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Relative Sensing Networks

A collection of dynamic systems that use sensed relative state
information to achieve higher level objectives.

Applications

formation control

localization

environmental surveillance

. . .

’absolute’ inertial measurements are often not available (deep
space, gps-denied environments → “harsh” environments)
however, relative measurements are available and can be very
accurate
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Relative Sensing Networks

implicit presence of a ‘network’ induced by sensing structure

Performance and design of networks:

Influence of topology on performance

Optimal topologies

Sparsity vs connectivity

Heterogeneity of dynamics

Robustness of performance

Σi

Σj

Σk

Σl
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Relative Sensing Networks

combinatorial and dynamic uncertainty

G
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Modeling of Relative Sensing Networks

⌃(G)

State space model

Σ(G) :


ẋ(t) = Ax(t) + Bw(t) (i.e.,A = diag(A1, A2, . . . , An))

y(t) = Cx(t) + Dw(t)
yG(t) = (E(G)T ⊗ I)Cx(t)

Transfer function

Tw 7→G(s) = (E(G)T ⊗ I)H(s) with H(s) = diag(H1, H2, . . . ,Hn)

and Hi := Ci(sI −Ai)−1Bi

Performance ? Robustness ?
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Performance Analysis of RSNs

H∞-norm captures how finite energy exogenous signals are
amplified at the monitored outputs.

Theorem ( H∞-Performance of RSNs)

The H∞-norm of a heterogenous RSN is bounded from above by

‖Tw 7→G‖∞ ≤ ‖WE(G)TQ‖2

where Q = diag(‖H1‖∞, . . . , ‖Hn‖∞).
Zelazo and Mesbahi, 2011

graph-centric characterization of H∞-norm

H∞ performance is dependent on graph structure

for SISO systems, this bound is tight
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RSN With Uncertain Edge Weights

multiplicative output uncertainty

Tw 7→G W0

∆

Σ

w(t) yG(t)

W = W0 + ∆, where ∆ ∈∆w

∆w = {diag(δ1, . . . , δ|E|) : δ ∈ R|E|, ‖δ‖2 ≤ 1}

Definition (Robust Connectivity)

A weighted graph is called robustly connected under the
uncertainty set ∆w, if and only if the graph stays connected for all
∆ ∈∆w .
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From Analysis to Synthesis

Robust RSN Design

Design the sensing network of an RSN that is at the same time
robustly connected and sparse with good H∞ performance.
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Tradeoff Between Connectivity and Sparsity

Robust optimization problem (with γ as an upper bound)

min
wi≥0,γ2>0

max
‖δ‖2≤1

γ2

subject to

[
γ2I QE(Gc)(W + ∆)

(W + ∆)E(Gc)TQ I

]
≥ 0

P TE(Gc)(W + ∆)E(Gc)TP > 0

robust performance and robust connectivity

design of nominal edge weights

Maximization of weighted connectivity
agent dynamics represents node weight

min
wi≥0,µ>0

max
‖δ‖2≤1

−µ

subject to P T (E(W0 + ∆)ET − µQ)P > 0

Shafi, Arcak and El Ghaoui, 2010
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Robust Optimization Problem

Robust optimization problem (with γ as an upper bound)
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Sparsity Promoting Optimization

weighted `1-minimization

feasible set

F ∗

feasible set

F ∗

feasible set

F ∗

feasible set

F ∗

min
n∑
i=1

mi|xi|

subject to x ∈ feasible set

`1-norm is the convex envelope of the cardinality function

convex optimization problem

delivers sparse solutions for semidefinite programs

(Candés et al. 2008)
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Tradeoff Between Connectivity and Sparsity

Sparsity vs connectivity

min
wi≥0,µ>0

max
‖δ‖2≤1

(1− α)

n∑
i=1

miwi−αµ, α ∈ [0, 1]

subject to

[
γ2I QE(G)(W0 + ∆)

(W0 + ∆)E(G)TQ I

]
≥ 0

P T (E(W0 + ∆)ET − µQ)P > 0

Rewrite constraints by robust counterpart → SDP
Ben-Tal, El Ghaoui and Nemirovski, 2000
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Tradeoff Between Connectivity and Sparsity

Sparsity vs connectivity

min
wi≥0,µ>0

(1− α)

n∑
i=1

miwi−αµ, α ∈ [0, 1]

subject to


Sj F j1 . . . F j|E|
F j1 T j

...
. . .

F j|E| T j

 ≥ 0, j = 1, 2

Sj + T j ≤ 2F j0 , j = 1, 2

wi ≥ 0.

Rewrite constraints by robust counterpart → SDP
Ben-Tal, El Ghaoui and Nemirovski, 2000
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Optimization Algorithm

Algorithm 1 Sparse Topology Design

1 Set h = 0 and choose m
(0)
i for i = 1, . . . , |E| and ν > 0.

2 Solve the minimization problem to find the optimal solution

w
(h)
i .

3 Update the weights

m
(h+1)
i = (w

(h)
i + ν)−1.

4 Terminate on convergence, otherwise set h = h+ 1 and go to
Step 2.

5 Solve optimization problem for fixed structure obtained in
Step 3 (polishing step).

Weights: initial weights m
(0)
i can promote desired sub-graphs
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Exhaustive Search vs Sparse Design
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6 random agents (15 possible edges)

H∞-norm ‖Hi‖∞ ∈ [0.62, 6.72], γ = 18

26, 704 possibilities for nominally connected graph topologies
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Connectivity maximization
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7 random agents (21 possible edges)

‖Hi‖∞ ∈ [0.44, 3.88], γ = 10

1.86× 106 possibilities of nominally connected graph
topologies
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Topology Optimization with Optimal Performance
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(a) γ = 19.2, 45 edges.
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(b) γ = 19.39, 34 edges.
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(c) γ = 19.45, 29 edges.

10 random agents (45 possible edges)

‖Hi‖∞ ∈ [0.17, 7.48]

245 = 3.52 · 1013 possible graphs topologies
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Conclusion and Outlook

design of sparse relative sensing networks

approximation of exhaustive search by
weighted `1-minimization

consideration of performance,
connectivity and sparsity constraints in
face of uncertain edge weights

fast convergence of algorithm

promotion of sub-graphs

Σi

Σj

Σk

Σl

Next steps: Alternative to robust counterpart to allow larger
networks.

Thank you!
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