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A Real Group Coordination Problem
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Coordination in harsh environments
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Coordination in harsh environments

What is the
using o _
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Coordination in harsh environments ?

-

Formation Rigidity\

.
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What is rigidity?

7 =% 7 =%
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What is rigidity?

formation specified by a set of inter-agent distances

agents can measure distance to neighbors

sensor limitations only allow a subset of available measurements
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What is rigidity?

Can the desired formation be maintained using
only the available distance measurements?

No!
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What is rigidity?

A minimum number of distance measurements are
required to uniquely determine the desired formation!

Graph Rigidity
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Graph rigidity

bar-and-joint frameworks

g:(vvg)
D Y — R?

maps every vertex to a
point in the plane

Two frameworks are equivalent if  ||po(vi) — po(v;)]| = ||p1(vi) — p1(v))]|
(G,p0) (G,p1) V{v;,v;} € E

Two frameworks are congruent if |0 (Vi) — po(v;)|| = ||p1(vi) — p1(v;)|
(G,p0) (G,p1) Vi, v; €V
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Graph rigidity

bar-and-joint frameworks

g:(vvg)
p: YV — R

maps every vertex to a
point in the plane

)
A p(vl)

p(Ul)

p(‘U4)

p(UQ)

p(vs)
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Graph rigidity

bar-and-joint frameworks

g:(vvg)
D Y — R?

maps every vertex to a
point in the plane

A framework (G, pg) is globally rigid
if every framework that is equivalent to (G, pg)
is congruent to (G, pg).
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Graph rigidity ?

(g, p) 5 p(v1)

p(vg)

An nfinitestmal motion is the assignment T o
of a velocity vector to each node such that (f(vz> - f(?)])) (p(vi) o p(vj)) =0
V{v;,v;} € &

A framework (G, pg) is infimittedimatlydrigid
if éherremossblef moyiedgs tesvikdk in a
(DTS hnGiadE)
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Graph rigidity and the rigidity matrix

The Rigidity Matrix p(v1)

p(vi) = (pi, p;)
R(p) € RIEX2V] //\A .

p(v2) p(v3)

(€(vi) = &(v))" (p(vi) = p(v;)) =0

pf —py pl —py pi—p7 pY—pY 0 0
R(p)=| p¥ —p3 pi—0p} 0 yO ) ps — pt pg—pz
0 0 Py —P3 Py —P3 D3 — Py Py — P

Lemma 1 (Tay1984) A framework (G,p) is infinitesimally rigid
if and only if rk[R] = 2|V| — 3
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Rigidity and Formations
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The Rigidity Matrix

The Rigidity Matrix

R(p) € RIEIX2[V]

the “local” graph from the
perspective of a single agent

E(Gy,)

local incidence matrix

g y?}i
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The Rigidity Matrix

The Rigidity Matrix

p(vi) = (i, ;)
R(p) € RIEX2V] //\ .

)
p( 2) p(vg)
‘local’ incidence matrices
1 1 0] -1 0 0 0 0 -1
E(Ql): -1 0 O E(gg): 1 0 1 E(gg): 0O —1 O
I 0 -1 O_ 0O O —1_ 0 1 1

4 )
Proposition 1 (zelazo etal. '12) The rigidity matrix can be defined as

R(p)=[ E(G1) ... EGy)) | Iy @p=¥)
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The Rigidity Eigenvalue

4 p
)\ 4 the Rigidity Eigenvalue

R =R(p)" R(p) | /

a symmetric positive semi-definite )\1 S )\2 S o S )‘Q‘V‘

matrix with eigenvalues

The Symmetric Rigidity Matrix

4 )
Theorem 1 (Zzelazoetal. 12) A framework is infinitesimally rigid if

and only if the rigidity eigenvalue s strictly positive; i.e., Ay > 0.

- J

Wx Wa;y - T
w,, w, | e RO

use properties of incidence matrix to show first three eigenvalues
must be at the origin

proof: PR PL — ([2 X E(g))
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The Rigidity Eigenvalue ?

The Symmetric Rigidity Matrix

R = R(p)" R(p)

...as a weighted graph Laplacian Matrix

Haz Hazy T
Ir @ FE
W, (1 (G)")

PRP' = (I, ® E(G))

Weights are a function of

relative positions
o0

Di Pj
W = (0§ —p§)* W, = (v} —10?)2 Way = (07 —p5) (P} — Pj)
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Rigidity and Formation control

Why is this important or useful?

- formation control
- localization
- exploration

s it possible to maintain rigidity v ,
in a distributed manner??

- the rigidity eigenvalue -
IS the tool i Sy

Agents should move to ensure the
rigidity eigenvalue is always positive!
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Control of a Quadrotor UAV

?

—y — fully-actuated rotational dynamics

f thrust . ]i W; —— S("u,,?.,j),].,j W; = Y == C,

centroid
position

: 9 under-actuated translational dynamics

\ yaw

Pcentroid

The position of the center of mass and the yaw
are flat outputs [Mistler & al. ISRHIC 2001] A

Any smooth t ajecP r??rlghn ﬁatvc?ultogtls? Fgc%mmand for each

can be f@uladro @erou&lragron Y seEsed information

(with @ sutaifEsm"Agighbors and obstacles

- The UAV is abstracted as a .
point oriented in the horizont&] plane

- J

N\ Y omyd; = —\iRijes + myges + 6;
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Quadrotor Sensing Constraints

When is there a sensing link between agents? - ~

“Weights™” can be introduced on
sensing link between agents to

m M promote or discourage behaviors

) 1
D

sensing range

1.5

| | , s o< dy < do
E a;;(di;) = 4 ?(1 + cos(aqdi; + Ba)) do <di; <D

sl L 0 dij>D

00 .;_ 4Il- é il3 1IO 1I2 1I4 16

lyp [m]
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Quadrotor Sensing Constraints

When is there a sensing link between agents?

4 )
) “Weights™ can be introduced on
sensing link between agents to
! , B promote or discourage behaviors
: A : M \. /
safety zone no line-of-sight occlusion
1.5
s ( 0 doij < dpyin
: kb
S biji(dijo) = 4 ?(1 —cos(apdijo + Bp)) d2s, < dijo < d9
< | OO ST ST S SN S S \ Kb dijo > diyax
OO é 4 6 E; 1i0 1i2 1i4 16
guvm K’U,’U [m]
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Quadrotor Sensing Constraints

When is there a sensing link between agents?

) 1
D

sensing range

no line-of-sight occlusion

~ -
-------

safety zone

composite weight between
neighboring agents

-
/

L=
[o]
/

A= aiBipyij
./h o

(=]
N
/

o
v,
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Quadrotor Sensing Constraints ?

When is there a sensing link between agents?

‘ 4
A\ S 4
. L4
A L4
- L4
-~ L4
~ ’
§~ ‘l
D ---------

sensing range safety zone

PRPT = %y | (I ® E(G)")
i E(G)W,, E(G)T
- E(G)W,E(@G)"

no line-of-sight occlusion
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The Rigidity Potential

How can rigidity be maintained with only local information?

Key observation: Gradient of rigidity eigenvalue
has a distributed structure!

)\4 — UZPRPTngl

Oy
S T — pE ) (v% — vT)?
opy - Z([JZ P; )(v; U3 )"+ gradient is only a
1~ function of relative
Y UN( T N Y Y ities!
(p; —pj)(vi —vi)(vy — o) quantities
a7 = 2| 2@ =Nl - v+
P; i can be computed
, , locally by each
(pi —Pj)(vi — l’;:)(l’zy - l’;/) agent*
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The Rigidity Potential

Define a scalar potential function ‘/ )\

grows unbounded as )\4 ()
vanishes as )\4 — 0O

velocity command
4 p

£ = OV %
‘o 8)\4 8p7;

- J
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The Rigidity Potential

- .
P e S

velocity command o, T~ e
4 ~ I( >I .

8)\4 apz'

- J

e _ O <8>\4> D T

4 )
i~ Weighted Rigidity
( > (0f —pY)* A (v} Eigenvalue
1~ \ J
(2307 — P 0Y — ) A (0F — v) (0} —0}))
i~ ]
%1St? ANU - July 18, 2012 30




A Note on “how” Distributed

OA4
- — p:.r — pa.: vt — T 2+
op¥ ;( i — ) (v =) Observation: The gradient
J requires that neighboring agents
(pi./ — pg)(pf — 'U;-:)('Uf — p;/) e_xc_:h_ang_e their component of the
rigidity eigenvectonr
O\4
_ Y D UN(Y Y2
Y 21 2! =) =v))*+  proplem: The rigidity
! inv] eigenvector is a global quantity!

(pi —pj)(vi —vi)(v] — vg)

Solution: This control strategy requires a distributed estimation of
the rigidity eigenvector and eigenvalue for implementation!

Idea: Use consensus filters to implement a distributed version of

the Power Iteration method for eigenvector estimation
(Yang 10, Robuffo Giordano ’11)

'i?(t) _ (—A‘IT'TT . sz) I(t) — ks (I(t)Tl‘(f) . 1) I(_t')

n
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Simulation

The 7 UAVs have limited range and line-of-sight communication/perception
resulting in an Interaction Graph
( = almost disconnected)

Rigidity of the graph is a fundamental property in formation control and sensing
(e.g., in order to estimate the relative positions by only measuring distances)

The main objective of the UAV group is to keep the rigidity of the interaction graph
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Rigidity and formation control
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Henneberg Constructions

A constructive method for generating all

minimally rigid graphs in the plane
[Henneberg, 1911]
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Henneberg Constructions

A constructive method for generating all

minimally rigid graphs in the plane
[Henneberg, 1911]

Vertex Addition
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Henneberg Constructions

A constructive method for generating all

minimally rigid graphs in the plane
[Henneberg, 1911]

Edge Splitting
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Henneberg Constructions

Example
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Henneberg Constructions

Example

Vertex Addition
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Henneberg Constructions

Example

Vertex Addition

ISt® ANU - July 18, 2012 40




Henneberg Constructions

Example

Edge Splitting
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Henneberg Constructions

Example

Edge Splitting
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Henneberg Constructions

Example

Edge Splitting
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Henneberg Constructions

Example

Edge Splitting
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Henneberg Constructions

Example

Edge Splitting
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Henneberg Constructions

Example

Edge Splitting
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Henneberg Constructions

Example

ISt® ANU - July 18, 2012 47




Relative Sensing Networks ?

Z( ) — g / 11 / .
2011 @I Dsal % D
alt) = (G @ C. N (t).
Theorem  : The Ho optimally rigid graph is minimally

rigid.
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Optimal Henneberg Construction ?

Proposition (Hs Optimal Vertex Addition)

—_———_—— -
- - <

Sort the degree-weighted norms of all nodes:

da(l)HZG(l)H% < - < da(N)HZJ(N)Hg

Apply Vertex Addition step to “smallest” weights

. -
-

€1 = (Uiavu) €2 = (Ujavu)
12(G U {er, e}z = 1293 + 2015ullz + 12ill5 + 1125113
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Optimal Henneberg Construction ?

Proposition (Ho Optimal Edge Splitting)

- —— o ——
- -
- =~ -

Sort the degree-weighted norms of all nodes:

da(l)HZG(l)H% < - < da(N)HZJ(N)Hg

Apply Edge Splitting step with “smallest” weighted
T ~ node and any other connected pair of nodes

e1 = (vi, V) €2 = (Vj,Vy), €3 = (U, Vy)
IZ(G U {er, ez, e5})ll5 = [Z(G)II5 + 3 Zull3 + 1Zkl13
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Sub-Optimal Henneberg Construction

Optimal Vertex Addition and Edge Splitting steps
can be implemented “locally”
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Growing Optimally Rigid Graphs

an a|gor|thm _ Algorithm 1: H, Optimally Rigid Graph Algorithm
Data: A set of N dynamic agents of form (1), indexed
by the set V = {v,,...,v,}. Each agent has H,
norm ||¥;||2 and identical sensing radius r.
Result: An H2 optimally rigid graph.
begin
-Sort and relabel each agent according to their H2
norm such that || |3 < [E2]3 < - - < | En3

.Assign weights, sort, and label candidate edges’
such that w(e;) < --- < w(e)g|), where

ei = (vi,v) € € and w(e;) = || Eg|[3 + [|]13-
Set G* := (V*,&") with V* = {va, v},

E* ={e; = (vg,vp)}-

while V" # V do

Set Q={veV||V'NnN(v,t) =2} and
select the node u = arg min;cq ||:||3

if [NV(u,t)| =2 then

-do H2 Optimal Vertex Addition (new edges

€a,€p )

Set G* = (V" U {u},&" U {ea,es})

else
-Evaluate (7) for candidate edges
-do H2 Optimal Vertex Addition or H2
Optimal Edge Splitting based on (7) (new
edges {e,,ep, €.} and deleted edge eg4)
Set G* = (V' U {u},&* U {eq,ep}) or

| G =(V'U{u},& U{eq, ep €.} —e€q)

T The candidate edges are all possible edges an agent can

establish within its sensing range.
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Growing Optimally Rigid Graphs

simulation example...

(a) All possible edges. (b) The Ho optimally rigid graph.
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Future Outlook

e full distributed implementations

e formation specification and trajectory tracking
e optimality

* rigidity matroids

* sub-modular optimization

* sensor fusion and localization
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