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Abstract— This paper studies the problem of stabilizing
target formations specified by inter-neighbor bearings with
relative position measurements. While the undirected case has
been studied in the existing works, this paper focuses on the
case where the interaction topology is directed. It is shown that
a linear distributed control law, which was proposed previously
for undirected cases, can still be applied to the directed case.
The formation stability in the directed case, however, relies
on a new notion termed bearing persistence, which describes
whether or not the directed underlying graph is persistent with
the bearing rigidity of a formation. If a target formation is
not bearing persistent, undesired equilibriums will appear and
global formation stability cannot be guaranteed. The notion of
bearing persistence is defined by the bearing Laplacian matrix
and illustrated by simulation examples.

I. INTRODUCTION

In recent years, there has been a growing research interest
on bearing-based formation control [1]–[8] and bearing-
based network localization [9]–[13]. The bearing-based ap-
proaches provide solutions to control or localize networks in
arbitrary dimensional spaces merely using the inter-neighbor
bearing information. As shown in [7], the bearing-based
approach also provides a simple solution to formation scale
control, which is complicated to solve using the distance or
relative position based approaches [14], [15]. While most of
the existing works focused on the undirected case, this paper
focuses on bearing-based formation control with directed
interaction topologies.

The specific problem considered in this paper is described
below. Suppose the target formation is static and its desired
geometric pattern is defined by the inter-neighbor bearing
constraints. Each agent can obtain the relative positions of its
neighbors via wireless communication. The control objective
is to steer the formation from an initial configuration to a
final configuration that satisfies the inter-neighbor bearing
constraints. The linear formation control law considered in
this paper is the one proposed in our previous work [6] for
formations with undirected interaction topologies. It will be
shown in this paper that the control law can also be applied
to the directed case, but the formation stability in the directed
case is more complicated to analyze.

In the undirected case, the formation stability merely relies
on the bearing rigidity properties of the target formation [6].
The bearing rigidity of networks or formations has been
studied in [2], [3], [5], [8]. It is shown in [5] that the
geometric pattern of a target formation can be uniquely
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determined by the inter-neighbor bearings if and only if
the target formation is infinitesimally bearing rigid. It is
further shown in [6] that the global formation stability will be
guaranteed if the target formation is infinitesimally bearing
rigid. However, in the directed case, the formation stability
will rely on not only the bearing rigidity properties but also
a new notion termed bearing persistence as observed in this
paper. The notion of bearing persistence is defined based on
a special matrix, termed the bearing Laplacian, which plays
important roles in the bearing-based formation control and
network localization problems as shown in [6], [7], [13].
The bearing Laplacian of a formation can be viewed as a
matrix-weighted graph Laplacian. In the undirected case, the
bearing Laplacian is symmetric positive semi-definite and
its null space is exactly the same as that of the bearing
rigidity matrix. However, the bearing Laplacian may lose
these elegant properties in the directed case.

The work presented in this paper is a first step towards
solving the general problem of bearing-based formation
control with directed interaction topologies. The notion of
bearing persistence is defined and explored. Specifically, a
formation is bearing persistent when the null spaces of the
bearing Laplacian and the bearing rigidity matrix are the
same. We further show that if the formation is not bearing
persistent, undesired equilibriums will appear and the global
formation stability cannot be guaranteed. We also present
a sufficient condition to ensure bearing persistence for for-
mations in the two-dimensional space. The spectrum of the
bearing Laplacian in the directed case, which determines the
formation stability, is however not analyzed in this paper and
will be addressed in the future. Finally, since the bearing-
based formation control problem is mathematically equiv-
alent to the bearing-only network localization problem as
shown in [6], the results presented in this paper can be easily
transferred to solve the bearing-only network localization
problem with directed interaction topologies.

Notations: Given Ai ∈ Rp×q for i = 1, . . . , n, denote
diag(Ai) , blkdiag{A1, . . . , An} ∈ Rnp×nq . Let Null(·)
and Range(·) be the null space and range space of a matrix,
respectively. Denote Id ∈ Rd×d as the identity matrix, and
1 , [1, . . . , 1]T. Let ‖ · ‖ be the Euclidian norm of a vector
or the spectral norm of a matrix, and ⊗ be the Kronecker
product.

II. PRELIMINARIES TO BEARING RIGIDITY THEORY

Bearing rigidity theory plays a key role in the analysis of
bearing-based distributed control and estimation problems.
In this section, we revisit some notions and results in the
bearing rigidity theory [5]. It is worth noting that the bearing
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rigidity theory presented in [5] is developed for the case
of undirected graphs. However, it can be generalized to the
directed case without any difficulties.

We first introduce an orthogonal projection matrix operator
that will be used throughout the paper. For any nonzero
vector x ∈ Rd (d ≥ 2), define P : Rd → Rd×d as

P (x) , Id −
x

‖x‖
xT

‖x‖
.

For notational simplicity, we denote Px = P (x). The matrix
Px geometrically projects any vector onto the orthogonal
compliment of x. It is easily verified that PT

x = Px, P 2
x =

Px, and Px is positive semi-definite. Moreover, Null(Px) =
span{x} and the eigenvalues of Px are {0, 1(d−1)}. Any two
nonzero vectors x, y ∈ Rd are parallel if and only if Pxy = 0
(or equivalently Pyx = 0).

Given a finite collection of n points {pi}ni=1 in Rd (n ≥ 2,
d ≥ 2), denote p = [pT1 , . . . , p

T
n ]T ∈ Rdn. A formation in

Rd, denoted as G(p), is a directed graph G = (V, E) together
with p, where vertex i ∈ V in the graph is mapped to the
point pi. For a formation G(p), define the edge vector and
the bearing, respectively, as

eij , pj − pi, gij , eij/‖eij‖, ∀(i, j) ∈ E .

The bearing gij is a unit vector.

Definition 1 (Bearing Equivalence). Two formations G(p)
and G(p′) are bearing equivalent if Pgijg

′
ij = 0 for all

(i, j) ∈ E .

By Definition 1, bearing equivalent formations have par-
allel inter-neighbor bearings. Suppose |E| = m and index all
the directed edges from 1 to m. Re-express the edge vector
and the bearing as ek and gk , ek/‖ek‖, ∀k ∈ {1, . . . ,m}.
Let e = [eT1 , . . . , e

T
m]T and g = [gT1 , . . . , g

T
m]T. Note e

satisfies e = H̄p where H̄ = H ⊗ Id and H is the incidence
matrix of the graph G [16]. Define the bearing function
FB : Rdn → Rdm as

FB(p) , [gT1 , . . . , g
T
m]T.

The bearing function describes all the bearings in the forma-
tion. The bearing rigidity matrix is defined as the Jacobian
of the bearing function,

RB(p) ,
∂FB(p)

∂p
∈ Rdm×dn. (1)

Let δp be a variation of p. If RB(p)δp = 0, then δp is called
an infinitesimal bearing motion of G(p). Any formation
always has two kinds of trivial infinitesimal bearing motions:
translation and scaling of the entire formation. We next define
one of the most important concepts in bearing rigidity theory.

Definition 2 (Infinitesimal Bearing Rigidity). A formation
is infinitesimally bearing rigid if all the infinitesimal bearing
motions of the formation are trivial.

Some useful results are listed as below; for proofs, please
refer to [5].

Lemma 1 ([5]). For any formation G(p), the bearing rigidity
matrix defined in (1) satisfies

(a) RB(p) = diag (Pgk/‖ek‖) H̄;
(b) rank(RB) ≤ dn−d−1 and span{1⊗Id, p} ⊆ Null(RB).

Theorem 1 ([5]). Any two formations G(p) and G(p′) are
bearing equivalent if and only if RB(p)p′ = 0.

Theorem 2 ([5]). For any formation G(p), the following
statements are equivalent:

(a) G(p) is infinitesimally bearing rigid;
(b) G(p) can be uniquely determined up to a translation and

a scaling factor by the inter-neighbor bearings;
(c) rank(RB) = dn− d− 1;
(d) Null(RB) = span{1⊗ Id, p}.

III. PROBLEM FORMULATION

In this section, we first state the problem of bearing-based
formation stabilization, and then present a linear bearing-
based formation control law.

A. Problem Statement

Consider a formation of n agents in Rd (n ≥ 2, d ≥ 2).
Denote pi ∈ Rd as the position of agent i ∈ {1, . . . , n},
and let p = [pT1 , . . . , p

T
n ]T ∈ Rdn. The dynamics of each

agent is a single integrator, ṗi(t) = ui(t), where ui(t) ∈
Rd is the input to be designed. The underlying graph G =
(V, E) is directed, fixed, and connected. If (i, j) ∈ E , we
say agent i can “see” agent j, which means agent i can
access the relative position of agent j. We call G(p) as a
directed (respectively, undirected) formation if G is directed
(respectively, undirected).

The aim of the control is to stabilize a target formation
specified by constant bearing constraints {g∗ij}(i,j)∈E . The
bearing constraints must be feasible such that there exist
formations satisfying these constraints. The problem to be
solved in this paper is stated as below.

Problem 1. Given feasible constant bearing constraints
{g∗ij}(i,j)∈E and an initial configuration p(0), design ui(t)
(i ∈ V) based on relative position measurements {pi(t) −
pj(t)}j∈Ni

such that Pg∗
ij
gij(t) → 0 as t → ∞ for all

(i, j) ∈ E .

Let G(p∗) be an arbitrary formation that satisfies the
bearing constraints {g∗ij}(i,j)∈E . Problem 1 actually requires
that the formation G(p(t)) converges to a final formation
that is bearing equivalent to G(p∗). This means that we
allow the bearings gij(t) to converge to either g∗ij or −g∗ij .
This is different from the problem setup in [5] where gij(t)
must converge to g∗ij . An illustrative example is shown in
Figure 1. The formation in Figure 1(a) has the bearings as
{g∗ij}(i,j)∈E , whereas the formation in Figure 1(b) has the
opposite bearings as {−g∗ij}(i,j)∈E . Problem 1 allows a final
formation to be either (a) or (b).
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Fig. 1: The two formations are bearing equivalent but with opposite bearings.

g∗
ij

−Pg∗
ij
(pi(t)− pj(t))

pi(t)

pj(t)

Fig. 2: The geometric interpretation of control law (2).

B. Bearing-Based Formation Control Law

The bearing-based formation control law considered in this
paper is

ṗi(t) = −
∑
j∈Ni

Pg∗
ij

(pi(t)− pj(t)) , i ∈ V, (2)

where Pg∗
ij

= Id−(g∗ij)(g
∗
ij)

T. Control law (2) was originally
proposed in [6] for formations with undirected interaction
topologies. As will be shown in this paper later, it can also be
applied to the directed case. Several remarks on the control
law are given below. Firstly, control law (2) is distributed
because the control of each agent only requires the relative
positions of its neighbors. Secondly, the matrix Pg∗

ij
is an

orthogonal projection matrix and hence control law (2) has a
clear geometric meaning. As shown in Figure 2, the control
term −Pg∗

ij
(pi(t) − pj(t)) is the orthogonal projection of

pj(t) − pi(t) onto the orthogonal compliment of gij , and
hence it acts to reduce the bearing error.

The matrix expression of control law (2) is

ṗ(t) = −LBp(t), (3)

where LB ∈ Rdn×dn and the ijth block submatrix of LB is
[LB]ij = 0d×d, i 6= j, (i, j) /∈ E ,
[LB]ij = −Pg∗

ij
, i 6= j, (i, j) ∈ E ,

[LB]ii =
∑

j∈Ni
Pg∗

ij
, i ∈ V.

The matrix LB can be interpreted as a matrix-weighted graph
Laplacian. It is jointly determined by the topological and
Euclidean structure of the formation. We call LB the bearing
Laplacian since it carries the information of both the bearings
and the underlying graph of the formation. The spectrum and
null space of LB fully determine the stability of the formation
dynamics (3).

IV. BEARING PERSISTENCE AND FORMATION STABILITY

In this section, we define the notion of bearing persistence
by the bearing Laplacian and analyze the impact of the
bearing persistence on the global formation stability of
system (3).

We note that three subspaces play key roles in the forma-
tion stability analysis: Null(LB), Null(RB), and span{1 ⊗
Id, p

∗}. First, Null(LB) is the space where the solution p(t)
converges when the eigenvalues of LB are in the closed right
half of the complex plane. Second, Null(RB) is the space
of all the formations that are bearing equivalent to the target
formation according to Theorem 1. The equality Null(LB) =
Null(RB) is required in order to solve Problem 1. Third,
span{1 ⊗ Id, p

∗} is the space of all the formations that
have the same shape as the target formation (but can have
different translations and scales). The equality Null(LB) =
span{1⊗ Id, p∗} is desired when the formation is required
to converge to a formation that has the same shape as the
target formation. We next explore the relationship between
the three subspaces.

We first consider the simple and special case where the
graph is undirected. An undirected graph can be viewed as
a special directed graph where (i, j) ∈ E ⇔ (j, i) ∈ E . In
the undirected case, the properties of the bearing Laplacian
can be easily obtained as below. The proof can be found in
[13]. For the sake of completeness, we also provide a proof
below.

Theorem 3. For an undirected formation G(p), the bearing
Laplacian LB is symmetric positive semi-definite and satisfies

Null(LB) = Null(RB).

Proof. Each undirected edge in the graph can be viewed
as two directed edges with opposite directions. Index the
directed edges from 1 to m. Then LB can be written as
LB = H̄Tdiag(Pgk)H̄ , which is clearly symmetric and
positive semi-definite. Moreover, due to Pgk = PT

gk
Pgk , LB

can be rewritten as

LB = H̄Tdiag(PT
gk

)︸ ︷︷ ︸
R̃T

B

diag(Pgk)H̄︸ ︷︷ ︸
R̃B

.

Note R̃B = diag(‖ek‖)RB where RB is the bearing rigidity
matrix. As a result, Null(R̃B) = Null(RB) = Null(LB).

Based on Theorem 3, the solution p(t) to system (3)
in the undirected case converges into Null(RB) and hence
the finally converged formation is bearing equivalent to the
target formation G(p∗). In order to make p(t) converge
to span{1 ⊗ Id, p

∗}, it is required the formation to be
infinitesimally bearing rigid according to Theorem 2.

We now consider the general directed case. When the
graph is directed, the bearing Laplacian is not symmetric any
more and we do not have Null(LB) = Null(RB) in general.

Theorem 4. For a directed formation G(p), the bearing
Laplacian LB satisfies

span{1⊗ Id, p} ⊆ Null(RB) ⊆ Null(LB).

Proof. The fact span{1 ⊗ Id, p} ⊆ Null(RB) is given in
Lemma 1(b).

We next prove Null(RB) ⊆ Null(LB). In order to do that,
we firstly show that for any vector p′ ∈ Rdn the equality
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RBp
′ = 0 holds if and only if

Pgij (p′i − p′j) = 0, ∀(i, j) ∈ E . (4)

As shown in Lemma 1, by indexing the directed edges
from 1 to m, the bearing rigidity matrix can be expressed
by RB = diag(Pgk/‖ek‖)H̄ . As a result, RBp

′ = 0 ⇔
diag(Pgk/‖ek‖)H̄p′ = diag(Pgk/‖ek‖)e′ = 0 ⇔ Pgke

′
k =

0,∀k ∈ {1, . . . ,m}. Therefore, RBp
′ = 0 if and only if (4)

holds. We secondly show that the equality LBp
′ = 0 holds

if and only if∑
j∈Ni

Pgij (p′i − p′j) = 0, ∀i ∈ V. (5)

Since

LBp
′ =


...∑

j∈Ni
Pgij (p′i − p′j)

...

 ,
we have LBp

′ = 0 if and only if (5) holds. Finally, since
equation (4) implies equation (5), any vector in Null(RB) is
also in Null(LB) and hence Null(RB) ⊆ Null(LB).

If Null(LB) is larger than Null(RB), the formation may
converge to a final formation in Null(LB) but not in
Null(RB), which is not bearing equivalent to the target
formation. Hence it is required that Null(RB) = Null(LB)
in order to solve Problem 1, which motivates the following
notion.

Definition 3 (Bearing Persistence). A directed formation
G(p) is bearing persistent if Null(RB) = Null(LB).

The name of persistence actually is inherited from the
notion of persistence in distance-based formation control
problems [17], [18]. Bearing persistence describes whether
or not the directed graph is persistent with the bearing
rigidity of a formation. If they are not persistent, undesired
equilibriums would appear for system (3) and the target
formation cannot be globally stabilized. In addition, it fol-
lows from Theorem 3 that undirected formations are always
bearing persistent. The next result immediately follows from
Theorem 4 and Definition 3.

Theorem 5. For a directed formation G(p), the equality

Null(LB) = span{1⊗ Id, p}

holds if and only if the formation is both infinitesimally
bearing rigid and bearing persistent.

Proof. According to Theorem 4, the equality Null(LB) =
span{1⊗ Id, p} holds if and only if Null(LB) = Null(RB)
and Null(RB) = span{1 ⊗ Id, p}, where the former one
holds if and only if the formation is bearing persistent by
definition and the latter one holds if and only if the formation
is infinitesimally bearing rigid by Theorem 2.

Theorem 5 is important in the sense that it gives the nec-
essary and sufficient condition for the equality Null(LB) =
span{1⊗Id, p} in the directed case. This equality is desired

1 2

34

(a)

1 2

34

(b)
Fig. 3: Examples of bearing persistent formations.

1 2

34

(a)

1

234

(b)
Fig. 4: Examples of bearing non-persistent formations

when the formation is required to converge to a formation
that has the same shape as the target formation.

A. Illustrative Examples

Examples are shown in Figures 3 and 4 to illustrate the
notion of bearing persistence. We next specifically examine
the two formations in Figure 3(a) and Figure 4(a). For the
two formations, the agents have exactly the same positions
as p1 = [−1, 1]T, p2 = [1, 1]T, p3 = [1,−1]T, and p4 =
[−1,−1]T. The underlying graphs of the two formations,
however, are different; the edges between agents 1 and 2
have the opposite directions. First of all, both of the two
formations are infinitesimally bearing rigid because it can be
verified that for both of the formations rank(RB) = 2n− 3.
The null space of RB for the two formations are the same
and given by

Null(RB) = span



1 0 −1
0 1 1
1 0 1
0 1 1
1 0 1
0 1 −1
1 0 −1
0 1 −1


= span{1⊗ I2, p}.

For the formation in Figure 3(a), it can be verified that
Null(LB) = Null(RB). As a result, this formation is bearing
persistent. However, for the formation in Figure 4(a), the null
space of LB is

Null(LB) = span



1 0 −1 0
0 1 1 2
1 0 1 −1
0 1 1 1
1 0 1 −2
0 1 −1 0
1 0 −1 0
0 1 −1 0


.
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As can be seen, in addition to the basis vectors in Null(RB),
an extra vector (the fourth) is contained in Null(LB). As a
result, this formation is not bearing persistent. We will later
show by simulation that this non-persistent formation cannot
be globally stabilized.

It must be noted that the bearing persistence of a formation
is independent to the bearing rigidity of the formation. For
example, the directed formation as shown in Figure 3(a) is
both bearing persistent and infinitesimally bearing rigid. The
one in Figure 3(b) is bearing persistent but not bearing rigid.
The one in Figure 4(a) is infinitesimally bearing rigid but
not bearing persistent. The one in Figure 4(b) is neither
infinitesimally bearing rigid nor bearing persistent.

B. A Sufficient Condition for Bearing Persistence

An important problem that follows the definition of bear-
ing persistence is what kind of formations are bearing
persistent. We next give a sufficient condition for bearing
persistence. All the persistent formations given in Figure 3
can be examined by this sufficient condition. For a directed
edge (i, j) ∈ E , since this edge leaves agent i and enters
agent j, we call it an outgoing edge for agent i and an
incoming edge for agent j. In the formation dynamics (2),
each agent is responsible for achieving all the bearings of
its outgoing edges. It is intuitively reasonable that when
the number of the outgoing edges of an agent is large, the
chance that the agent is not able to archive all the desired
edge bearings is high. This intuition is consistent with the
following sufficient condition for bearing persistence in R2.

Proposition 1. For a directed formation G(p) in R2, if each
agent has at most two non-collinear outgoing edges, then the
formation is bearing persistent.

Proof. We prove that in this case any vector x ∈ R2n in
Null(LB) is also in Null(RB). Note LBx = 0 if and only if
equation (5) holds. Suppose agent i ∈ V has two outgoing
edges (i.e., two neighbors). Let the two neighbors be agents
k and `. Then, equation (5) implies

Pgik(xi − xk) + Pgi`(xi − x`) = 0. (6)

Note the orthogonal projection matrices Pgik and Pgi` project
vectors onto the orthogonal vectors of gik and gi`, respec-
tively. Since gik and gi` are not collinear, equation (6) holds
if and only if Pgik(xi − xk) = 0 and Pgi`(xi − x`) = 0.
The case where agent i has merely one outgoing edge (i.e.,
one neighbor) is trivial to analyze. In summary, if each agent
has at most two non-collinear outgoing edges, equation (5)
implies (4) and consequently Null(LB) = Null(RB).

The sufficient condition in Proposition 1 provides an
intuitive way to check the bearing persistence of a formation
in R2. All the formations in Figure 3 can be concluded as
bearing persistent by Proposition 1. It should be noted that
the outgoing edges in Proposition 1 must be non-collinear;
otherwise, the formation may be not bearing persistent. For
example, although in the formation given in Figure 4(a) each
agent has at most two outgoing edges, the formation is still

non-persistent because the two outgoing edges of agent 3 are
collinear.

C. Discussion of the Formation Stability
Up to now, we have explored the notion of bearing

persistence and showed that the global stability cannot be
guaranteed for formations that are not bearing persistent. An
important problem that has not been discussed is whether all
the eigenvalues of the bearing Laplacian are in the closed
right half of the complex plane. For undirected formations,
the answer is positive as shown in Theorem 3. For directed
formations, the problem is nontrivial to solve and will be
the subject of future work. But according to a large amount
of simulations, it is conjectured that the eigenvalues of the
bearing Laplacian of a directed formation have nonnegative
real parts. If the conjecture is correct, then the formation
dynamics (3) is marginally stable. Based on the linear
system theory, the solution p(t) converges to the projection
of p(0) onto Null(LB). If the target formation is bearing
persistent, the final formation is in Null(RB) and hence
Problem 1 can be solved. Furthermore, if the target formation
is both bearing persistent and infinitesimally bearing rigid
(i.e., Null(LB) = span{1n ⊗ Id}), the final formation has
exactly the same shape (but maybe different translation and
scale) as the desired target formation.

V. SIMULATION EXAMPLES

We firstly consider the bearing persistent target formation
given in Figure 3(a). The simulation results are given in Fig-
ure 5. As can be seen, the control law (2) can steer the forma-
tion to a final formation that is bearing equivalent to the target
formation. We secondly consider the target formation given
in Figure 4(a) that is not bearing persistent. The simulation
results are given in Figure 6. As can be seen, the control law
(2) steers the formation to an undesired formation. That is
because agent 2 is not able to find a position to satisfy all the
three bearing constraints g∗21, g∗24, and g∗23. The control input
‖ṗ(t)‖ = ‖LBp(t)‖ converges to zero, which means p(t)
converges into Null(LB), but as shown in Figure 6(d) the
bearing error

∑
(i,j)∈E ‖Pg∗

ij
(pi(t)−pj(t))‖ can not converge

to zero, which means p(t) does not converge to Null(RB).
As a result, p(t) finally converges into Null(LB)\Null(RB).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied bearing-based formation sta-
bilization with directed interaction topologies. We studied
a linear distributed control law that can stabilize bearing-
constrained target formations in arbitrary dimensions. It was
shown that an important notion, bearing persistence, emerges
and critically affects the formation stability in the directed
case. When a target formation is not bearing persistent,
undesired equilibriums will appear and the global formation
stability cannot be guaranteed. A sufficient condition that
provides an intuitive way to examine the bearing persistence
of two-dimensional formations was also proposed.

The work presented in this paper is a first step towards
solving the general problem of bearing-based formation con-
trol. Several important problems are not completely solved
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Fig. 5: The simulation result for the bearing persistent target formation as shown in Figure 3(a).
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Fig. 6: The simulation result for the bearing non-persistent target formation as shown in Figure 4(a).

in this paper and should be studied in the future. First,
the spectrum of the bearing Laplacian with directed graphs
is not solved by this paper. Second, although a sufficient
condition for the bearing persistence of formations in the
two-dimensional space was proposed, the necessary and
sufficient conditions have not been obtained. Third, the left
null space of the bearing Laplacian is also important for
determining the final converged value of the formation and
should be studied. Finally, this paper only considered the
leaderless scheme. In order to control the centroid and scale
as well as the maneuver of the formation, the leader-follower
scheme should be studied in the future.
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