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Abstract

This work proposes a fully decentralized strategy for maintaining the formation rigidity of a multi-robot system using only

range measurements, while still allowing the graph topology to change freely over time. In this direction, a first contribu-

tion of this work is an extension of rigidity theory to weighted frameworks and the rigidity eigenvalue, which when posi-

tive ensures the infinitesimal rigidity of the framework. We then propose a distributed algorithm for estimating a common

relative position reference frame amongst a team of robots with only range measurements in addition to one agent

endowed with the capability of measuring the bearing to two other agents. This first estimation step is embedded into a

subsequent distributed algorithm for estimating the rigidity eigenvalue associated with the weighted framework. The esti-

mate of the rigidity eigenvalue is finally used to generate a local control action for each agent that both maintains the

rigidity property and enforces additional constraints such as collision avoidance and sensing/communication range limits

and occlusions. As an additional feature of our approach, the communication and sensing links among the robots are also

left free to change over time while preserving rigidity of the whole framework. The proposed scheme is then experimen-

tally validated with a robotic testbed consisting of six quadrotor unmanned aerial vehicles operating in a cluttered

environment.
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1. Introduction

The coordinated and decentralized control of multi-robot

systems is an enabling technology for a variety of applica-

tions. Multi-robot systems benefit from an increased

robustness against system failures due to their ability to

adapt to dynamic and uncertain environments. There are

also numerous economic benefits by considering the price

of small and cost-effective autonomous systems as opposed

to their more expensive monolithic counterparts. Currently,

there is a great interest in implementing these systems from

deep-space interferometry missions and distributed sensing

and data collection, to civilian search and rescue opera-

tions, among others (Bristow et al., 2000; Akyildiz et al.,

2002; Murray, 2006; Anderson et al., 2008a; Michael et al.,

2009; Mesbahi and Egerstedt, 2010; Lindsey et al., 2011).

The challenges associated with the design and imple-

mentation of multi-agent systems range from hardware and

software considerations to the development of a solid theo-

retical foundation for their operation. In particular, the

sensing and communication capabilities of each agent will

dictate the distributed protocols used to achieve team

objectives. For example, if each agent in a multi-robot sys-

tem is equipped with a GPS-like sensor, then tasks such as

formation keeping or localization can be trivially accom-

plished by communication between robots of their state

information in a common world-frame. However, in
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applications operating in harsher environments, i.e.

indoors, underwater, or in deep space, GPS is not a viable

sensing option (Scaramuzza et al., 2014). Indeed, in these

situations, agents must rely on sensing without knowledge

of a common inertial reference frame (Franchi et al.,

2012a). In these scenarios, relative sensing can provide

accurate measurements of, for example, range or bearing,

but without any common reference frame.

A further challenge related to the sensing capabilities of

multi-robot systems is the availability of these measure-

ments. Sensing constraints such as line-of-sight require-

ments, range, and power limitations introduce an important

system-level requirement, and also lead to an inherently

time-varying description of the sensing network. Successful

decentralized coordination protocols, therefore, must also

be able to manage these constraints.

These issues lead to important architectural require-

ments for the sensing and communication topology in order

to achieve the desired higher-level tasks (i.e. formation

keeping or localization). The connectivity of the sensing

and communication topology is one such property that has

received considerable attention in the multi-robot commu-

nities (Ji and Egerstedt, 2007; Robuffo Giordano et al.,

2011, 2013). However, connectivity alone is not sufficient

to perform certain tasks when only relative sensing is used.

For these systems, the concept of rigidity provides the cor-

rect framework for defining an appropriate sensing and

communication topology architecture. Rigidity is a combi-

natorial theory for characterizing the ‘‘stiffness’’ or ‘‘flexi-

bility’’ of structures formed by rigid bodies connected by

flexible linkages or hinges.

The study of rigidity has a rich history with contribu-

tions from mathematics and engineering disciplines

(Laman, 1970; Tay and Whiteley, 1985; Jacobs, 1997; Eren

et al., 2004; Connelly and Whiteley, 2009; Krick et al.,

2009; Shames et al., 2009). Recently, rigidity theory has

taken an outstanding role in the motion control of mobile

robots. The rigidity framework allows for applications,

such as formation control, to employ control algorithms

relying on only relative distance measurements, as opposed

to relative position measurements from a global or relative

internal frame (Olfati-Saber and Murray, 2002; Baillieul

and McCoy, 2007; Smith et al., 2007; Anderson et al.,

2008a,b; Krick et al., 2009). For example, Krick et al.

(2009) showed that formation stabilization using only dis-

tance measurements can be achieved only if rigidity of the

formation is maintained. Moreover, rigidity represents also

a necessary condition for estimating relative positions

using only relative distance measurements (Aspnes et al.,

2006; Calafiore et al., 2010b).

In a broader context, rigidity turns out to be an impor-

tant architectural property of many multi-agent systems

when a common inertial reference frame is unavailable.

Applications that rely on sensor fusion for localization,

exploration, mapping and cooperative tracking of a target,

can all benefit from notions in rigidity theory (Aspnes

et al., 2006; Shames et al., 2009; Calafiore et al., 2010a;

Wu et al., 2010; Williams et al., 2014). The concept of

rigidity, therefore, provides the theoretical foundation for

approaching decentralized solutions to the aforementioned

problems using distance measurement sensors, and thus

establishing an appropriate framework for relating system-

level architectural requirements to the sensing and commu-

nication capabilities of the system.

1.1. Main contributions

In general, rigidity as a property of a given formation (i.e.

of the robot spatial arrangement) has been studied from

either a purely combinatorial perspective (Laman, 1970), or

by providing an algebraic characterization via the state-

dependent rigidity matrix (Tay and Whiteley, 1985). In our

previous work (Zelazo et al., 2012), we introduced a related

matrix termed the symmetric rigidity matrix. A main result

of Zelazo et al. (2012) was to provide a necessary and suf-

ficient condition for rigidity in the plane in terms of the

positivity of a particular eigenvalue of the symmetric rigid-

ity matrix; this eigenvalue we term the rigidity eigenvalue.

This result is in the same spirit as the celebrated Fiedler

eigenvalue1 and its relation to the connectivity of a graph

(Godsil and Royle, 2001). A first contribution of this work

is the extension of the results on the rigidity eigenvalue

provided by Zelazo et al. (2012) to three-dimensional fra-

meworks, as well as the introduction of the concept of

weighted rigidity and the corresponding weighted rigidity

matrix. This notion allows for the concept of rigidity to

include state-dependent weight functions on the edges of

the graph, weights which can then be exploited to take into

account inter-agent sensing and communication constraints

and/or requirements.

A gradient-based rigidity maintenance action aimed at

‘maximizing’ the rigidity eigenvalue was also proposed by

Zelazo et al. (2012). However, while this gradient control

law was decentralized in structure, there was still a depen-

dence on the availability of several global quantities,

namely, of the robot relative positions in some common ref-

erence frame, of the value of the rigidity eigenvalue, and of

the rigidity eigenvector associated with the rigidity eigen-

value. A main contribution of this work is then the devel-

opment of the machinery needed to distributedly estimate

all of these global quantities by resorting to only relative

distance measurements among neighbors, so as to ulti-

mately allow for a fully distributed and range-based imple-

mentation of the rigidity maintenance controller. To this

end, we first show that if the formation is infinitesimally

rigid, it is possible to distributedly estimate the relative

positions of neighboring robots in a common reference

frame from only range-based measurements. Our approach

relies explicitly on the form of the symmetric rigidity

matrix developed here, in contrast to other approaches

focusing on distributed implementations of centralized esti-

mation schemes, such as a Gauss–Newton approach used

by Calafiore et al. (2010a). This first step is then instru-

mental for the subsequent development of the distributed
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estimation of the rigidity eigenvalue and eigenvector

needed by the rigidity gradient controller. This is obtained

by exploiting an appropriate modification of the power

iteration method for eigenvalue estimation following from

the works Yang et al. (2010) and Robuffo Giordano et al.

(2011) for the distributed estimation of the connectivity

eigenvalue of the graph Laplacian and now applied to rigid-

ity. Finally, we show how to exploit the weights on the

graph edges to embed constraints and requirements such as

inter-robot and obstacle avoidance, limited communication

and sensing ranges, and line-of-sight occlusions, into a uni-

fied gradient-based rigidity maintenance control law.

Our approach, therefore, can be considered as a contri-

bution to the general problem of distributed strategies for

maintaining certain architectural features of a multi-robot

system (i.e. connectivity or rigidity) with minimal sensing

requirements (only relative distance measurements). In

addition, we also provide a thorough experimental valida-

tion of the entire framework by employing a group of six

quadrotor unmanned aerial vehicles (UAVs) as robotic plat-

forms to demonstrate the feasibility of our approach in

real-world conditions.

The organization of this paper is as follows. Section 1.2

provides a brief overview of some notation and fundamen-

tal theoretical properties of graphs. In Section 2, the theory

of rigidity is introduced, and our extension of the rigidity

eigenvalue to three-dimensional weighted frameworks is

given. We then proceed to present a general strategy for a

distributed rigidity maintenance controller in Section 3.

This section will provide details on certain operational con-

straints of the multi-robot team and how these constraints

can be embedded in the control law. This section also high-

lights the need to develop distributed algorithms for esti-

mating a common reference frame for the team, outlined in

Section 4, and estimation of the rigidity eigenvalue and

eigenvector, detailed in Section 5. The results of the previ-

ous sections are then summarized in Section 6 where the

full distributed rigidity maintenance controller is given.

The applicability of these results are then experimentally

demonstrated on a robotic testbed consisting of six quadro-

tor UAVs operating in a obstacle populated environment.

Details of the experimental setup and results are given in

Section 7. Finally, some concluding remarks are offered in

Section 8.

1.2. Preliminaries and notation

The notation employed is standard. Matrices are denoted by

capital letters (e.g. A), and vectors by lowercase letters (e.g.

x). The ij-th entry of a matrix A is denoted [A]ij. The rank of

a matrix A is denoted rk[A]. Diagonal matrices will be writ-

ten as D = diag{d1,., dn}; this notation will also be

employed for block-diagonal matrices. A matrix and/or a

vector that consists of all zero entries will be denoted by 0;

whereas, ‘0’ will simply denote the scalar zero. Similarly,

the vector 1n denotes the n 3 1 vector of all ones. The n

3 n identity matrix is denoted as In. The set of real

numbers will be denoted as R, and k�k denotes the standard

Euclidean 2-norm for vectors. The Kronecker product of

two matrices A and B is written as A5B (Horn and

Johnson, 1991).

Graphs and the matrices associated with them will be

widely used in this work (see, e.g. Godsil and Royle, 2001).

An undirected (simple) weighted graph G is specified by a

vertex set V, an edge set E whose elements characterize the

incidence relation between distinct pairs of V, and diagonal

jEj3 jEj weight matrix W, with [W]kk � 0 the weight on

edge ek 2 E. In this work we consider only finite graphs

and denote the cardinality of the node and edge sets as

jVj= n and jEj=m. Two vertices i and j are called adja-

cent (or neighbors) when fi, jg 2 E. The neighborhood of

the vertex i is the set N i = fj 2 Vjfi, jg 2 Eg. An orienta-

tion of an undirected graph G is the assignment of direc-

tions to its edges, i.e. an edge ek is an ordered pair (i, j)

such that i and j are, respectively, the initial and the terminal

nodes of ek.

The incidence matrix E(G) 2 R
n 3 m is a {0, 61}-matrix

with rows and columns indexed by the vertices and edges

of G such that ½E(G)�ik has the value ‘+1’ if node i is the

initial node of edge ek, ‘21’ if it is the terminal node, and

‘0’ otherwise. The degree of vertex i, di, is the cardinality

of the set of vertices adjacent to it. The degree matrix,

D(G), and the adjacency matrix, A(G), are defined in the

usual way (Godsil and Royle, 2001). The (graph) Laplacian

of G, L(G)=E(G)E(G)T =D(G)� A(G), is a positive-

semidefinite matrix. One of the most important results

from algebraic graph theory in the context of collective

motion control states that a graph is connected if and only

if the second smallest eigenvalue of the Laplacian is posi-

tive (Godsil and Royle, 2001).

Table 1 provides a summary of the notations used

throughout the document.

2. Rigidity and the rigidity eigenvalue

In this section we review the fundamental concepts of graph

rigidity (Graver et al., 1993; Jackson, 2007). A contribution

of this work is an extension of our previous results on the

concepts of the symmetric rigidity matrix and rigidity

eigenvalue for three-dimensional ambient spaces (Zelazo

et al., 2012), and the notion of weighted frameworks.

2.1. Graph rigidity and the rigidity matrix

We consider graph rigidity from what is known as a d-

dimensional bar-and-joint framework. A framework is the

pair (G, p), where G=(V, E) is a graph, and p : V ! R
d

maps each vertex to a point in R
d . In this work we consider

frameworks in a three-dimensional ambient space, i.e.

d = 3. Therefore, for node u 2 V, p(u)= px
u py

u pz
u½ �T

is the position vector in R
3 for the mapped node. We refer

to the matrix p(V)= p(v1) � � � p(vn)½ �T2 R
n 3 3 as the

position matrix. We now provide some basic definitions.
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Definition 2.1. Frameworks (G, p0) and (G, p1) are equiva-

lent if kp0(u)2p0(v)k = kp1(u) 2 p1(v)k for all fu, vg 2 E,

and are congruent if kp0(u)2p0(v)k = kp1(u)2p1(v)k for

all fu, vg 2 V.

Definition 2.2. A framework (G, p0) is globally rigid if

every framework which is equivalent to (G, p0) is congruent

to (G, p0).

Definition 2.3. A framework (G, p0) is rigid if there exists

an e . 0 such that every framework (G, p1) which is equiv-

alent to (G, p0) and satisfies kp0(v) 2 p1(v)k \ e for all

v 2 V, is congruent to (G, p0).

Definition 2.4. A minimally rigid graph is a rigid graph

such that the removal of any edge results in a non-rigid

graph.

Figure 1 shows three frameworks illustrating the above

definitions. The frameworks in Figure 1(a) are both mini-

mally rigid and are equivalent to each other, but are not

congruent, and therefore not globally rigid. By adding an

additional edge, as in Figure 1(b) (the edge {v4,v5}), the

framework becomes globally rigid. The key feature of glo-

bal rigidity, therefore, is that the distances between all node

pairs are maintained for different framework realizations,

and not just those defined by the edge set.

By parameterizing the position map by a positive scalar

representing time, we can also consider trajectories of a

framework. That is, the position map now becomes

p : V3R! R
3 and is assumed to be continuously differ-

entiable with respect to time. We then explicitly write

(G, p, t) so as to represent a time-varying framework. In this

direction, we can define a set of trajectories that are edge-

length preserving, in the sense that for each time t � t0,

the framework (G, p, t) is equivalent to the framework

(G, p, t0). More formally, an edge-length preserving frame-

work must satisfy the constraint

jjp(v, t)� p(u, t)jj = jjp(v, t0)� p(u, t0)jj= ‘vu, for all t � t0

ð1Þ

and for all fv, ug 2 E.

One can similarly assign velocity vectors j(u, t) 2 R
3 to

each vertex u 2 V for each point in the configuration space

such that

(j(u, t)� j(v, t))T(p(u, t)� p(v, t))=0, for all fu, vg 2 E
ð2Þ

Note that this relation can be obtained by time-

differentiation of the length constraint described in (1).

These motions are referred to as infinitesimal motions of

the mapped vertices p(u, t), and one has

Table 1. Notation.

G=(V, E) A graph defined by its vertex and edge sets

N i(t) Time-varying neighborhood of node vi 2 V
p(i) Position vector in R

3 of the mapped node vi 2 V
ps

i s2{x, y, z} coordinate of position vector for node i

p(V) Stacked position matrix of all nodes (Rn 3 3)

j(i) Velocity vector in R
3 of the node vi 2 V

(G, p,W) A weighted framework

R(p,W) Rigidity matrix of a weighted framework

R Symmetric rigidity matrix of a weighted framework

l7, v7 (v) Rigidity eigenvalue and eigenvector

‘ij Distance between nodes vi, vj 2 V, i.e.,
kp(vi) 2p(vj)k

l̂i
7 Agent i’s estimate of the rigidity eigenvalue

v̂s
i s coordinate of the agent i estimation of the rigidity

eigenvector

p̂i, c Agent i estimate of relative position vector pi2pc

p̂ Stacked vector of the relative

position vector estimate pi2pc, i = 1.n

avg (x) The average of a vector x 2 R
n, avg(x)= 1

n

Pn
i= 1 xi

vx
i Agent i estimate of avg(v̂x)

v2x
i Agent i estimate of avg(v̂x

s v̂x)

z
xy
i Agent i estimate of avg(p̂y, c

s v̂x � p̂x, c
s v̂y)

zxz
i Agent i estimate of avg(p̂z, c

s v̂x � p̂x, c
s v̂z)

z
yz
i Agent i estimate of avg(p̂y, c

s v̂z � p̂z, c
s v̂y)

v4

v1
v2

v5

v3

v3

v1 v2

v4

v1
v2

v5

v3

v3

v1 v2

(a)

v4

v1
v2

v5

v3

v3

v1 v2

(b)

v1 v2
v3

{v1 , v2} {v2 , v3}

{v1 , v3}

(c)

Fig. 1. Examples of rigid and infinitesimally rigid frameworks in R
3. (a) Two equivalent minimally rigid frameworks in R

3. The

framework on the right-hand side is obtained by the reflection of the position of v5 with respect to the plane characterized by the

positions of v1, v2, and v3 (as illustrated in gray). (b) An infinitesimally and globally rigid framework in R
3. (c) A non-infinitesimally

rigid framework (note that vertexes v1 and v3 are connected). Note that in (a) and (b) the 3D points associated with each vertex do not

lie on the same plane, while in (c) the 3D points are aligned.
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_p(u, t)= j(u, t) ð3Þ

For the remainder of this paper, we drop the explicit

inclusion of time for frameworks and simply write (G, p)
and p(u) and j(u) for the time-varying positions and veloci-

ties. The velocity vector j(u) will be treated as the

agent velocity input throughout the rest of the paper (see

Section 3).

Infinitesimal motions of a framework can be used to

define a stronger notion of rigidity.

Definition 2.5. A framework is called infinitesimally rigid

if every possible motion that satisfies (2) is trivial (i.e. con-

sists of only global rotations and translations of the whole

set of points in the framework).

An example of an infinitesimally rigid graph in R
3 is

shown in Figure 1(b). Furthermore, note that infinitesimal

rigidity implies rigidity, but the converse is not true (Tay

and Whiteley, 1985), see Figure 1(c) for a rigid graph in

R
3 that is not infinitesimally rigid.

The infinitesimal motions in (2) define a system of m

linear equations in the vector of unknown velocities

j = ½jT(v1) . . . jT(vn)�T 2 R
3n. This system can be equiva-

lently written as the linear matrix equation

R(p)j = 0

where R(p) 2 R
m 3 3n is called rigidity matrix (Tay and

Whiteley, 1985). Each row of R(p) corresponds to an edge

e = {u, v} and the quantity (p(u) 2 p(v)) represents the

non-zero coefficients for that row. For example, the row

corresponding to edge e has the form

�0� (p(u)� p(v))T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
vertex u

�0� (p(v)� p(u))T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
vertex v

�0�
� �

The definition of infinitesimal rigidity can then be restated

in the following form:

Lemma 2.6 (Tay and Whiteley, 1985). A framework (G, p) in

R
3 is infinitesimally rigid if and only if rk[R(p)] = 3n 2 6.

Note that, as expected from Definition 2.5, the six-

dimensional kernel of R(p) for an infinitesimally rigid

graph only allows for six independent feasible framework

motions, that is, the above-mentioned collective roto-

translations in R
3 space. Note also that, despite its name,

the rigidity matrix is actually characterizing infinitesimal

rigidity rather than rigidity of a framework.

2.2. Rigidity of weighted frameworks

We now introduce an important generalization to the con-

cept of rigidity and the rigidity matrix by introducing

weights to the framework. Indeed, as discussed in the intro-

duction, our aim is to propose a control law able to not

only maintain infinitesimal rigidity of the formation as per

Definition 2.5, but to also concurrently manage additional

constraints typical of multi-robot applications such as colli-

sion avoidance and limited sensing and communication.

This latter objective will be accomplished via the introduc-

tion of suitable state-dependent weights, thus requiring an

extension of the traditional results on rigidity to a weighted

case.

Definition 2.7. A d-dimensional weighted framework is the

triple (G, p,W), where G=(V, E) is a graph, p : V ! R
d

is a function mapping each vertex to a point in R
d , and

W : (G, p)! R
m is a function of the framework that

assigns a scalar value to each edge in the graph.

Using this definition, we can also define the correspond-

ing weighted rigidity matrix, R(p,W), as

R(p,W)=W (G, p)R(p) ð4Þ

where W (G, p) 2 R
m 3 m is a diagonal matrix containing the

elements of the vector W(G, p) on the diagonal. Often we

will simply refer to the weight matrix W (G, p) as W when

the underlying graph and map p is understood.

Remark 2.8. Note that the rigidity matrix R(p) can also be

considered as a weighted rigidity matrix with W (G, p)= I .

Another useful observation is that the unweighted frame-

work (G, p) can also be cast as a weighted framework

(Kn, p,W), where Kn is the complete graph on n nodes

and ½W (G, p)�ii is 1 whenever ei 2 E(Kn) is also an edge in

G, and 0 otherwise.

Weighted rigidity can lead to a slightly different interpreta-

tion of infinitesimal rigidity, where the introduced weights

might cause the rigidity matrix to lose rank. That is, an

unweighted framework might be infinitesimally rigid, whereas

a weighted version might not. This observation is trivially

observed by considering a minimally infinitesimally rigid

framework (G, p) and introducing a weight with a 0 entry on

any edge. We formalize this with the following definitions.

Definition 2.9. The unweighted counterpart of a weighted

framework (G, p,W) is the framework ( bG, p) where the

graph bG=(V, bE ) is such that bE � E and the edge ei 2 E
is also an edge in bG if and only if the corresponding

weight is non-zero (i.e. ½W (G, p)�ii 6¼ 0).

Definition 2.10. A weighted framework is called infinitesi-

mally rigid if its unweighted counterpart is infinitesimally

rigid.

We now present a corollary to Lemma 2.6 for weighted

frameworks.

Corollary 2.11. A weighted framework (G, p,W) in R
3 is

infinitesimally rigid if and only if rk½R(p,W)�= 3n� 6.

Proof. The statement follows from the fact that

rk½R(p,W)�= rk½R̂(p)�, where R̂(p) is the rigidity matrix

for the unweighted counterpart of (G, p,W).

2.3. The rigidity eigenvalue

In our previous work (Zelazo et al., 2012), we introduced

an alternative representation of the rigidity matrix that

transparently separates the underlying graph from the
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positions of each vertex. Here we recall the presentation

and extend it to the case of three-dimensional frameworks.

Definition 2.12 (Zelazo et al. (2012)). Consider a graph

G=(V, E) and its associated incidence matrix with arbi-

trary orientation E(G). The directed local graph at node vj

is the sub-graph Gj =(V, Ej) induced by node vj such that

Ej = f(vj, vi)jek = fvi, vjg 2 Eg

The local incidence matrix at node vj is the matrix

El(Gj)=E(G)diagfs1, . . . , smg 2 R
n 3 m

where sk = 1 if ek 2 Ej and sk = 0 otherwise.

Note, therefore, that the local incidence matrix will con-

tain columns of all zeros in correspondence to those edges

not adjacent to vj. This also implicitly assumes a predeter-

mined labeling of the edges.

Proposition 2.13 (Zelazo et al., 2012). Let p(V) 2 R
n 3 3

be the position matrix for the framework (G, p). The rigid-

ity matrix R(p) can be defined as

R(p)= El(G1)
T � � � El(Gn)

T
� �

In � p(V)ð Þ, ð5Þ

where El(Gi) is the local incidence matrix for node vi.

A more detailed discussion and examples of these defi-

nitions are provided in Appendix B.

Lemma 2.6 and Corollary 2.11 relate the property of

infinitesimal rigidity for a given (weighted) framework to

the rank of a corresponding matrix. A contribution of this

work is the translation of the rank condition to that of a

condition on the spectrum of a corresponding matrix that

we term the symmetric rigidity matrix. For the remainder

of this work, we will only consider weighted frameworks,

since from the discussion in Remark 2.8, any framework

can be considered as a weighted framework with appropri-

ately defined weights.

The symmetric rigidity matrix for a weighted framework

(G, p,W) is a symmetric and positive-semidefinite matrix

defined as

R : =R(p,W)TR(p,W) 2 R
3n 3 3n ð6Þ

An immediate consequence of the construction of the sym-

metric rigidity matrix is that rk½R�= rk½R(p,W)� (Horn

and Johnson, 1985), leading to the following corollary.

Corollary 2.14. A weighted framework (G, p,W) is infini-

tesimally rigid if and only if rk½R�= 3n� 6.

The rank condition of Corollary 2.14 can be equiva-

lently stated in terms of the eigenvalues of R. Denoting the

eigenvalues ofR as l1 � l2�. � l3n, note that infini-

tesimal rigidity is equivalent to li = 0 for i = 1,., 6 and

l7 . 0. Consequently, we term l7 the rigidity eigenvalue.

We will now show that, in fact, for any connected graph,2

the first six eigenvalues are always 0.

The first result in this direction shows that the symmetric

rigidity matrix is similar to a weighted Laplacian matrix.

Proposition 2.15. The symmetric rigidity matrix is similar

to the weighted Laplacian matrix via a permutation of the

rows and columns as

PRPT = I3 � E(G)Wð ÞQ(p(V)) I3 �WE(G)T
� �

ð7Þ

with

Q(p(V))=
Q2

x QxQy QxQz

QyQx Q2
y QyQz

QzQx QzQy Q2
z

24 35 2 R
3m 3 3m ð8Þ

where Qx, Qy, and Qz are m 3 m diagonal weighting

matrices for each edge in G such that for the edge

ek = (vi, vj),

½Qs�kk =(ps
i � ps

j ), s 2 fx, y, zg

and px
i (p

y
i ,pz

i ) represents the x coordinate (y coordinate, z

coordinate) of the position of agent i.

Proof. The proof is by direct construction using

Proposition 2.13 and (6). Consider the permutation matrix

P as

P=
In � 1 0 0½ �
In � 0 1 0½ �
In � 0 0 1½ �

24 35 ð9Þ

and let Ê= El(G1)
T � � � El(Gn)

T
� �

. It is straightforward

to verify that

(In � (px)T)ÊTW =E(G)W
. .

.

(px
i � px

j )

. .
.

2664
3775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diagonalmatrix of sizem 3 m

where px represents the first column of the position vec-

tor. The structure of the matrix in (7) then follows

directly.3

The representation of the symmetric rigidity matrix as a

weighted Laplacian allows for a more transparent under-

standing of certain eigenvalues related to this matrix. The

next result shows that the first six eigenvalues of R must

equal zero for any connected graph G.

Theorem 2.16. Assume that a weighted framework

(G, p,W) has weights such that the weight matrix W (G, p)
is invertible and the underlying graph G is connected. Then

the symmetric rigidity matrix has at least six eigenvalues

at the origin; that is, li = 0 for i 2 {1 ,., 6}.

Furthermore, a possible set of linearly independent eigen-

vectors associated with each 0 eigenvalue is
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PT

1n

0

0

264
375,PT

0

1n

0

264
375,PT

0

0

1n

264
375,

8><>:
PT

(py)

�(px)

0

264
375,PT

(pz)

0

�(px)

264
375,PT

0

(pz)

�(py)

264
375
9>=>;,

where P is defined in (9).

Proof. Recall that for any connected graph, one has

E(G)T1n = 0 (Godsil and Royle, 2001). Therefore, PRPT

must have three eigenvalues at the origin, with eigenvectors

u1 = 1Tn 0T 0T
� �T

, u2 = 0T 1Tn 0T
� �T

, and

u3 = 0T 0T 1Tn
� �T

. We now demonstrate that the

remaining three eigenvectors proposed in the theorem are

indeed in the null-space of the symmetric rigidity matrix.

Let u4 = (py)T �(px)T 0T
� �T

. Observe that

(I3 �WE(G)T)u4 = bT1 bT2 0T
� �T

is such that b1 is

6½W �kk(p
y
i � p

y
j ) only for edges ek = fvi, vjg 2 E, and 0

otherwise. Similarly, b2 is 6½W �kk(p
x
j � px

i ) only for edges

ek = fvi, vjg 2 E. The invertibility assumption of the

weight matrix also guarantees that [W]kk6¼0. It can now be

verified that from this construction one has

Q2
x QxQy QxQz

QyQx Q2
y QyQz

QzQx QzQy Q2
z

24 35(I3 �WE(G)T)u4 = 0:

The remaining two eigenvectors follow the same argument

as above. It is also straightforward to verify that u4, u5, and

u6 are linearly independent of the first three eigenvectors.

Theorem 2.16 provides a precise characterization of the

eigenvectors associated with the null-space of the sym-

metric rigidity matrix for an infinitesimally rigid

framework.

Remark 2.17. It is important to note that the chosen eigen-

vectors associated with the null-space of the symmetric

rigidity matrix are expressed in terms of the absolute posi-

tions of the nodes in the framework. We note that these

eigenvectors can also be expressed in terms of the relative

position of each node to any arbitrary reference point

pc = px
c py

c pz
c½ �T2 R

3. For example, vector u4 could be

replaced by

u
pc

4 =PT
py � py

c1n

px
c1n � px

0

24 35
that is a linear combination of the null-space eigenvectors

u1,u2 and u4. The use of eigenvectors defined on relative

positions, in fact, will be necessary for the implementation

of a distributed estimator for the rigidity eigenvector and

eigenvalue based on only relative measurements available

from onboard sensing.

Theorem 2.16 can be used to arrive at the main result

relating infinitesimal rigidity to the rigidity eigenvalue.

Theorem 2.18. A weighted framework (G, p,W) is infinite-

simally rigid if and only if the rigidity eigenvalue is strictly

positive, i.e. l7 . 0.

Proof. The proof is a direct consequence of Corollary 2.14

and Theorem 2.16.

Another useful observation relates infinitesimal rigidity

of a framework to connectedness of the underlying graph.

Corollary 2.19. Rigidity of the weighted framework

(G, p,W) implies connectedness of the graph G.

The connection between infinitesimal rigidity of a

framework and the spectral properties of the symmetric

rigidity matrix inherits many similarities between the well

studied relationship between graph connectivity and the

graph Laplacian matrix (Mesbahi and Egerstedt, 2010).

In the next section, we exploit this similarity and pro-

pose a rigidity maintenance control law that aims to ensure

the rigidity eigenvalue is always positive. Such a control

action will be shown to depend on the rigidity eigenvalue,

on its eigenvector, and on relative positions among neigh-

boring pairs expressed in a common frame. The issue of

how every agent in the group can distributedly estimate

these quantities will be addressed in Sections 4 and 5.

3. A decentralized control strategy for rigidity

maintenance

The results of Section 2 highlight the role of the rigidity

eigenvalue l7 as a measure of the ‘‘degree of infinitesimal

rigidity’’ of a weighted framework (G, p,W). It provides a

linear algebraic condition to test the infinitesimal rigidity

of a framework and, especially in the case of weighted fra-

meworks, provides a means of quantifying ‘‘how rigid’’ a

weighted framework is. Moreover, the symmetric rigidity

matrix was shown to have a structure reminiscent of a

weighted graph Laplacian matrix, and thus can be consid-

ered as a naturally distributed operator.

The basic approach we consider for the maintenance of

rigidity is to define a scalar potential function of the rigid-

ity eigenvalue, Vl(l7) . 0, with the properties of growing

unbounded as l7 ! lmin
7 .0 and vanishing (with vanishing

derivative) as l7!N (see Figure 2 for one possible shape

or Vl with lmin
7 = 5). Here, lmin

7 represents some predeter-

mined minimum allowable value for the rigidity eigenvalue

determined by the needs of the application. In addition to

maintaining rigidity, the potential function should also cap-

ture additional constraints in the system, such as collision

avoidance or formation maintenance. Each agent should

then follow the anti-gradient of this potential function,

that is

j(u)= _pu(t)= � ∂Vl

∂pu(t)
= � ∂Vl

∂l7

∂l7

∂pu(t)
ð10Þ
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where j(u) is the velocity input of agent u, as defined in

(3), and pu = px
u py

u pz
u½ �T is the position vector of the

u-th agent. This strategy will ensure that the formation

maintains a ‘‘minimum’’ level of rigidity (i.e. lmin
7 ) at all

times. Of course, this strategy is an inherently centralized

one, as the computation of the rigidity eigenvalue and of its

gradient require full knowledge of the symmetric rigidity

matrix. Nevertheless, we will proceed with this strategy and

demonstrate that it can be implemented in a fully decentra-

lized manner.

In the following, we examine in more detail the structure

of the control scheme (10). First, we show how the formali-

zation of weighted frameworks allows to embed additional

weights within the rigidity property that enforce explicit

inter-agent sensing and communication constraints and

group requirements such as collision avoidance and forma-

tion control. For instance, the weighting machinery will be

exploited so as to induce the agents to keep a desired inter-

agent distance ‘0 and to ensure a minimum safety distance

‘min from neighboring agents and obstacles. With these

constraints, the controller will simultaneously maintain a

minimum level of rigidity while also respecting the addi-

tional inter-agent constraints. We then provide an explicit

characterization of the gradient of the rigidity eigenvalue

with respect to the agent positions, and highlight its distrib-

uted structure. Finally, we present the general control archi-

tecture for implementing (10) in a fully decentralized way.

3.1. Embedding constraints in a weighted

framework

In real-world applications a team of mobile robots may not

be able to maintain the same interaction graph throughout

the duration of a mission because of various sensing and

communication constraints preventing mutual information

exchange and relative sensing. Furthermore, additional

requirements such as collision avoidance with obstacles and

among robots, as well as some degree of formation control,

must be typically satisfied during the mission execution.

Building on the design guidelines proposed in Robuffo

Giordano et al. (2013) for dealing with connectivity mainte-

nance, we briefly discuss here a possible design of weights

W aimed at taking into account the above-mentioned sen-

sing and communication constraints and group require-

ments within the rigidity maintenance action.

To this end, we start with the following definition of

neighboring agents:

Definition 3.1. Two agents u and v are considered neigh-

bors if and only if (i) their relative distance ‘uv = kp(u) 2

p(v)k is smaller than D 2 R
+ (the sensing range), (ii) the

distance ‘uvo between the segment joining u and v and the

closest obstacle point o is larger than ‘min (the minimum

line-of-sight visibility), and (iii) neither u nor v are closer

than ‘min to any other agent or obstacle.

Conditions (i) and (ii) are meant to take into account two

typical sensing constraints in multi-robot applications: max-

imum communication and sensing ranges and line-of-sight

occlusions. The purpose of condition (iii), which will be

better detailed later on, is to force disconnection from the

group if an agent is colliding with any other agent or obsta-

cle in the environment. In the following we will denote with

Su the set of neighbors of agent u induced by Definition

3.1.

This neighboring definition can be conveniently taken

into account by designing the inter-agent weights Wuv as

state-dependent functions smoothly vanishing as any of the

above constraints and requirements are not met by the pair

(u, v) with the desired accuracy. Indeed, the use of state-

dependent weights allows us to consider the ensemble of

robots in the context of weighted frameworks, as introduced

in Definition 2.7. In particular, we take the underlying

graph to be the complete graph Kn and the map p corre-

sponds to the physical position state of each agent in a com-

mon global frame. The weights are the maps Wuv, and the

weighted framework is the triple (Kn, p,W) with, therefore,

N u = fv 2 VjWuv 6¼ 0g.
Following what was proposed in Robuffo Giordano

et al. (2013), and recalling that ‘uvo represents the distance

between the segment joining agents u and v and the closest

obstacle point o, we then take

Wuv =auvbuvga
uvgb

uv ð11Þ

with auv =auv(‘ukjk2Su
, ‘vk jk2Sv

), buv = buv(‘uv), ga
uv =

ga
uv(‘uv), gb

uv = gb
uv(‘uvo) and such that:

	 we have

– lim‘uk!‘min
auv = 0, for all k 2 Su,

– lim‘uk!‘min
auv = 0, for all k 2 Sv, and

– auv[ 0 if ‘uk � ‘min or ‘vk � ‘min, for any k 2 Su,

k 2 Sv;
	 limj‘uv�‘0j!‘ buv = 0 with b(‘uv) \ b(‘0) for all

‘uv6¼‘0;
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Fig. 2. A possible shape for the rigidity potential function

Vl(l7) with lmin
7 = 5.
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	 lim‘uv!D ga
uv = 0 with ga

uv[0 for all ‘uv � D;
	 lim‘uvo!‘min

gb
uv = 0 with gb

uv[0 for all ‘uvo � ‘min.

As explained, ‘min is a predetermined minimum safety dis-

tance for avoiding collisions and line-of-sight occlusions.

Figures 3(a)–(c) show an illustrative shape of weights ga
uv,

gb
uv and buv. The shape of the weights auv is conceptually

equivalent to that of weights gb
uv in Figure 3(b).

This weight design results in the following properties:

for a given pair of agents (u, v), the weight Wuv will

vanish (because of the term ga
uvgb

uv) whenever the sensing

and communication constraints of Definition 3.1 are vio-

lated (maximum range, obstacle occlusion), thus resulting

in a decreased degree of connectivity of the graph G (edge

{u, v} is lost). The same will happen as the inter-distance

‘uv deviates too much from the desired ‘0 because of the

term buv. Finally, the term auv will force complete discon-

nection of vertexes u and v from the other vertexes and

therefore a complete loss of connectivity for the graph G
whenever a collision with another agent is approached.4

We now recall from Corollary 2.19 that infinitesimal

rigidity implies graph connectivity. Therefore, any decrease

in the degree of graph connectivity due to the weightsWuv

vanishing will also result in a decrease of rigidity of the

weighted framework (Kn, p,W) (in particular, rigidity is

obviously lost for a disconnected graph). By maintaining

l7 . 0 (in the context of weighted frameworks) over time,

it is then possible to preserve formation rigidity while, at

the same time, explicitly considering and managing the

above-mentioned sensing and communication constraints

and requirements.

Remark 3.2. We note that the purpose of the weight buv in

(11) is to embed a basic level of formation control into the

rigidity maintenance action: indeed, every neighboring

pair will try to keep the desired distance ‘0 thanks to the

shape of the weights buv. More complex formation control

behaviors could be obtained by different choices of func-

tions buv (e.g. for maintaining given relative positions).

Furthermore, formation shapes can be uniquely specified

owing to the infinitesimal rigidity property of the

configuration.

Remark 3.3. We further highlight the following properties

whose explicit proof can be found in Robuffo Giordano

et al. (2013): the chosen weightsWuv are functions of only

relative distances to other agents and obstacles, while their

gradients with respect to the agent position pu (respectively

pv) are functions of relative positions expressed in a com-

mon reference frame. Furthermore, Wuv =Wvu and
∂Wuv

∂pu

= 0, for all v 62 N u. Finally, the evaluation of

weights Wuv and of their gradients can be performed in a

decentralized way by agent u (respectively v) by only

resorting to local information and 1 -hop communication.

As shown in the next developments, these properties will

be instrumental for expressing the gradient of the rigidity

eigenvalue as a function of purely relative quantities with

respect to only 1-hop neighbors.

3.2. The gradient of the rigidity eigenvalue

We now present an explicit characterization of the gradient

of the rigidity eigenvalue with respect to the agent posi-

tions, as used in the control (10). We first recall that the

rigidity eigenvalue can be expressed as

l7 = vT7Rv7

where v7 is the normalized rigidity eigenvector associated

with l7. For notational convenience, we consider the per-

muted rigidity eigenvector Pv7 = (vx)T (vy)T (vz)T
� �T

,

where P is defined in Theorem 2.16. For the remainder of

the work, we drop the subscript and reserve the bold font v

for the rigidity eigenvector. Note that in fact, the rigidity

eigenvalue and eigenvector are state-dependent, and there-

fore also time-varying when the formation is induced by

the spatial orientation of a mobile team of robots, or due to

the action of state-dependent weights on the sensing and

communication links.

We can now exploit the structure of the symmetric rigid-

ity matrix for weighted frameworks. Using the form of the

symmetric rigidity matrix given in (7), we define
~Q(p(V))= (I3 �W )Q(p(V))(I3 �W ) as a generalized

weight matrix, and observe that
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γa uv
(

uv
)
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u vo

γb uv
(d

uv
o)

(b)
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u v

β u
v(
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Fig. 3. The shape of ga
uv(‘uv) for D = 6 (a), gb

uv(‘uvo) for ‘min = 1 (b), and buv(‘uv) for ‘0 = 4 (c).
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PRPT = I3 � E(G)ð Þ~Q(p(V)) I3 � E(G)T
� �

:

The elements of ~Q(p(V)) are entirely in terms of the rela-

tive positions of each agent and the weighting functions

defined on the edges as in (11).

The rigidity eigenvalue can now be expressed explicitly

as

l7 =
P

(i, j)2E
W ij (px

i � px
j )

2(vx
i � vx

j )
2 +(py

i � p
y
j )

2(vy
i � v

y
j )

2 +
	

(pz
i � pz

j )
2(vz

i � vz
j )

2 + 2(px
i � px

j )(p
y
i � p

y
j )(v

x
i � vx

j )(v
y
i � v

y
j )+

2(px
i � px

j )(p
z
i � pz

j )(v
x
i � vx

j )(v
z
i � vz

j )+

2(py
i � p

y
j )(p

z
i � pz

j )(v
y
i � v

y
j )(v

z
i � vz

j )


=

P
(i, j)2E

W ijSij:

ð12Þ

From (12), one can then derive a closed-form expression

for ∂l7

∂ps
i

, s2{x, y, z}, i.e. the gradient of l7 with respect to

each agent’s position. In particular, by exploiting the struc-

ture of the terms Sij and the properties of the employed

weightsWij (see, in particular, the previous Remark 3.3), it

is possible to reduce ∂l7

∂px
i

to the following sum over the

neighbors,

∂l7

∂px
i

=
X
j2N i

W ij 2(p
y
i � p

y
j )(v

x
i � vx

j )(v
y
i � v

y
j )+

	
2(px

i � px
j )(v

x
i � vx

j )
2 + 2(pz

i � pz
j )(v

x
i � vx

j )(v
z
i � vz

j )



+
∂W ij

∂px
i

Sij ð13Þ

and similarly for the y and z components.

The gradient (13) possesses the following key feature: it

is a function of relative quantities, in particular of (i) rela-

tive components of the eigenvector v, (ii) relative distances,

and (iii) relative positions with respect to neighboring

agents (see, again, Remark 3.3 for what concerns weights

W ij), thus allowing for a distributed computation of its

value once these quantities are locally available. Sections 4

and 5 will detail two estimation schemes able to recover all

of these relative quantities by resorting to only measured

distances with respect to 1-hop neighbors owing to the infi-

nitesimal rigidity of the group formation.

3.3. The control architecture

The explicit description of the gradient of the rigidity

eigenvalue in (13) motivates the general control architec-

ture for the implementation of the rigidity maintenance

action in (10). We observe that each agent requires knowl-

edge of the rigidity eigenvalue, appropriate components of

the rigidity eigenvector, and relative positions with respect

to neighboring agents in a common reference frame. As

already mentioned, all of these quantities are inherently

global quantities, and thus a fully distributed implementa-

tion of (10) must include appropriate estimators for reco-

vering these parameters in a distributed manner.

As a preview of the next sections in this work, Figure 4

depicts the general architecture needed by each agent to

implement the rigidity maintenance control action (10).

1. Exploiting measured distances with respect to its 1-

hop neighbors, and owing to the formation rigidity,

each agent distributedly estimates relative positions in

a common reference frame, labeled as the position esti-

mator in the figure. This block is fully explained in

Section 4.

2. The output of the position estimator is then used by

each agent to perform a distributed estimation of the

rigidity eigenvalue (l̂7) and of the relative components

of the eigenvector (bv), labeled as the rigidity estimator

in the figure. This procedure is explained in Section 5.

3. Thanks to these estimated quantities (relative positions,

l̂7 and bv), each agent can finally implement the control

action (10) in a distributed way for maintaining infinite-

simal rigidity of the formation during the group motion

Control

Robot i Position 
EstimatorEnvironment

...

Rigidity 
Estimator

...

...

λ̂ 7

v̂ k , k ∈ N i (t)

v̂ i

pk , k ∈ N i (t)

||pk − pi ||

k ∈N i (t) p̂c
i

p̂c
k , k ∈ N i (t)

Fig. 4. Control architecture for distributed rigidity maintenance.
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(while also coping with the various constraints and

requirements embedded into weights W). Maintaining

infinitesimal rigidity guarantees in turn convergence of

the position estimator from measured distances of

step 1), and thus closes the ‘estimation-control loop.’

We finally note that the proposed control architecture

also implicitly assumes the initial spatial configuration of

the agents (i.e. their positions p(V) at time 0) to be infinite-

simally rigid (with, in particular, a l7.lmin
7 ). This assump-

tion on the group initial condition is formally stated below.

Assumption 3.4. The initial spatial configuration of the

agents, p(V) at time t = 0, is infinitesimally rigid with

l7.lmin
7 .

The purpose of requiring a minimum level of rigidity

(lmin
7 ) is discussed in greater detail in Section 7.

4. Decentralized estimation of positions in a

common frame

As explained, evaluation of the gradient control (13)

requires that each agent has access to the relative positions

of its neighboring agents. A main focus of this work, how-

ever, is to achieve rigidity maintenance using only relative

distance measurements. In this section, we leverage the

infinitesimal rigidity of the formation to estimate the rela-

tive position with respect to a common reference point, pc,

shared by all agents. In particular, each agent i, with

i = 1.n, will be able to compute an estimate p̂i, c of its

relative position pi,c = pi 2 pc to this common point. By

exchanging their estimates over 1-hop communication

channels, two neighboring agents i and j can then build an

estimate p̂j, c � p̂i, c of their actual relative position pj 2 pj

in a common reference frame. Note that both the graph

(i.e. neighbor sets, edges, etc.) and the robot positions are

time-varying quantities. However, in this section we omit

dependency on time for the sake of conciseness.

We also note that this common reference point does not

need to be stationary, i.e. it can move over time. In the fol-

lowing, we choose the point pc to be attached to a special

agent in the group, determined a priori. This agent will be

denoted with the index ic and, in the remainder of this sec-

tion, we set pc = pic . We now proceed to describe a distrib-

uted scheme able to recover an estimation of the relative

position pi, c = pi � pic for any agent in the group by

exploiting the measured relative distances and the rigidity

property of the formation.

To achieve this estimation, we first introduce additional

assumptions on the capabilities of the special agent ic.

While all agents other than ic are able to measure only the

relative distance to their neighbors, the special agent ic is

required to be endowed with an additional sensor able to

also measure, at any time t, the relative position (i.e. dis-

tance and bearing angles) of at least two non-collinear

neighbors;5 these two sensed neighbors will be denoted

with the indexes (i(t), k(t)) 2 N ic(t).

Remark 4.1. We stress that the agent indexes i(t) and k(t)

are time-varying; indeed, contrarily to the special agent ic,

i(t) and k(t) are not preassigned to any particular agent in

the multi-robot team. Therefore the special agent ic only

needs to measure its relative positions pi(t) � pic and

pk(t) � pic with respect to any two agents within its neigh-

borhood (i and k are effectively arbitrary), with the points

pic , pi(t) and pk(t) being non-collinear for all t � t0. We

believe this assumption is not too restrictive in practice, as

it only require the presence of at least one robot equipped

with a range plus bearing sensor while all the remaining

ones can be equipped with simple range-only sensors.

In the following we omit for brevity the dependency

upon the time t of the quantities i and k.

In order to perform the distributed estimation of pi,c =

pi 2 pc, for all i2{1,.,n}, we follow the approach pre-

sented in Calafiore et al. (2010b), with some slight modifi-

cations dictated by the nature of our problem. Consistently

with our notation, we define p̂= p̂T1,c . . . p̂Tn,c
� �T2R3n.

For compactness, we also denote by ‘ij the measured dis-

tance kpj 2 pik, as introduced in Definition 3.1. We then

consider the following least-squares estimation error:

e(p̂)=
1

4

X
fi, jg2E

jjp̂j, c � p̂i, cjj2 � ‘2
ij

	 
2

+
1

2
jjp̂ic, cjj2

+
1

2
jjp̂i, c � (pi � pic )jj

2 +
1

2
jjp̂k, c � (pk � pic )jj

2

ð14Þ

Note that the quantities ‘ij, pi � pic , and pk � pic are mea-

sured while all of the other quantities represent local esti-

mates of the robots.

The non-negative error function e(p̂) is zero if and only

if:

	 jjp̂j, c � p̂i, cjj is equal to the measured distance ‘ij for all

the pairs fi, jg 2 E;
	 jjp̂ic, cjj= 0;
	 p̂i, c and p̂k, c are equal to the measured relative posi-

tions pi � pic and pk � pic, respectively.

Note that the estimates p̂ic, c, p̂i, c and p̂k, c could be

directly set to 0, (pi � pic), and (pi � pic), respectively,

since the first quantity is known and the last two are mea-

sured. Nevertheless, we prefer to let the estimator obtaining

these values via a ‘filtering action’ for the following rea-

sons: first, the estimator provides a relatively simple way to

filter out noise that might affect the relative position mea-

surements; second, implementation of the rigidity mainte-

nance controller only requires that (p̂j, c � p̂i, c)! (pj � pi),
which is achieved if p̂j, c ! pj � p̂ic, c and p̂i, c ! pi � p̂ic, c

for any common value of p̂ic, c. Therefore, any additional

hard constraint on p̂ic, c (e.g. p̂ic, c[0) might unnecessarily

over-constrain the estimator.
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Applying a first-order gradient descent method to e(p̂),
we finally obtain the following decentralized update rule

for the i-th agent (i6¼ic):

_̂pi, c = � ∂e

∂p̂i, c
=
X
j2N i

(jjp̂j, c � p̂i, cjj2 � ‘2
ij)(p̂j, c � p̂i, c)

�diic p̂i, c � dii p̂i, c � (pi � pic )ð Þ � dik p̂k, c � (pk � pic )ð Þ,
ð15Þ

where dij is the well-known Kronecker’s delta.6 The estima-

tor (15) is clearly decentralized since:

	 ‘ij is locally measured by agent i;
	 p̂i, c is locally available to agent i;
	 p̂j, c can be transmitted using one-hop communication

from agent j to agent i, for every j 2 N i;
	 (pi � pic) and (pk � pic) are measured by agent ic and

can be transmitted using one-hop communication to

agents i and k, respectively.

In order to show the relation between the proposed

decentralized position estimator scheme and the infinitesi-

mal rigidity property, one can restate (15) in matrix form as

_̂p= �R(p̂)p̂+R(p̂)‘+Dc ð16Þ

where R(p̂) and R(p̂) are the symmetric rigidity matrix and

the rigidity matrix computed with the estimated positions,

‘ 2 R
jEj is a vector whose entries are ‘2

ij, for all fi, jg 2 E,

and Dc 2 R
jEj contains the remaining terms of the right-

hand side of (15).

Proposition 4.2. If the framework is (infinitesimally) rigid,

then the vector of true values p� (1n � pc)=

(p1 � pc)
T � � � (pn � pc)

T
� �T

is an isolated local

minimizer of e(p̂). Therefore, there exists an e . 0

such that, for all initial conditions satisfying

jjp̂(0)� p� (1n � pc)jj\e, the estimation p̂ converges to

p� (1n � pc).
We point out that the estimator in the form (16) is identi-

cal to the formation controller proposed in Krick et al.

(2009). Consequently, we refer the reader to this work for a

discussion on the stability and convergence properties of this

model. A similar estimation scheme is also proposed in

Calafiore et al. (2010b). We briefly emphasize that the prop-

erty of having the true value of relative positions

p� (1n � pc) as an isolated local minimizer of (14) is a con-

sequence of the definition of infinitesimal rigidity and of the

non-collinearity assumption of the agents ic, i, and k.

We finally note that, in general, the rate of convergence

of a gradient descent method is known to be slower than

other estimation methods. However, we opted for this

method since is its directly amenable to a distributed imple-

mentation and requires only first-order derivative

information.

5. Distributed estimation of the rigidity

eigenvalue and eigenvector

As seen in Section 4, when the multi-robot team possesses

the infinitesimal rigidity property, it is possible to distribut-

edly estimate the relative positions in a common reference

frame for each agent. However, the proposed distributed

rigidity maintenance control action (10) requires knowl-

edge of some additional global quantities that are explicitly

expressed in the expressions (13) and (10). In particular,

each agent must know also the current value of the rigidity

eigenvalue and certain components of the rigidity eigenvec-

tor. In this section we propose a distributed estimation

scheme inspired by the distributed connectivity mainte-

nance solution proposed in Yang et al. (2010) for obtaining

the rigidity eigenvalue and eigenvector.

For the reader’s convenience, we first provide a brief

summary of the power iteration method for estimating the

eigenvalues and eigenvectors of a matrix. We then proceed

to show how this estimation process can be distributed by

employing PI consensus filters and by suitably exploiting

the structure of the symmetric rigidity matrix.

5.1. Power iteration method

The power iteration method is one of a suite of iterative

algorithms for estimating the dominant eigenvalue and

eigenvector of a matrix. Following the same procedure as in

Yang et al. (2010), we employ a continuous-time variation

of the algorithm that will compute the smallest non-zero

eigenvalue and eigenvector of the symmetric rigidity matrix.

The discrete-time power iteration algorithm is based on

the following iteration,

x(k + 1) =
Ax(k)

jjAx(k)jj =
Akx(0)

jjAkx(0)jj

Under certain assumptions for the matrix A (i.e. no repeated

eigenvalues), the iteration converges to the eigenvector

associated to the largest eigenvalue of the matrix.

To adapt the power iteration to compute the rigidity

eigenvector and eigenvalue, we leverage the results of

Theorem 2.16 and consider the iteration on a deflated ver-

sion of the symmetric rigidity matrix, i.e. eR=
I � TTT � aR for some small enough a . 0. The power

iteration method estimates the largest eigenvalue of a

matrix. As all of the eigenvalues of the symmetric rigidity

matrix are non-negative, the largest eigenvalue of the

deflated version eR will correspond to 1 2 al7, and thus

can be used to estimate l7. The constant a ensures the

matrix eR is positive semi-definite. The columns of the

matrix T 2 R
3n 3 6 contain the eigenvectors corresponding

to the zero eigenvalues of R, for example, as characterized

in Theorem 2.16. Note that the power iteration applied to

the matrix eR will compute the eigenvector associated with

the rigidity eigenvalue.7

116 The International Journal of Robotics Research 34(1)



The continuous-time counterpart of the power iteration

algorithm now takes the form (Yang et al., 2010)

_̂v(t)= � k1TTT + k2R+ k3

bv(t)Tbv(t)
3n

� 1

� �
I

� �bv(t)
ð17Þ

where bv is the estimate of the rigidity eigenvector, and the

constants k1, k2, k3 . 0 are chosen to ensure the trajectories

converge to the rigidity eigenvector.8 We present here the

main result and refer the reader to Yang et al. (2010) for

details of the proof, noting that the proof methodologies are

the same for the system (17) as that proposed in Yang et al.

(2010).

Theorem 5.1. Assume that the weighted framework

(G, p,W) with symmetric rigidity matrix R is infinitesi-

mally rigid and has distinct non-zero eigenvalues, and letv-

denote the rigidity eigenvector. Then for any initial

condition bv(t0) 2 R
3n such that vTbv(t0) 6¼ 0, the trajec-

tories of (17) converge to the subspace spanned by the

rigidity eigenvector, i.e. limt!‘ bv(t)= gv for g 2 R, if and

only if the gains k1,k2 and k3 satisfy the following

conditions:

1. k1, k2, k3 . 0;

2. k1 . k2l7;

3. k3 . k2l7.

Furthermore, for any choice of constants k1, k2, k3 . 0, the

trajectories of (17) remain bounded and satisfy

jjbv(t)jj � max jjbv(t0)jj,
ffiffiffiffiffi
3n
pn o

, for all t � t0

In particular, the trajectory converges to the rigidity eigen-

vector with

lim
t!‘
jjbv(t)jj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3n 1� k2

k3

� �
l7

s

Remark 5.2. The power iteration proposed in (17)

assumes that the symmetric rigidity matrix is static.

However, in a dynamic setting the parameters of the rigid-

ity matrix are a function of the state of the robots in a

multi-robot system, and both the symmetric rigidity matrix

and the expression of its null space are inherently time-

varying. While the proof provided in Yang et al. (2010)

does not explicitly address the time-varying case, our expe-

rience suggests that the dynamics of (17) is able to track

even a time-varying rigidity eigenvector, so long as the

dynamics of the robots are slower than the estimator. The

speed of convergence of (17), of course, is also tunable by

the constants ki.

Remark 5.3. Another important subtlety of the dynamics

(17) is the requirement that the rigidity eigenvalue is

unique. When the rigidity eigenvalue is not unique, the

associated eigenvector can belong to (at least) a two-

dimensional subspace L, so that (17) cannot be expected

to converge to a unique eigenvector but rather to an equili-

brium point in L (see, e.g., Yang et al., 2010). This can

pose difficulties in real-world conditions since non-

idealities such as noise in measuring the agent states (used

in evaluating the symmetric rigidity matrix R ), and dis-

cretization when numerically integrating (17), can make

the equilibrium point for (17) in L to abruptly vary over

time, thus preventing a successful convergence of the esti-

mation of v.

5.2. A distributed implementation

The results of Section 5.1 provide a continuous-time esti-

mator for estimating the rigidity eigenvalue and eigenvector

of the symmetric rigidity matrix. The estimator given in

(17), however, is a centralized implementation. Moreover,

certain parameters used in (17) are expressed using a com-

mon reference frame (i.e. the quantity TTT, see Theorem

2.16 and Remark 2.17) or require each robot to know the

entire estimator state (i.e. the quantity bv(t)Tbv(t) in (17)).

We propose in this section a distributed implementation for

the rigidity estimator that overcomes these difficulties, in

particular by leveraging the results of Section 4. In the same

spirit as the solution proposed in Yang et al. (2010), we

make use of the PI average consensus filter (Freeman et al.,

2006) to distributedly compute the necessary quantities of

interest, and strongly exploit the particular structure of the

symmetric rigidity matrix.

Our approach to the distribution of (17) is to exploit both

the built-in distributed structure (i.e. the symmetric rigidity

matrix R) and the reduction of the other parameters to val-

ues that all agents can obtain via a distributed algorithm. In

this direction, we now proceed to analyze each term in (17)

and discuss the appropriate strategies for implementing the

estimator in a distributed fashion.

Concerning the first term TTTbv, Theorem 2.16 provides

an analytic characterization of the eigenvectors associated

with the zero eigenvalues of the symmetric rigidity matrix

(assuming the graph is infinitesimally rigid). To begin the

analysis, we explicitly write out the matrix T and examine

the elements of the matrix TTT. Following the comments of

Remark 2.17, we express the null-space vectors in terms of

relative positions to an arbitrary point pc =
px

c py
c pz

c½ � 2 R
3; in particular, the point pc will be the

special agent ic described in Section 4:

T =
1n 0 0 py � py

c1n pz � pz
c1n 0

0 1n 0 px
c1n � px 0 pz � pz

c1n

0 0 1n 0 px
c1n � px py

c1n � py

24 35
For the remainder of this discussion, we assume that all

agents have access to their state in an estimated coordinate

frame relative to the point pic , the details of which were

described in Section 4:
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TTT =

1n1
T
n + py, c(py, c)T + pz, c(pz, c)T �py, c(px, c)T �pz, c(px, c)T

�px, c(py, c)T 1n1
T
n + px, c(px, c)T + pz, c(pz, c)T �pz, c(py, c)T

�px, c(pz, c)T �py, c(pz, c)T 1n1
T
n + px, c(px, c)T + py, c(py, c)T

264
375 ð18Þ

To simplify notation, we write as in Section 4, for exam-

ple, py, c = py � py
c1n and pi,c = pi 2 pc. Following our

earlier notation, we also partition the vector bv into each

coordinate, bvx, bvy, and bvz. Let avg(r) denote the average

value of the elements in the vector r 2 R
n, i.e.

avg(r)= 1
n
1Tn r. Then it is straightforward to verify that

1n1
T
nbvk(t)= n avg(bvk(t))1n, k 2 fx, y, zg ð19Þ

pi, c(pj, c)
Tbvk(t)= n avg(pj, c sbvk)pi, c, i, j, k 2 fx, y, zg

ð20Þ

where ‘ s ’ denotes the element-wise multiplication of two

vectors.

This characterization highlights that, in order to evaluate

the term TTTbv, each agent must compute the average

amongst all agents of a certain value that is a function of

the current state of the estimator and of the positions in

some common reference frame whose origin is the point

pc. It is well known that the consensus protocol can be used

to distributedly compute the average of a set of numbers

(Mesbahi and Egerstedt, 2010). The speed at which the

consensus protocol can compute this value is a function of

the connectivity of the underlying graph and the weights

used in the protocol. In this framework, however, a direct

application of the consensus protocol will not be sufficient.

Indeed, it is expected that each agent will be physically

moving, leading to a time-varying description of the matrix

TTT (see Remark 5.2). In addition, the underlying network

is also dynamic as sensing links between agents are inher-

ently state dependent.

The use of a dynamic consensus protocol introduces

additional tuning parameters that can be used to ensure that

the distributed average calculation converges faster than the

underlying dynamics of each agent in the system, as well

as the ability to track the average of a time-varying signal.

We employ the following PI average consensus filter pro-

posed in Freeman et al. (2006),

_z(t)

_w(t)

� �
=
�gIn � KPL(G(t)) KI L(G(t))
�KI L(G(t)) 0

� �
z(t)

w(t)

� �
+

gIn

0

� �
u(t) ð21Þ

y(t)= In 0½ � z(t)
w(t)

� �
ð22Þ

The parameters KP,KI 2 R and g 2 R are used to ensure

stability and tune the speed of the filter. An analysis of the

stability and performance of this scheme with time-varying

graphs is given in Freeman et al. (2006). Figure 5 provides

a block diagram representation of how the PI consensus fil-

ters are embedded into the calculation of TTTbv(t) (in only

the x coordinate).

As for the second term in (17), as shown in Section 2.3

the symmetric rigidity matrix is by construction a distribu-

ted operator. The term Rbv(t) can be computed using only

information exchanged between neighboring agents, as

determined by the sensing graph.

The final term in (17) is a normalization used to drive

the eigenvector estimate to the surface of a sphere of radiusffiffiffiffiffi
3n
p

. Using the same analysis as above, it can be verified

that

bv(t)Tbv(t)
3n

� 1

� �bv(t)= avg(bv(t) sbv(t))� 1ð Þbv(t) ð23Þ

Fig. 5. Block diagram showing PI consensus filters in calculation of TTTbv(t).
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This quantity can therefore be distributedly computed

using an additional PI consensus filter.

Using the result of Theorem 5.1 and the PI consensus

filters, each agent is also able to estimate the rigidity

eigenvalue.

Corollary 5.4. Let v2
i (t) denote the output of the PI con-

sensus filter for estimating the quantity avg(bv(t) 8 bv(t)) for

agent i. Then agent i’s estimate of the rigidity eigenvalue,

l̂i
7, can be obtained as

l̂i
7 =

k3

k2

1� v2
i (t)

� �
:

In summary, each agent implements the following

filters:

	 estimation of a common reference frame using (15);
	 estimation of the rigidity eigenvector using (17);
	 a PI-consensus filter for tracking the average of the

estimate of the rigidity eigenvector (19);
	 a PI-consensus filter for tracking the quantity described

in (20);
	 a PI-consensus filter for tracking the average of the

square of the rigidity eigenvector estimate (23).

For completeness, we now present the full set of filters

that each robot executes:

_̂v
x

i = � k1n vx
i + z

xy
i (t)p̂

y
i, c + zxz

i p̂z
i, c(t)

	 

� k2

X
j2N i (t)

Wij bvx
i (t)� bvx

j

	 

� k3 vx

i � 1
� �bvx

i

ð24Þ

_̂pi, c =
X

j2N i(t)

(jjp̂j, c � p̂i, cjj2 � ‘2
ij)(p̂j, c � p̂i, c)

� diic p̂i, c � dii p̂i, c � (pi � pic )ð Þ
� dik p̂k, c � (pk � pic )ð Þ

ð25Þ

_̂v
x

i =g bvx
i � vx

i

� �
�KP

X
j2N i

vx
i � vx

j (t)
	 


+KI

X
j2N i(t)

�wx
i � �wx

j

	 

ð26Þ

_�wx
i = � KI

X
j2N i (t)

vx
i � vx

j

	 

ð27Þ

_̂v
2x

i = g (bvx
i )

2 � v2x
i

� �
� KP

X
j2N i(t)

v2x
i � v2x

j

	 

+KI

X
j2N i(t)

�w2x
i � �w2x

j

	 
 ð28Þ

_�w2x
i = � KI

X
j2N i(t)

v2x
i � v2x

j

	 

ð29Þ

_zxy
i = g p̂y

sbvx � p̂x
sbvyð Þ � z

xy
ið Þ � KP

X
j2N i(t)

z
xy
i � z

xy
j

	 

+KI

X
j2N i(t)

w
xy
i (t)� w

xy
j

	 

ð30Þ

Fig. 6. Two snapshots of the reported experiment. Left: Simulated 3D views showing, in particular, the inter-agent links (red, almost

disconnected link; green, optimally connected link). Right: Corresponding pictures of the experimental setup. The two highlighted

quadrotor UAVs are partially controlled by two human operators.
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Fig. 7. Behavior of jjpi � pc � p̂i, cjj, i = 2.6, the norm of the estimation error for the relative positions of agents 2.6 with respect

to agent ic = 1. The horizontal dashed black line represents the mean value of each error norm over time. Note how the estimation

errors keep a low value during the group motion and thus indicate the ability of each robot to recover its relative position with respect

to the robot ic = 1 by only exploiting measured distances with respect to its neighbors and the infinitesimal rigidity of the formation.
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_wxy
i = � KI

X
j2N i(t)

z
xy
i � z

xy
j

	 

ð31Þ

_zxz
i = g p̂z

sbvx � p̂x
sbvzð Þ � zxz

i

� �
� KP

X
j2N i(t)

z
xy
i � z

xy
j

	 

+KI

X
j2N i(t)

w
xy
i � w

xy
j

	 

ð32Þ

_wxz
i = � KI

X
j2N i(t)

zxz
i � zxz

j

	 

: ð33Þ

These equations are written only for the x coordinate associ-

ated with all of the quantities. Observe, however, that the

filters needed for the y and z coordinates do not require

additional integrators, as similar filters can be vectorized

(for example, the PI filters can be combined as in (21)). For

the readers convenience, a summary of the notation and

variable definitions used in (24)–(33) is provided in Table 1.

Remark 5.5. Equations (24)–(33) show that each agent

requires a 10th-order dynamic estimator for estimating the

rigidity eigenvector and eigenvalue. This filter is composed

of three PI-consensus filters, a relative position estimation

filter, and the power iteration filter. An important point to

emphasize is the order of the overall filter is independent

of the number of agents in the ensemble, and thus is a scal-

able solution.

6. The rigidity maintenance controller

The primary focus of this work until now was a detailed

description of how the rigidity of a multi-robot formation

can be maintained in a distributed fashion. The basic idea

was to follow the gradient of an appropriately defined

potential function of the rigidity eigenvalue; this control

strategy was presented in (13). The fundamental challenge

for the implementation of this control strategy was twofold:

on the one hand, rigidity of a formation is an inherently

global property of the network, and on the other hand, the

control law depended on relative position measurements in

a common reference fame.

A truly distributed solution based on this control strategy

requires each agent to estimate a common inertial reference

frame and also estimate the rigidity eigenvalue and eigenvec-

tor of the formation. The solution to these estimation prob-

lems was presented in Sections 4 and 5, with the complete set

of filter equations summarized in (24)–(33). Note that both

estimation strategies implicitly require that the underlying for-

mation is infinitesimally rigid (see also Assumption 3.4). The

final step for implementation of the rigidity maintenance con-

troller is then to replace all of the state variables given in (13)

with the appropriate estimated states computed by the relative

position estimators and rigidity eigenvalue estimators. The

local controller for each agent is thus given as,9

jx
i = � ∂V (l̂i

7)

∂l7

X
j2N i

Wij 2(p̂x
i, c � p̂x

j, c)(bvx
i � bvx

j )
2 +

	
2(p̂

y
i, c � p̂

y
j, c)(bvx

i � bvx
j )(bvy

i � bvy
j )

+ 2(p̂z
i, c � p̂z

j, c)(bvx
i � bvx

j )(bvz
i � bvz

j )Þ

+
∂Wij

∂px
i

Ŝij ð34Þ

in conjunction with all of the estimation filters of (24)–

(33).

Remark 6.1. The interconnection of the relative position

estimator, rigidity eigenvalue estimator, and gradient con-

troller leads to a highly non-linear dynamics for which a
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Fig. 8. (a) Behavior of l7(t) (blue line) and the six estimations l̂i
7(t) (dashed colored lines) which result almost coincident. (b)

Behavior of the overall rigidity eigenvalue estimation error el(t) as defined in (35).
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Fig. 9. Behavior of the 15 weights Wuv(t) for all the possible edges of graph G. Note how the values of weights Wuv(t) vary over time

because of the sensing/communication constraints and requirements embedded within their definition (see Section 3.1). Some weights

(e.g. W24 and W45) also temporarily vanish indicating loss of the corresponding edge (and, thus, the time-varying nature of graph G).
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formal proof analysis is not straightforward. While we are

currently working towards a deeper analysis in this sense,

the approach taken in this work is to exploit the typical

(although informal) time-scale separation argument com-

monly found in many robotics applications relying on feed-

back control from an estimated state (as, e.g., when using

an extended Kalman filter). Basically, the estimator

dynamics is assumed ‘‘fast enough’’ such that its transient

behavior can be considered as a second-order perturbation

with respect to the robot motion (see also Yang et al.,

2010) for an equivalent assumption in the context of decen-

tralized connectivity maintenance control.

7. Experimental results

In this section we report some experimental results aimed

at illustrating the machinery proposed so far for distributed

rigidity maintenance. The experiments involved a total of

N = 6 quadrotor UAVs (five real and one simulated) flying

the environment shown in Figure 6. A video illustrating the

various phases of the experiment (Extension 1) is attached

to the paper.

All of the quadrotor UAVs were implementing the rigid-

ity maintenance action (34) in addition to the estimation

filters presented in (24)–(33). In addition, for two of the

quadrotor UAVs (namely, quadrotors 1 and 2) an exogen-

ous bounded velocity term j
i 2 R
3 was also added to (34);

this allows for two human operators to independently con-

trol the motion of quadrotors 1 and 2 during the experi-

ment, so as to steer the whole formation and trigger the

various behaviors embedded in the weightsWuv (formation

control, obstacle avoidance, sensing limitations).10

Our experimental quadrotor platform is a customized

version of the MK-Quadro (see http://www.mikrokopter.de)

implementing the TeleKyb ROS framework (see http://

www.ros.org/wiki/telekyb) for flight control, experimental

workflow management and human inputting. Attitude is

stabilized with a fast inner loop that takes advantage of

high-rate/onboard accelerometer and gyroscope measure-

ments while the velocity stabilization is achieved by a

slower control loop that measures the current velocity

thanks to an external motion capture system. The motion

capture system is also used to obtain relative distance mea-

surements among the robots and the two bearing measure-

ments needed by the special robot ic. The reader is referred

to Franchi et al. (2012b) for a detailed description of the

quadrotor-based experimental setup.

We start illustrating the behavior of the relative position

estimator described in Section 4 and upon which all of the

subsequent steps are based (estimation of l7 and v and eva-

luation of the control action (10)). As explained in Section

4, owing to the formation infinitesimal rigidity, the scheme

(15) allows each agent i to build an estimation p̂i, c of its

relative position pi 2 pc with respect to the agent ic, with

ic = 1 in this experiment. Figures 7(a)–(e) report the beha-

vior of the norm of the estimation errors jjpi � pc � p̂i, cjj
for i = 2.6 together with their mean values (dashed hori-

zontal black line). It is then possible to verify how the rela-

tive position estimation errors keep low values over time,

thus effectively allowing every agent to recover its correct

relative position with respect to pc from the measured rela-

tive distances.

As for the rigidity eigenvalue estimation of Section 5,

Figure 8(a) reports the behavior of l7(t) (solid blue line), of

the six estimations l̂i
7(t) (solid colored lines almost super-

imposed to l7(t)), and of the minimum threshold

lmin
7 = 7:5 (horizontal dashed line). From the plot one can

verify: (i) the accuracy in recovering the value of l7(t)

(note how the six estimations are almost superimposed on

the real value) and (ii) that l7(t).lmin
7 at all times apart

from few isolated spikes, implying that formation rigidity

was maintained during the task execution. As an additional

indication of the eigenvalue estimation performance,

Figure 8(b) shows the total estimation error for the rigidity

eigenvalue

el(t)=

PN
i= 1 l7(t)� l̂i

7(t)j
N

ð35Þ

which again confirms the accuracy of the estimation

strategy.

Figures 9(a–o) report the behavior of the 15 weights Wuv

defined in (11) and associated with all of the possible

edges of graph G in order to show their time-varying nature

because of the constraints and requirements listed in

Section 3.1. Note how the value of some weight drops to

zero over time (e.g. W45(t) at about t = 25 s or W24(t) at

about t = 210 s), thus indicating loss of the corresponding

edge. In the same spirit, Figure 10 shows the total number

of edges j bEj of the unweighted graph bG (i.e. of non-zero

weights Wuv, see Definition 2.9) during the group motion.

These results highlight the time-varying nature of graph G
which, as explained in the previous sections, is not con-

strained to keep a given fixed topology but is free to lose
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Fig. 10. Total number of edges in the graph G during the group

motion.
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or gain edges as long as infinitesimal rigidity of the forma-

tion is preserved.

Finally, Figures 11(a)–(f) report the behavior over time

of pi(t) (the ith agent position, solid lines) and of pi,real (t)

(the i th quadrotor position, dashed lines) while tracking

the motion of pi(t). The two position vectors result almost

perfectly coincident, thus indicating a successful tracking

performance of the quadrotors (and the soundness of our
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Fig. 11. Behavior of pi(t) (solid) and pi,real (dashed): these are basically superimposed, showing the accuracy of the quadrotors in

tracking the reference trajectory pi(t). In the plots the following color code is used: blue/red/green solid/dashed lines correspond to the

x / y / z components of pi(t) and pi,real.
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modeling assumptions). As a further confirmation of this

fact, the norm of the overall tracking error defined as

etrack(t)=

PN
i= 1 jjpi(t)� pi, real(t)jj

N
ð36Þ

is also reported in Figure 12.

8. Concluding remarks

This work presented a fully distributed solution for the

rigidity maintenance control of a multi-robot system. As

discussed in the introduction, rigidity is an important archi-

tectural feature for multi-robot systems that enables, for

example, formation keeping and localization using only

range-based measurements. The main theme of this work,

therefore, was the distributed implementation of a number

of algorithms for estimation and control in a multi-robot

system related to rigidity maintenance. In particular, we

demonstrated how the rigidity eigenvalue and eigenvector,

used to decide whether a formation is infinitesimally rigid,

can be distributedly estimated using a suite of estimators

based on dynamic consensus filters and the power iteration

method for eigenvalue estimation. The rigidity property

also allowed for estimation of a common inertial reference

frame using only range-based measurements, along with

one single endowed agent that is able to sense both range

and bearing. The estimation of these quantities were then

embedded in a gradient-based distributed control action

ensuring each agent moves in a way that guarantees rigidity

of the formation is maintained. This control scheme also

explicitly handles a variety of practical multi-robot con-

straints, including sensing and communication ranges, col-

lision and obstacle avoidance, and line-of-sight

requirements. The validity of the proposed algorithms was

demonstrated by a team of six quadrotor UAVs flying in a

cluttered environment.

This work also highlighted a number of directions for

future research. In particular, the estimation of the rigidity

eigenvalue assumed that there is a separation between the

rigidity eigenvalue and the next largest eigenvalue, i.e. jl7

2 l8j . 0. While the reported experimental results showed

a large degree of robustness with respect to this effect, there

remain both theoretical and practical questions related to

this problem. For instance, it would be interesting to com-

plement the rigidity maintenance controller with an addi-

tional term meant to maintain a minimum separation

among l8 and l7. Another extension is to relax the require-

ment for having a special agent endowed with additional

sensing capabilities (i.e. range and bearing). This would

lead to a distributed solution involving only range measure-

ments for all robots in the ensemble.

Despite these remaining challenges, this work has suc-

cessfully demonstrated the power of distributed strategies

for multi-robot systems. Indeed, it is remarkable to observe

the behavior of the multi-robot team running many distrib-

uted filters to achieve a common global objective. The

refinement of these strategies will no doubt become an

important requirement as autonomous multi-robot systems

are integrated more into a variety of application domains.
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Notes

1. The second smallest eigenvalue of the graph Laplacian

matrix.

2. If the graph is not connected, there will be additional eigen-

values at the origin corresponding to the number of con-

nected components of the graph, see Godsil and Royle

(2001).

3. A more detailed proof for the two-dimensional case is pro-

vided in Zelazo et al. (2012).

4. As for collision with obstacles, an equivalent behavior is

automatically obtained from weights gb
uv, see again Robuffo

Giordano et al. (2013) for a full explanation. Also note that,

because of the definition of weights Wuv, one has N u � Su

but Su 6� N u.

5. Formation rigidity implies presence of at least two non-

collinear neighbors for each agent (Laman, 1970).

6. dij = 0 if I6¼j and dij = 1 otherwise.

7. Assuming the rigidity eigenvalue is unique and the frame-

work is infinitesimally rigid (i.e. the rigidity eigenvalue is

positive). We will discuss the implications of this assump-

tion later.

8. Note that the constant a used to describe the deflated sym-

metric rigidity matrix is effectively replaced by k2 in this

formulation.

9. The control is shown in the x coordinate; a similar expression

can be obtained for the y and z coordinates.

10. We note that, being j*i bounded, its effect does not threaten

rigidity maintenance since the control action ji in (10)

always results dominant as Vl(l7)!N if l7(t)! lmin
7
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Fig. 12. Behavior of the tracking error etrack (t) defined in (36)

showing again the good tracking performance of the six

quadrotors.
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11. Here, we assume that the directed edges (vi,vj) and (vj,vi) are

equivalent to the undirected edge {vi,vj}.

12. This representation also assumes that all of the edges have

been assigned a label, and this labeling is maintained even

for the local graphs (local graphs do not relabel their edges;

for example if edge 2 is not in local graph Gj, then the sec-

ond column of E(Gj) will be zero).
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Appendix A: Index to Multimedia Extension

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Appendix B: Rigidity matrix example

The development of the alternative representation of the

rigidity matrix given in Proposition 2.13 of the document is

aided by a simple example. To begin, we make some quali-

tative observations of the rigidity matrix. For this example

we consider a framework in R
2 with the complete graph on

three nodes (denoted K3). The rigidity matrix can be written

by inspection as

R(p)=
px

1 � px
2 p

y
1 � p

y
2 px

2 � px
1 p

y
2 � p

y
1 0 0

px
1 � px

3 p
y
1 � p

y
3 0 0 px

3 � px
1 p

y
3 � p

y
1

0 0 px
2 � px

3 p
y
2 � p

y
3 px

3 � px
2 p

y
3 � p

y
2

24 35
For the complete graph and an arbitrary orientation

assigned to each edge, the incidence matrix E(G) can be

written as

E(G)=
1 1 0

�1 0 1

0 �1 �1

24 35
The transpose of the incidence matrix functions as a

‘‘difference’’ operator. If the position of each agent is

formed into a vector, we have

E(G)T
px

1 p
y
1

px
2 p

y
2

px
3 p

y
3

24 35=
px

1 � px
2 p

y
1 � p

y
2

px
1 � px

3 p
y
1 � p

y
3

px
2 � px

3 p
y
2 � p

y
3

24 35
The point to illustrate here is that this difference operation

between positions is redundantly embedded inside the

rigidity matrix. This fact can be made more precise by

defining a directed local graph at node vi from the graph G
as in Definition 2.12 in the main text. Intuitively, the idea

is that each node only has some local information about

the connectivity of the entire graph; indeed, it only knows

of the existence of other nodes that it can sense. In this

way, we can define a sub-graph induced by each node in

the graph as follows.

Let Gj =(V, Ej) be a sub-graph induced by node vj such

that

Ej = f(vj, vi)jfvi, vjg 2 Eg

Here we emphasize that the original graph G is undirected,

while in the new induced graph Gi we assign a direction to

the edge such that node vj is always the tail. Furthermore,

observe that [jGj =G.11 This is illustrated in Figure 13.

To continue with the K3 example, we can write the local

incidence matrix for node v1 as

El(G1)=
1 1 0

�1 0 0

0 �1 0

24 35
Note that this matrix is not truly an incidence matrix for the

graph G1; ‘‘placeholders’’ for the other edges in the graph G

Table of Multimedia Extension

Extension Media type Description

1 Video Experiments of rigidity maintenance
with a group of UAVs

(a) (b)
Fig. 13. Example of a directed local graph: (a) a graph; (b) local directed graph at a node.
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are kept. As a result, the local incidence matrix is defined

as El(Gj) 2 R
jVj3 jEj to have zero columns corresponding to

the edges not in Ej.
12

Now, consider the local incidence matrix as the differ-

ence operator,

El(G1)
T

px
1 p

y
1

px
2 p

y
2

px
3 p

y
3

24 35= px
1 � px

2 p
y
1 � p

y
2

px
1 � px

3 p
y
1 � p

y
3

0 0

24 35

Note that this is identical to the first two columns of the

rigidity matrix R(p). In fact, this shows that the rigidity

matrix can be written entirely in terms of local incidence

matrices, as formally stated in Proposition 2.13.
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