

Robust Design of Sparse Relative Sensing Networks

Simone Schuler^{*}, Daniel Zelazo^{**} and Frank Allgöwer^{*}

∗ Institute for Systems Theory and Automatic Control University of Stuttgart, Germany

∗∗Faculty of Aerospace Engineering Technion - Israel Institute of Technology, Israel

European Control Conference, 2013

ist^o

Relative Sensing Networks

A collection of dynamic systems that use sensed relative state information to achieve higher level objectives.

Applications

- **o** formation control
- **o** localization
- environmental surveillance
- \bullet ...

- 'absolute' inertial measurements are often not available (deep space, gps-denied environments \rightarrow "harsh" environments)
- **•** however, relative measurements are available and can be very accurate

Relative Sensing Networks

implicit presence of a 'network' induced by sensing structure

Performance and design of networks:

- Influence of topology on performance
- Optimal topologies

ist?

- Sparsity vs connectivity
- Heterogeneity of dynamics
- Robustness of performance

Relative Sensing Networks

combinatorial and dynamic uncertainty

[Modeling of Uncertain Relative Sensing Networks](#page-5-0)

[Design Algorithm](#page-15-0)

[Example](#page-20-0)

Modeling of Relative Sensing Networks

State space model

$$
\Sigma(\mathcal{G}) : \left\{ \begin{array}{lcl} \dot{\boldsymbol{x}}(t) & = & \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{w}(t) & \text{\tiny $(i.e., A = \text{diag}(A_1, A_2, \ldots, A_n))$} \\ \boldsymbol{y}(t) & = & \boldsymbol{C}\boldsymbol{x}(t) + \boldsymbol{D}\boldsymbol{w}(t) \\ \boldsymbol{y}_{\mathcal{G}}(t) & = & \boldsymbol{(E(\mathcal{G})^T \otimes I)} \boldsymbol{C}\boldsymbol{x}(t) \end{array} \right.
$$

Transfer function

$$
T^{\mathbf{w}\mapsto\mathcal{G}}(s) = (E(\mathcal{G})^T \otimes I)\mathbf{H}(s) \quad \text{ with } \mathbf{H}(s) = \text{diag}(H_1, H_2, \dots, H_n)
$$

and $H_i := C_i(sI - A_i)^{-1}B_i$

Modeling of Relative Sensing Networks

State space model

$$
\Sigma(\mathcal{G}) : \left\{ \begin{array}{lcl} \dot{\boldsymbol{x}}(t) & = & \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{w}(t) & \text{\tiny $(i.e., A = \text{diag}(A_1, A_2, \ldots, A_n))$} \\ \boldsymbol{y}(t) & = & \boldsymbol{C}\boldsymbol{x}(t) + \boldsymbol{D}\boldsymbol{w}(t) \\ \boldsymbol{y}_{\mathcal{G}}(t) & = & \boldsymbol{(E(\mathcal{G})^T \otimes I)} \boldsymbol{C}\boldsymbol{x}(t) \end{array} \right.
$$

Transfer function

ist?

$$
T^{\mathbf{w}\mapsto\mathcal{G}}(s) = (E(\mathcal{G})^T \otimes I)\mathbf{H}(s) \quad \text{ with } \mathbf{H}(s) = \text{diag}(H_1, H_2, \dots, H_n)
$$

and $H_i := C_i(sI - A_i)^{-1}B_i$

Performance ? Robustness ?

 \mathcal{H}_{∞} -norm captures how finite energy exogenous signals are amplified at the monitored outputs.

Theorem (\mathcal{H}_{∞} -Performance of RSNs)

The \mathcal{H}_{∞} -norm of a heterogenous RSN is bounded from above by

 $||T^{\mathbf{w}\mapsto\mathcal{G}}||_{\infty} \leq ||W E(\mathcal{G})^T Q||_2$

where $Q = \text{diag}(\Vert H_1 \Vert_{\infty}, \dots, \Vert H_n \Vert_{\infty}).$

Zelazo and Mesbahi, 2011

- graph-centric characterization of \mathcal{H}_{∞} -norm
- \bullet \mathcal{H}_{∞} performance is dependent on graph structure
- **•** for SISO systems, this bound is tight

RSN With Uncertain Edge Weights

Robust RSN Design

Design the sensing network of an RSN that is at the same time robustly connected and sparse with good \mathcal{H}_{∞} performance.

Tradeoff Between Connectivity and Sparsity

Robust optimization problem (with γ as an upper bound)

$$
\begin{aligned} \min_{w_i \geq 0, \gamma^2 > 0} \max_{\|\delta\|_2 \leq 1} & & \gamma^2 \\ \text{subject to } & & \left[\begin{matrix} \gamma^2 I & QE(\mathcal{G}_c)(W + \Delta) \\ (W + \Delta)E(\mathcal{G}_c)^T Q & I \end{matrix} \right] \geq 0 \\ & & P^T E(\mathcal{G}_c)(W + \Delta)E(\mathcal{G}_c)^T P > 0 \end{aligned}
$$

- robust performance and robust connectivity
- design of nominal edge weights

Tradeoff Between Connectivity and Sparsity

Robust optimization problem (with γ as an upper bound)

$$
\min_{w_i \ge 0, \gamma^2 > 0} \max_{\|\delta\|_2 \le 1} \gamma^2
$$
\n
$$
\text{subject to } \begin{bmatrix} \gamma^2 I & QE(\mathcal{G}_c)(W + \Delta) \\ (W + \Delta)E(\mathcal{G}_c)^T Q & I \end{bmatrix} \ge 0
$$
\n
$$
P^T E(\mathcal{G}_c)(W + \Delta)E(\mathcal{G}_c)^T P > 0
$$

Maximization of weighted connectivity agent dynamics represents node weight

$$
\min_{w_i \ge 0, \mu > 0} \max_{\|\delta\|_2 \le 1} -\mu
$$
\n
$$
\text{subject to } P^T (E(W_0 + \Delta)E^T - \mu Q)P > 0
$$

Shafi, Arcak and El Ghaoui, 2010

Robust Optimization Problem

Robust optimization problem (with γ as an upper bound)

$$
\begin{aligned} \min_{w_i \geq 0, \gamma^2 > 0} \max_{\|\delta\|_2} & & \gamma^2 \\ \text{subject to } & \begin{bmatrix} \gamma^2 I & QE(\mathcal{G}_c)(W + \Delta) \\ (W + \Delta)E(\mathcal{G}_c)^T Q & I \end{bmatrix} \geq 0 \\ & & P^T E(\mathcal{G}_c)(W + \Delta)E(\mathcal{G}_c)^T P > 0 \end{aligned}
$$

Robust Optimization Problem

Robust optimization problem (with γ as an upper bound)

$$
\begin{aligned} \min_{w_i \geq 0, \gamma^2 > 0} \max_{\|\delta\|_2} & & \gamma^2 \\ \text{subject to } & \begin{bmatrix} \gamma^2 I & QE(\mathcal{G}_c)(W + \Delta) \\ (W + \Delta)E(\mathcal{G}_c)^T Q & I \end{bmatrix} \geq 0 \\ & & P^T E(\mathcal{G}_c)(W + \Delta)E(\mathcal{G}_c)^T P > 0 \end{aligned}
$$

Sparsity Promoting Optimization

weighted ℓ_1 -minimization

subject to $x \in$ feasible set

- \bullet ℓ_1 -norm is the *convex envelope* of the cardinality function
- **•** convex optimization problem
- **o** delivers sparse solutions for semidefinite programs

Sparsity Promoting Optimization

weighted ℓ_1 -minimization

subject to $x \in$ feasible set

- \bullet ℓ_1 -norm is the *convex envelope* of the cardinality function
- **•** convex optimization problem
- **o** delivers sparse solutions for semidefinite programs

Tradeoff Between Connectivity and Sparsity

Sparsity vs connectivity

$$
\min_{w_i \ge 0, \mu > 0} \max_{\|\delta\|_2 \le 1} (1 - \alpha) \sum_{i=1}^n m_i w_i - \alpha \mu, \quad \alpha \in [0, 1]
$$
\n
$$
\text{subject to } \begin{bmatrix} \gamma^2 I & QE(\mathcal{G})(W_0 + \Delta) \\ (W_0 + \Delta)E(\mathcal{G})^T Q & I \end{bmatrix} \ge 0
$$
\n
$$
P^T (E(W_0 + \Delta)E^T - \mu Q) P > 0
$$

Tradeoff Between Connectivity and Sparsity

Sparsity vs connectivity

$$
\min_{w_i \ge 0, \mu > 0} \quad (1 - \alpha) \sum_{i=1}^n m_i w_i - \alpha \mu, \quad \alpha \in [0, 1]
$$
\n
$$
\text{subject to } \begin{bmatrix} S^j & F_1^j & \dots & F_{|\mathcal{E}|}^j \\ F_1^j & T^j & & \\ \vdots & \ddots & \vdots \\ F_{|\mathcal{E}|}^j & T^j & \\ S^j + T^j & \le 2F_0^j, \quad j = 1, 2 \\ w_i \ge 0. \end{bmatrix} \ge 0, \quad j = 1, 2
$$

Rewrite constraints by robust counterpart \rightarrow SDP

Ben-Tal, El Ghaoui and Nemirovski, 2000

Optimization Algorithm

Algorithm 1 Sparse Topology Design

- $\textbf{1}$ Set $h=0$ and choose $m_i^{(0)}$ $i^{(0)}$ for $i = 1, ..., |\mathcal{E}|$ and $\nu > 0$.
- Solve the minimization problem to find the optimal solution $w_i^{(h)}$ $\binom{n}{i}$.
- **3** Update the weights

ist?

$$
m_i^{(h+1)}=(w_i^{(h)}+\nu)^{-1}.
$$

- **4** Terminate on convergence, otherwise set $h = h + 1$ and go to Step 2.
- **•** Solve optimization problem for fixed structure obtained in Step 3 (polishing step).

Weights: initial weights $m^{(0)}_i$ $i^{(0)}$ can promote desired sub-graphs

Exhaustive Search vs Sparse Design

- 6 random agents (15 possible edges)
- \bullet \mathcal{H}_{∞} -norm $||H_i||_{\infty} \in [0.62, 6.72], \gamma = 18$
- 26, 704 possibilities for nominally connected graph topologies

Connectivity maximization

- 7 random agents (21 possible edges)
- $||H_i||_{\infty} \in [0.44, 3.88], \gamma = 10$

ist^o

• 1.86×10^6 possibilities of nominally connected graph topologies

Topology Optimization with Optimal Performance

(a) $\gamma=19.2$, 45 edges. (b) $\gamma=19.39$, 34 edges. (c) $\gamma=19.45$, 29 edges.

- 10 random agents (45 possible edges)
- $||H_i||_{\infty} \in [0.17, 7.48]$
- $2^{45} = 3.52 \cdot 10^{13}$ possible graphs topologies

Conclusion and Outlook

design of sparse relative sensing networks

- **a** approximation of exhaustive search by weighted ℓ_1 -minimization
- consideration of performance, connectivity and sparsity constraints in face of uncertain edge weights
- fast convergence of algorithm
- **•** promotion of sub-graphs

 Σ_i Σ_j Σ_k Σ^l

Next steps: Alternative to robust counterpart to allow larger networks.

Conclusion and Outlook

design of sparse relative sensing networks

- **a** approximation of exhaustive search by weighted ℓ_1 -minimization
- consideration of performance, connectivity and sparsity constraints in face of uncertain edge weights
- fast convergence of algorithm
- **•** promotion of sub-graphs

ist?

 Σ_i Σ_j Σ_k Σ^l

Next steps: Alternative to robust counterpart to allow larger networks.

Thank you!