg Construction
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j

i k

r

Optimal Vertex Addition and Edge Splitting steps  
can be implemented “locally”
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Growing Optimally Rigid Graphs
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an algorithm...
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Growing Optimally Rigid Graphs
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simulation example...
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Proposition 3. Let G = (V, E) be a graph with two distinct vertices vi and vj ,
and let G∗ = (V∗, E∗) be the graph obtained by connecting a new vertex vk /∈ V
with edges (vi, vk) and (vj , vk) to the graph G. The G is infinitesimally rigid if and
only if G∗ is infinitesimally rigid (see Figure 4(a)).

j

i
k

(a) Adding a vertex.

j

i
k

r

(b) Selecting the optimal attachment point.

Figure 4: Henneberg constructions for adding a vertex to a rigid framework.

Proposition 3 represents an essential procedure for constructing rigid frame-
works. This is a key feature for joining graphs in a rigid way, and is discussed
in much of the literature related to formation keeping and rigidity (get citations).
While very simple, this procedure does not indicate which nodes, if there are many
possible nodes to attach to, to connect to. We now proceed how this can be ac-
complished to ensure the resulting formation has its performance minimized. This
is visualized in Figure 4(b), where node vk can select between 5 nodes within its
sensing range to establish a connection with.

In all settings, we wish to add a vertex to the existing graph G such that the
newly obtained graph G∗, and its associated dynamic representation Σ(G∗), has
best performance; that is, add the new vertex such that ∥Σ(G∗)∥p is minimized for
p ∈ {2,∞}. In addition, we also allow for both homogeneous and heterogeneous
dynamic agent configurations. Based on the results summarized in Table 1, we
have the following propositions.

Proposition 4 (Homogeneous H2 Vertex Addition). Given a graph G = (V, E)
with dynamic representation Σ(G) that is minimally infinitesimally rigid, and a
node vk /∈ V with identical dynamics as each agent in G, then establishing an

10

• full distributed implementations 
• formation specification and trajectory tracking 
• optimality 
• rigidity matroids 
• sub-modular optimization 
• sensor fusion and localization 
• ...
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