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Forced Symmetric Formation Control
Daniel Zelazo , Senior Member, IEEE, Shin-ichi Tanigawa , and Bernd Schulze

Abstract—This work considers the distance constrained
formation control problem with an additional constraint
requiring that the formation exhibits a specified spatial
symmetry. We employ recent results from the theory of
symmetry-forced rigidity to construct an appropriate poten-
tial function that leads to a gradient dynamical system driv-
ing the agents to the desired formation. We show that only
(1 + 1/|Γ|)n edges are sufficient to implement the control
strategy when there are n agents and the underlying sym-
metry group is Γ. This number is considerably smaller than
what is typically required from classic rigidity-theory-based
strategies (2n − 3 edges). We also provide an augmented
control strategy that ensures that the agents can converge
to a formation with respect to an arbitrary centroid. Numer-
ous numerical examples are provided to illustrate the main
results.

Index Terms—Rigidity theory, symmetry, formation con-
trol.

I. INTRODUCTION

MANY applications for cooperative multiagent networks
require the agents to arrange themselves into some spa-

tial pattern. This can include alignment of orientations and
velocities for flocking behaviors [1], or specific formations,
spacecraft constellations for sensing [2] or vehicle platoons for
autonomous driving [3]. One of the main challenges for the
implementation of these applications is to resolve the tradeoff
between sparsity of information exchange with guarantees on the
system performance. In the study of formation control problems,
this tradeoff is well understood through the lens of rigidity
theory.

Rigidity theory studies the solution of a set of geometric
constraints on a discrete configuration of points in an Euclidean
space. These constraints can include distance or bearing con-
straints between pairs of points. Of interest in rigidity theory is to
determine whether the set of polynomial equations representing
these constraints 1) has a solution (independence), 2) has locally
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Fig. 1. Framework in (a) is infinitesimally rigid, whereas the framework
with dihedral symmetry in (b) is flexible, as shown in (c).

isolated solutions (rigidity), or 3) has exactly one solution in the
given space up to isometric motions (global rigidity) [4], [13].

In this article, we will focus on configurations that are con-
strained by pairwise distances. Such systems are commonly
known as (bar-joint) frameworks. Since checking a framework
for rigidity is in general very difficult (as it requires solving a
system of quadratic equations), a common approach is to check
for the linearized (and stronger) notion of rigidity known as
“infinitesimal rigidity” (see Section II-A).

The seminal work from [5] provided the first formal result
showing that (minimal) infinitesimal rigidity (MIR) of the inter-
action network in a team of integrator agents is required to ensure
that the gradient controller (locally) converges to the correct
formation shape. In the Euclidean space R2, MIR translates to
having 2n− 3 constraints, where n is the number of agents.
Since the work in [5], there has been an explosion of research
focusing on the formation control problem from a rigidity theory
perspective; see the following for an overview [6], [7], [8].
Within the controls community, the main concern of these works,
however, focuses on understanding the resulting dynamics of
the control strategies, with most efforts on the stability and
convergence properties of these systems [9], [10], [11]. In these
works, the assumption of infinitesimal rigidity is taken as a kind
of architectural requirement for solving the formation control
problem. That is, there has not been a concerted effort to exploit
results from rigidity theory to relax the infinitesimal rigidity
assumption. In this article, we will pursue this using recent
advances in the rigidity analysis of symmetric frameworks.

It is well understood in the rigidity community that there
are many special configurations that can lead to unexpected
flexibility (or rigidity). Symmetry often leads to such special
configurations. An example in the plane is shown in Fig. 1.
The graph is infinitesimally rigid (in fact, MIR) for almost all
realizations as a framework in the plane. See the framework
in Fig. 1(a), for example. However, if we place the vertices
in the positions shown in Fig. 1(b), then the framework has
three reflection symmetries (each of the reflections in the dashed
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mirror lines maps the framework onto itself) and it is continu-
ously flexible, as indicated in Fig. 1(c).

Note that the motion of the framework in Fig. 1(b) destroys
all the reflection symmetries. So while the framework is flexible,
it is still “forced-symmetric rigid,” in the sense that it does not
have a nontrivial motion that preserves the original symmetry of
the framework. We will make this precise in Section III-B.

In our previous work [12], we proposed a “symmetry-
attaining” formation controller by augmenting the classic
gradient-based formation control with another control term that
forces the agents into a symmetric position. Under some mild as-
sumptions of the underlying graph, we showed that this approach
does not require more communication or sensing than the normal
formation controller and can guarantee local convergence to the
desired symmetry-constrained formation. Moreover, by means
of simulation, we demonstrated that the problem can be solved
even for flexible frameworks requiring less than 2n− 3 edges as
is typically assumed for the formation control problem in MIR
frameworks.

This initial work, however, did not leverage the full potential
of recent results characterizing symmetry-forced rigidity. In this
article, we extend the results of [12] in the following ways. We
develop a concrete mathematical foundation for solving the mul-
tiagent formation control problem under symmetry constraints.
The theory provides the symmetric counterpart to the ordinary
rigidity-based formation control using the modern language of
graph rigidity, and in particular that of forced-symmetric rigidity
theory. Notably, we show that (1 + 1/|Γ|)n edges are sufficient
when the underlying symmetry group is Γ. This is significantly
smaller than the bound for infinitesimal rigidity. This improved
bound has direct implications for practical implementation as it
leads to a reduction of energy consumption and communication
bandwidth. Moreover, this approach can be used to augment
any multiagent coordination problem with explicit symmetry
constraints, providing a new conceptual solution to these prob-
lems. In this direction, we first present a detailed overview of
results from the rigidity theory of symmetric frameworks. The
central objects in this study are the quotient graphs, providing
a graph-theoretic characterization of the vertex and edge orbits
induced by a given symmetry group, and the orbit rigidity matrix,
which can be thought of as the rigidity matrix associated with
the quotient graph of a framework. The orbit rigidity matrix
is then used to define an orbit rigidity formation potential for
solving the forced-symmetric formation control problem. We
then provide a stability and convergence analysis of this control
law. Finally, we propose a consensus-augmented version of the
forced-symmetric formation control problem that ensures the
formation converges to a point other than a globally defined
origin. Numerous examples are provided throughout to illustrate
the main concepts and results.

The rest of this article is organized as follows. Section II
presents an overview of geometric rigidity theory and formation
control. Section III provides a detailed background on notions
of symmetry for graphs and frameworks. Section IV presents
the main results of this article with different formation control
strategies that exploit symmetry properties of the framework.
Finally, Section V concludes this article.

II. PRELIMINARIES FROM GEOMETRIC RIGIDITY AND

FORMATION CONTROL

This section provides an overview of basic concepts from
geometric rigidity theory and the formation control literature.

A. Rigidity Theory

A framework in Rd is defined to be a pair (G, p) consisting
of a finite simple graph G = (V, E) and a map p : V → Rd. It
is natural to also consider p as a point in Rd|V|, and we refer
to p as a configuration of |V| points in Rd. Frameworks are
the fundamental objects of study in geometric rigidity theory,
where they are considered as mathematical models of physical
structures consisting fixed-length bars (corresponding to the
edges of G) that are connected by joints (corresponding to the
vertices of G) that allow rotation in any direction. A framework
(G, p) is rigid if the only edge-length-preserving continuous
motions of the vertices arise from isometries of Rd, and flexible,
otherwise. The rigidity and flexibility analysis of frameworks is
a well-developed theory with a rich history and many practical
applications (see, e.g., [13, ch. 61], [14], and [15]). In particular,
it has recently found important applications in the formation
control of multirobot systems [6], [7].

Since for d ≥ 2, it is NP-hard to determine if a given frame-
work is rigid, a common approach to study the rigidity of frame-
works is to linearize the problem by differentiating the length
constraints on the edges. This leads to the notion of infinitesimal
(or equivalently, static) rigidity. An infinitesimal motion of a
framework (G, p) in Rd is an assignment of velocity vectors,
one to each vertex, u : V → Rd, such that 〈pi − pj , ui − uj〉 =
0 for all ij ∈ E , where pi = p(i) and ui = u(i) for each i ∈
V . An infinitesimal motion u of (G, p) is trivial if there exists a
skew-symmetric matrix S and a vector c such that ui = Spi + c
for all i ∈ V , and (G, p) is infinitesimally rigid if every in-
finitesimal motion of (G, p) is trivial, and infinitesimally flexible,
otherwise.

The |E| × d|V| matrix corresponding to the linear system
above is called the rigidity matrix of (G, p), denoted asR(G, p).
The row of R(G, p) corresponding to the edge ij ∈ E is of the
form ( 0 · · · 0 (pi − pj)

T 0 · · · 0 (pj − pi)
T 0 · · · 0 ).

We also employ the useful algebraic representation of the
rigidity matrix

R(G, p) = diag
{
(pi − pj)

T
}
ij∈E

(
ET ⊗ Id

)
(1)

where E is the |V| × |E| incidence matrix (using an arbitary
orientation of the edges) with Eij = 1 if the edge ej leaves
vertex i, Eij = −1 if the edge ej enters the vertex i, and
Eij = 0, otherwise. So the kernel of R(G, p) is the space of
all infinitesimal motions of (G, p), and it is well known that
(G, p) is infinitesimally rigid if and only if the rank of R(G, p)
is d|V| − (

d+1
2

)
, provided that the points pi affinely span all of

Rd [15].
A self-stress of a framework (G, p) is a function ω : E → R

so that the following equation is satisfied at every vertex i:∑
{j:ij∈E}

ωij(pi − pj) = 0.
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Equivalently, ω ∈ R|E| is a self-stress if and only if ω is an
element of the cokernel of R(G, p), i.e., ωTR(G, p) = 0. If
(G, p) has no nonzero self-stress, then it is called independent.
Moreover, an infinitesimally rigid and independent framework
is called isostatic. Isostatic frameworks are also called mini-
mally infinitesimally rigid, as the removal of any edge yields an
infinitesimally flexible framework.

While an infinitesimally rigid framework is always rigid,
the converse does not hold in general. Asimov and Roth [4],
however, showed that for “generic” configurations p (i.e., which
form an open dense subset of Rd|V|), infinitesimal rigidity is
equivalent to rigidity. The graphs that yield rigid frameworks
for generic configurations in the plane have been characterized
by Pollaczek–Geiringer [16] and Laman [17], and the condition
can be checked in polynomial time. It remains a key open
problem to find a characterization of generically rigid graphs
in higher dimensions that can be checked in polynomial time
deterministically.

B. Formation Control

We now review the well-studied distance-constrained forma-
tion control problem [7]. Consider a network of n = |V| agents
described by integrator dynamics

ṗi(t) = ui(t) (2)

where pi(t) ∈ Rd is the position of agent i, and ui(t) ∈ Rd

is the control. As in the development of rigidity theory in
Section II-A, the configuration of the network is the stack of

the agent positions, p(t) =
[
pT1 (t) · · · pTn (t)

]T
(similarly

defined for u(t)). The agents are tasked with attaining a spatial
formation using only measurements and/or communication with
neighboring agents, as defined by a graph G = (V, E). The
formation is specified by a set of desired interagent distances
dij for each edge ij ∈ E , and we denote d as the stack of all
desired distances.

It is well-known that a gradient-based control strategy can
(locally) solve the formation control problem. In this direction,
we define the formation potential function

Ff (p(t)) =
1

4

∑
ij∈E

(‖pi(t)− pj(t)‖2 − d2
ij

)2
. (3)

Then, the gradient controller u(t) = −∇Ff (p(t)) solves the
formation control problem. That is, the closed-loop system

ṗ(t) = −R(G, p(t))T (R(G, p(t))p(t)− d2
)

(4)

satisfies lim
t→∞‖pi(t)− pj(t)‖ = dij for all ij ∈ E . Here,

R(G, p(t)) is the rigidity matrix defined in Section II-A. The
interested reader may refer to [6] and [9] for more details.

III. SYMMETRY IN GRAPHS AND FRAMEWORKS

The main focus of this work is to exploit notions from the
rigidity theory of symmetric frameworks to solve the formation
control problem. In this section, we provide an overview of
symmetric frameworks and their (infinitesimal) rigidity.

A. Symmetry in Graphs

Symmetry in objects can be described mathematically via the
fundamental algebraic notion of a group (see, e.g., [18]).

Definition 1: A group is defined to be a set Γ together
with an operation ◦ such that for any two elements a, b ∈ Γ,
the composition a ◦ b is also in Γ. The operation ◦ satisfies the
associativity law. Moreover, each group has a special element
id, called the identity element, such that for any element a ∈ Γ,
a ◦ id = id ◦ a = a. Each element a ofΓ also has an inverse a−1

in Γ such that a ◦ a−1 = a−1 ◦ a = id. The number of elements
in a group is called the order of the group. A subset B of Γ that
also forms a group under ◦ is called a subgroup of Γ.

The combinatorial symmetries of a finite simple graph G =
(V, E) are described by its group of automorphisms. An auto-
morphism of G can be loosely understood as a permutation of
V that maps adjacent vertices to adjacent vertices and nonad-
jacent vertices to nonadjacent vertices, and hence preserves all
structural properties of G.

Definition 2: An automorphism of the graph G = (V, E) is a
permutation ψ : V → V of its vertex set such that ψ(v)ψ(u) ∈
E ⇔ vu ∈ E .

It is clear, then, that the identity permutation, denoted id, is an
automorphism of any graph, and for an automorphism ψ, ψ−1 is
also an automorphism. Therefore, the set of all automorphisms
of G forms a group under composition of maps. This group is
called the automorphism group of G and is denoted by Aut(G).

A common way to represent a permutation for an automor-
phism is by a two-row array. For a graphG with |V| = n vertices,
one can write the automorphism ψ as

ψ =

(
1 2 · · · n

ψ(1) ψ(2) · · · ψ(n)

)
.

Equivalently, one can express every permutation more com-
pactly as a composition of disjoint cycles of the permutation. A
cycle is a successive action of the permutation that sends a vertex
back to itself, i.e., i→ ψ(i) → ψ(ψ(i)) → · · · → ψk(i) = i,
whereψk = ψ ◦ · · · ◦ ψ︸ ︷︷ ︸

k times

. Such a cycle is compactly written using

the cycle notation, denoted by (i ψ(i) · · ·ψk−1(i)). The integer
k is the length of the cycle.

Definition 3: A graph G is Γ-symmetric for any subgroup
Γ ⊆ Aut(G). The symmetry is free if γ(i) �= i for all i ∈ V and
nonidentity γ ∈ Γ.

A key structural property of a Γ-symmetric graph G is its sets
of vertex and edge orbits under Γ. Loosely speaking, the orbit of
a vertex i (or edge e) of G under Γ is the set of vertices (edges,
respectively) of G that i (e, respectively) can be mapped to by
elements in Γ.

Definition 4: For aΓ-symmetric graphG = (V, E) and vertex
i ∈ V , the set Γi = {γ(i) | γ ∈ Γ} is called the vertex orbit of i.
Similarly, for an edge e = ij ∈ E , the set Γe = {γ(i)γ(j) | γ ∈
Γ} is termed the edge orbit of e.

The size of the vertex orbits depends, of course, on the group
Γ. Since all nodes in a given orbit are somehow equivalent under
a group action, we often consider representative vertices from
each vertex orbit. We denote by V0 the set of representative
vertices for each orbit, such that |V0| are the number of vertex

Authorized licensed use limited to: Daniel Zelazo. Downloaded on June 22,2025 at 03:29:35 UTC from IEEE Xplore.  Restrictions apply. 



1418 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 12, NO. 2, JUNE 2025

Fig. 2. Cycle graph C4 has eight automorphisms in Aut(G).

orbits, and i ∈ V0 means that vertex i is only in one vertex orbit.
Similarly, we denote by E0 the set of representative edges from
each edge orbit.

For a Γ-symmetric graph G and a vertex orbit Γi of G under
Γ, it follows immediately from the definition of Γi that for every
vertex j inΓi, there is aγj ∈ Γ such thatγj(j) = i. Similarly, for
any two vertices u, v ∈ Γi, there is an automorphism γuv ∈ Γ
such that γuv(u) = v. With this notation, we then have γj = γji
when i is the representative vertex of Γi.

Example 1: Fig. 2 shows the cycle graph on 4 nodes,C4. We
will identify all the automorphisms of Aut(C4). First, consider
a clockwise rotation by 90◦ of C4 as drawn in the figure. This
gives the automorphism

ψ1 =

(
1 2 3 4
2 4 1 3

)
.

The cycle notation isψ1 = (1 2 4 3). Withψ1, we also haveψ2 =
ψ2
1 = ψ1 ◦ ψ1, ψ3 = ψ3

1 , and ψ4
1 = id in Aut(G), where ψ2 =

(1 4)(2 3) and ψ3 = (1 3 4 2) may be interpreted geometrically
as rotations by 180◦ and 270◦. Additional permutations can be
found by considering reflections.

Fig. 2 shows four reflection symmetries. Consider first the
reflection about the vertical red line, giving the permutation (in
cycle notation) ψ4 = (1 2)(3 4). Similarly, the horizontal reflec-
tion (blue line) yields ψ5 = (1 3)(2 4), the diagonal reflection
(green line) gives ψ6 = (1)(2, 3)(4), and the brown line re-
flection gives ψ7 = (1 4)(2)(3). Thus, we have that Aut(C4) =
{id, ψ1, . . . , ψ7} has eight automorphisms. As an abstract group,
it is the dihedral group D8 of order 8 [18]. Note that any
vertex can be mapped to any other under the automorphisms
in Aut(C4), and hence, C4 has only one vertex orbit (and only
one edge orbit) under Aut(C4). If, however, we considered C4

as a Γ-symmetric graph, where Γ = {id, ψ4} ⊂ Aut(C4), then
C4 has two vertex orbits, namely, {1, 2} and {3, 4}, and three
edge orbits, namely, {12}, {34}, and {13, 24}.

B. Symmetry in Frameworks

Having defined notions of symmetries for graphs, we now
consider symmetry of frameworks [13, ch. 62].

Definition 5: Let G be a Γ-symmetric graph, and let Γ be
represented as a point group, i.e., a subgroup of the orthogonal
group O(Rd), via a homomorphism τ : Γ → O(Rd). In other
words, τ assigns an orthogonal matrix (describing an isometry
of Rd such as a rotation or reflection) to each element ofΓ. Then,
a framework (G, p) in Rd is called τ(Γ)-symmetric if

τ(γ)(pi) = pγ(i) for all γ ∈ Γ and all i ∈ V. (5)

Given a τ(Γ)-symmetric framework (G, p) and a vertex orbit
Γi, for every j ∈ Γi, there is a γj ∈ Γ such that τ(γj)pj = pi.
More generally, for any two verticesu, v ∈ Γi, there existsγuv ∈
Γ such that τ(γuv)pu = pv .

We use the standard Schoenflies notation for point groups
in this article [19], [20]. The only possible point groups in
dimension 2 are the reflection groupCs (consisting of the identity
and a single reflection about an axis σ), the rotational groups Cn
of order n, where n ≥ 1 (generated by a rotation cn about the
origin in counter-clockwise direction by an angle of 2π/n), and
the dihedral groups Cnv of order 2n, where n ≥ 2 (generated
by a reflection σ and a rotation cn). If we think of the graph
drawing in Fig. 2 as a framework in the plane, for example, then
this framework is C4v-symmetric.

If the framework (G, p) is τ(Γ)-symmetric, then the configu-
ration p is in a special geometric position that may no longer be
“generic.” Thus, symmetry can lead to unexpected flexibility (as
well as unexpected rigidity), as in Fig. 1. Since symmetry is very
common in both natural and man-made structures, the rigidity
and flexibility analysis of symmetric frameworks has grown into
a major research area over the last two decades; see [13, ch. 62]
for a summary of this work.

A fundamental result—based on group representation
theory—is that for a τ(Γ)-symmetric framework (G, p), there
are suitable symmetry-adapted bases of R|E| and R|dV| that
transform the rigidity matrix of (G, p) into a block-decomposed
form [21], [22], [13, ch. 62]. This block-decomposition of
R(G, p) can be used to break up the infinitesimal rigidity analysis
of (G, p) into a number of independent subproblems, one for each
block matrix. A number of results concerning the infinitesimal
rigidity of symmetric frameworks have been obtained via this
approach (see, e.g., [13] and [23]).

Another major research area is to study the rigidity of symmet-
ric frameworks under the additional constraint that any motion
must preserve the original symmetry of the framework. If all
symmetry-preserving motions of a τ(Γ)-symmetric framework
(G, p) are trivial, then (G, p) is called forced τ(Γ)-symmetric
rigid. This is a weaker notion than rigidity, because a forced
τ(Γ)-symmetric framework may still have nontrivial motions
that destroy the original symmetry of the framework. By differ-
entiating a symmetry-preserving continuous motion of (G, p),
we obtain a τ(Γ)-symmetric infinitesimal motion, that is, an
infinitesimal motion whose velocity assignments to the points
of (G, p) exhibit exactly the same symmetry as the configuration
p.

Definition 6: An infinitesimal motion u of a τ(Γ)-symmetric
framework (G, p) is τ(Γ)-symmetric if

τ(γ)(ui) = uγ(i) for all γ ∈ Γ and all i ∈ V. (6)

We say that (G, p) is τ(Γ)-symmetric infinitesimally rigid if
every τ(Γ)-symmetric infinitesimal motion is trivial.

A self-stress ω of (G, p) is τ(Γ)-symmetric if

ωγ(e) = ωe for all γ ∈ Γ and all e ∈ E . (7)

The framework (G, p) is τ(Γ)-symmetric independent if it has
no non-zero τ(Γ)-symmetric self-stress. Further, (G, p) is τ(Γ)-
symmetric isostatic if it is τ(Γ)-symmetric infinitesimally rigid
and τ(Γ)-symmetric independent.
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Fig. 3. Symmetric frameworks with C4 as underlying graph. (a) C4v-
symmetric (and hence τ(Γ)-symmetric for any subgroup τ(Γ) of C4v).
(b) and (c) Cs-symmetric (with respect to the reflection σ) and C2-
symmetric. The framework in (c) has a nontrivial C2-symmetric infinitesi-
mal motion, which extends to a continuous symmetry-preserving motion.

Note that (G, p) is τ(Γ)-symmetric isostatic if it is minimally
τ(Γ)-symmetric infinitesimally rigid, in the sense that the re-
moval of any edge orbit Γe from G yields a τ(Γ)-symmetric
infinitesimally flexible framework [13]. See Fig. 3(a) and (b)
for some examples of minimally τ(Γ)-symmetric infinitesimally
rigid frameworks in the plane.

Example 2: Consider the frameworks in Fig. 3. They are all
infinitesimally (in fact, continuously) flexible. The framework
in Fig. 3(a) is (minimally) C4-symmetric infinitesimally rigid,
where C4 is the rotational point group of order 4, as the only
C4-symmetric infinitesimal motions are trivial rotations. [Note
that C4 symmetry implies the larger C4v symmetry in this ex-
ample and the framework is also (minimally) C4v-symmetric
infinitesimally rigid.]

The frameworks in Fig. 3(b) and (c) are Cs- and C2-symmetric,
respectively. The one in Fig. 3(b) is (minimally) Cs-symmetric
infinitesimally rigid, whereas the one in Fig. 3(c) is C2-
symmetric infinitesimally flexible. In fact, it has a continuous
motion that preserves the half-turn symmetry.

A key motivation for studying τ(Γ)-symmetric infinitesimal
rigidity is that a τ(Γ)-symmetric infinitesimal motion extends
to a continuous, symmetry-preserving motion of the framework,
provided that the configuration is sufficiently generic with the
given symmetry constraints [13, ch. 62]. In this article, we will
exploit the notion of τ(Γ)-symmetric infinitesimal rigidity to
reduce the communication/sensing requirements in multiagent
formations.

One of the block matrices of the block-decomposed rigidity
matrix (the block matrix R0(G, p) corresponding to the trivial
irreducible representation of the group τ(Γ), which assigns 1 to
each group element) has the property that its kernel is isomorphic
to the space of τ(Γ)-symmetric infinitesimal motions and its
cokernel is isomorphic to the space of τ(Γ)-symmetric self-
stresses. Thus, in the study of forced-symmetric (infinitesimal)
rigidity, this block matrix plays the same role as the rigidity
matrix in the standard nonsymmetric theory. In the next section,
we will introduce the orbit rigidity matrix, which is equivalent
to the block matrix R0(G, p), and whose entries have a simple
form similar to the entries of the standard rigidity matrix.

C. Orbit Rigidity Matrix

Given a τ(Γ)-symmetric framework (G, p), it requires a
nontrivial computation to obtain the block matrices of the

Fig. 4. Each gain graph (a), (b), and (c) corresponds to the frameworks
(a), (b), and (c) in Fig. 3.

block-decomposed rigidity matrix of (G, p). However, it was
shown in [24] that the block matrix R0(G, p) describing the
τ(Γ)-symmetric infinitesimal rigidity of (G, p) is equivalent to
another matrix, called the orbit rigidity matrix, which can be
written down in a simple and direct way, without using any
group representation theory.

For simplicity, we will assume from now on that the symmetry
is always free (recall Definition 3). While all of our results are
expected to extend to the nonfree case, this assumption simplifies
the definition of the orbit rigidity matrix, and hence the entire
forced-symmetric formation control theory, significantly. So we
will leave the nonfree case for future work.

Assumption 1: The τ(Γ)-symmetric framework (G, p) is
free.

To describe the orbit rigidity matrix, we first need to introduce
the notion of a quotient gain graph of a Γ-symmetric graph,
which in turn relies on the notions of vertex and edge orbits
introduced in Definition 4.

Definition 7: LetG beΓ-symmetric graph with representative
vertex setV0 and representative edge set E0. The quotientΓ-gain
graphG0 ofG is the directed multigraph with vertex setV0 whose
edge set E0 has the directed edge (i, j)with group label (or gain)
γ ∈ Γ, denoted by ((i, j); γ), for each edge orbit representative
iγ(j).

Note that different choices of vertex representatives give rise
to different, but equivalent quotientΓ-gain graphs. Moreover, for
a fixed choice of V0, the edge ((i, j); γ) in E0, where i �= j, is
equivalent to the edge ((j, i); γ−1), so the orientation of nonloop
edges in E0 may be reversed by changing the gain to its inverse.

Example 3: The framework (C4, p) in Fig. 3(a) has C4v
symmetry, but we may consider it as a framework with the
smaller rotational C4 symmetry (where C4 is generated by the
90◦ rotation about the origin). Let Γ = {id, ψ1, ψ

2
1 , ψ

3
1} be the

corresponding subgroup of Aut(C4), where ψ1 is the automor-
phism defined in Example 1. For simplicity, we will identify the
groups Aut(C4) and C4 in the following discussion. Note that
the symmetry C4 is free and there is only one vertex orbit under
C4. We may pick vertex 1 as its representative. Then, there is
only one edge orbit, represented by edge 13, for example, which
in the quotient C4-gain graph of C4 corresponds to the loop at 1
with gain ψ1. The quotient C4-gain graph of C4 is shown in
Fig. 4(a).

For the Cs-symmetric framework in Fig. 3(b), the correspond-
ing subgroupΓ of Aut(C4) is the group consisting of the identity
and ψ4 = (12)(34), as defined in Example 1. Again we identify
Γ and Cs. Since ψ4 has two cycles (each of length 2), there are
two vertex orbits. We may pick the representatives 1 and 3 for
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these vertex orbits. Then, there are three edge orbits: one of size 2
represented by edge 13, and two of size 1, consisting of edges
12 and 34, respectively. This leads to the quotient Cs-gain graph
of C4 shown in Fig. 4(b). Note that the directed edge (3,1) has
the identity gain since it joins two vertex orbit representatives,
whereas the loops have the nontrivial gain ψ4.

Finally, the corresponding subgroup Γ of Aut(C4) for the
C2-symmetric framework in Fig. 3(c) consists of the identity
and the automorphism ψ2 = (14)(23). In this case, there are
again two vertex orbits, which we may represent by the vertices
1 and 2, and two edge orbits, represented by 12 and 13. The
corresponding quotientC2-gain graph ofC4 is shown in Fig. 4(c).
It has two parallel edges from 1 to 2, one with identity gain and
one with gain ψ2.

We are now ready to define the orbit rigidity matrix, which
describes the τ(Γ)-symmetric infinitesimal rigidity properties
of a τ(Γ)-symmetric framework. In particular, as we will see
in Theorem 1, its kernel and cokernel are isomorphic to the
space of τ(Γ)-symmetric infinitesimal motions and self-stresses
of (G, p), respectively.

Definition 8: Let G be a Γ-symmetric graph, where the
symmetry is free, and let (G, p) be a τ(Γ)-symmetric framework.
Further, let G0 = (V0, E0) be the quotient Γ-gain graph of G
and denote p̄ = p|V0

, the restriction of the configuration to only
the representative vertices in V0. Then, the orbit rigidity matrix
O(G0, p̄) of (G, p) is the |E0| × d|V0| matrix defined as follows.
The row corresponding to an edge ((i, j); γ), where i �= j, has
the form(
0 · · · 0 (p̄i − τ(γ)p̄j)

T 0 · · · 0 (p̄j−τ(γ)−1p̄i)
T 0 · · · 0 )

with the d-dimensional entries (p̄i − τ(γ)p̄j)
T and (p̄j −

τ(γ)−1p̄i)
T being in the columns corresponding to vertices i

and j, respectively. The row corresponding to a loop ((i, i); γ)
has the following form:(

0 · · · 0 (2p̄i − τ(γ)p̄i − τ(γ)−1p̄i)
T 0 · · · 0 )

with the d-dimensional entry (2p̄i − τ(γ)p̄i − τ(γ)−1p̄i)
T be-

ing in the columns corresponding to vertex i.
Example 4: The framework in Fig. 3(a) has the quotient

C4-gain graph shown in Fig. 4(a). The matrix representing the

rotation c4 by 90◦ is given by
[
0 −1
1 0

]
, and its inverse is

[
0 1
−1 0

]
.

So for p1 =
[
x1 y1

]T
, the orbit rigidity matrix is the 1× 2

matrix

O(G, p̄) =
[
2x1 2y1

]
.

Note that the kernel of this matrix is the 1-D space spanned by
the rotational vector [−y1 x1]T at p1, which corresponds to the
C4-symmetric infinitesimal rotation of the framework via (6).
So this confirms that the framework is C4-symmetric infinitesi-
mally rigid. Since the cokernel is trivial, the framework has no
nontrivial C4-symmetric self-stress, and hence, the framework
is C4-symmetric isostatic.

The framework in Fig. 3(b) has the quotient Cs-gain graph
shown in Fig. 4(b). The matrix representing the reflection σ is

given by
[
−1 0
0 1

]
, and this matrix is equal to its inverse. So for

pi = [xi yi]T , i = 1, 3, the orbit rigidity matrix is the 3× 4
matrix

O(G, p̄) =

⎡
⎢⎣x1 − x3 y1 − y3 x3 − x1 y3 − y1

4x1 0 0 0

0 0 4x3 0

⎤
⎥⎦ .

The kernel of this matrix is the 1-D space spanned by the vector
[0 1 0 1]T , which corresponds to the Cs-symmetric vertical
infinitesimal translation of the framework via (6). Thus, the
framework is Cs-symmetric infinitesimally rigid. In fact, it is
Cs-symmetric isostatic, since the cokernel is again trivial.

Note that since both frameworks are τ(Γ)-symmetric iso-
static, the removal of any edge orbit, or equivalently the re-
moval of any edge in the quotient Γ-gain graph, yields a τ(Γ)-
symmetric infinitesimally flexible framework.

Finally, for the framework in Fig. 3(c), the quotient Cs-gain
graph is shown in Fig. 4(c). The matrix representing the half-turn

is given by
[
−1 0
0 −1

]
, and this matrix is equal to its inverse. For

pi = [xi yi]T , i = 1, 2, the orbit rigidity matrix is the 2× 4
matrix

O(G, p̄) =
[
x1 − x2 y1 − y2 x2 − x1 y2 − y1

x1 + x2 y1 + y2 x2 + x1 y2 + y1

]
.

The 2-D kernel of this matrix consists of a 1-D space of vectors
that correspond to infinitesimal rotations, and a 1-D space of
vectors that correspond to nontrivial C2-symmetric infinitesimal
motions of the framework [see Fig. 3(c)].

The key properties of the orbit rigidity matrix, established
in [24], are summarized in the following theorem.

Theorem 1: Let (G, p) be a τ(Γ)-symmetric framework with
orbit rigidity matrix O(G0, p̄). Then, the following holds.

i) The kernel ofO(G0, p̄) is isomorphic to the space of τ(Γ)-
symmetric infinitesimal motions of (G, p).

ii) The cokernel of O(G0, p̄) is isomorphic to the space of
τ(Γ)-symmetric self-stresses of (G, p).

More precisely, an element ū in the kernel ofO(G0, p̄) assigns
a velocity vector to each vertex orbit representative in V0.
From this we can uniquely construct the corresponding τ(Γ)-
symmetric infinitesimal motion of (G, p) via (6). Conversely, if
we restrict any τ(Γ)-symmetric infinitesimal motion of (G, p) to
V0, then we obtain a vector in the kernel of O(G0, p̄). Similarly,
each element ω̄ in the cokernel of O(G0, p̄) assigns a scalar to
each edge orbit representative in E0. From this we can uniquely
construct the corresponding τ(Γ)-symmetric self-stress of (G, p)
via (7), and vice versa. See [24] for details.

It is a simple consequence of Theorem 1 that if a τ(Γ)-
symmetric framework (G, p) is τ(Γ)-symmetric infinitesimally
rigid, then the same is true for all τ(Γ)-symmetric frameworks
(G, q) in an open neighborhood of p (and in fact for an open
dense subset of the set of τ(Γ)-symmetric realizations of G as a
bar-joint framework).

Using the orbit rigidity matrix, efficient Laman-type combi-
natorial characterizations of the graphs that can be realized as
τ(Γ)-symmetric infinitesimally rigid frameworks in the plane
have been established for Cs, Cn, and C(2n+1)v , n ≥ 1 (in the
case where the symmetry is free) in [25]. The problem remains
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open for the dihedral groups C2nv . Moreover, as in the nonsym-
metric situation, there are no analogs of these results in higher
dimensions.

Of importance to this work is a natural corollary of Theorem 1
describing the rank of the orbit rigidity matrix.

Corollary 1: Let (G, p) be a τ(Γ)-symmetric independent
framework with orbit rigidity matrix O(G0, p̄). Then, O(G0, p̄)
has full row-rank.

In particular, by Corollary 1, the orbit rigidity matrixO(G0, p̄)
of a τ(Γ)-symmetric isostatic framework (G, p) has full row-
rank. In addition, it has the desired rank to guarantee τ(Γ)-
symmetric infinitesimal rigidity. This rank depends on the point
group of (G, p) [25].

It is useful to keep in mind the parallels between the standard
rigidity matrixR(G, p) and the orbit rigidity matrix. Corollary 1
can thus be thought of as the symmetric counterpart to the known
result that the rigidity matrix of an independent framework has
full row-rank. If the framework is isostatic, then it also has the
desired rank to guarantee infinitesimal rigidity (namely, 2n− 3
in the plane).

IV. FORCED SYMMETRIC FORMATION CONTROL

We now would like to study a variation of the formation
control problem where the goal of each agent in the network is to
obtain a formation corresponding to a symmetric configuration.
In other words, starting with a Γ-symmetric graph G with a
homomorphism τ : Γ → O(Rd), we would like to drive the
agents to a special position p� such that the framework (G, p�)
is τ(Γ)-symmetric.

Problem 1: Consider a group of n integrator agents (2) that
interact over the Γ-symmetric sensing graph G. Let p� ∈ Rdn

be a configuration such that (G, p�) is τ(Γ)-symmetric for some
desired point group τ(Γ), and let V0 be a set of representatives
of the vertex orbits of G under Γ. Design a control ui(t) for each
agent i such that the following holds:

i) lim
t→∞‖pi(t)− pj(t)‖ = ‖p�i − p�j‖ for all ij ∈ E ;

ii) for each i ∈ V0, lim
t→∞‖pu(t)− τ(γvu)pv(t)‖ = 0 for all

u, v ∈ Γi.
We would like to solve Problem 1 in a distributed fashion,

ideally allowing agent i to only obtain information from neigh-
boring agents as defined by G. Before we proceed, we comment
on the information needed to solve this problem.

Requirement (i) in Problem 1 is the standard formation control
constraint introduced in Section II-B. That is, ‖p�i (t)− p�j (t)‖ =
dij are the desired distances between neighboring agents. Re-
quirement (ii) aims to enforce the symmetric position between
agents that are in the same vertex orbit. The statement of Prob-
lem 1 implicitly assumes that the requirements (i) and (ii) are
consistent with each other.

We also point out that it may not be the case that u, v ∈ Γi

implies thatuv ∈ E . We will show that the following assumption
on the subgraph induced by the vertex orbits is sufficient to
realize this constraint.

Assumption 2: The subgraph induced by each vertex orbit
Γi, denoted G(Γi), is connected.

Remark 1: Assumption 2 is required to ensure that all agents
within the same vertex orbit eventually exchange information
with each other. This is analogous to standard connectivity
assumptions in consensus algorithms, of which this is a gener-
alization [26]. Relaxation of this assumption would necessitate
a more complicated control architecture, including distributed
observers, to estimate the missing relative state information.

The vertex orbits also introduce a natural labeling for the
agents in the network. Without loss of generality, the vertex
orbit Γi will contain the vertices {i, i+ 1, . . . , i+ |Γi| − 1}.
Furthermore, we denote by E(Γi) ⊂ E the edges in G(Ei).
Similarly, the state-vector p(t) can also be partitioned as p(t) =
[p1(t)T · · · p|V0 |(t)T ]T , where pi(t) ∈ Rd|Γi|, and pi1(t) is the
position associated to vertex i ∈ V0.

A. Symmetry Potentials and Formation Stabilization

Our approach to solve Problem 1 follows the same gradient
dynamical system approach used in solving the standard forma-
tion control problem, as introduced in Section II-B. We provide
first a brief summary of our result from [12], together with
some new results. In this direction, we define a symmetry-forcing
potential

Fs(p(t)) =
1

2

∑
i∈V0

∑
u,v∈Γi
uv∈E

‖pu(t)− τ(γvu)pv(t)‖2. (8)

Here, recall that V0 is a set of representatives from each of the
vertex orbits of a Γ-symmetric graph. The symmetric formation
potential can then be defined as

F (p(t)) = Ff (p(t)) + Fs(p(t)) (9)

where Ff (p(t)) is the formation potential defined in (3).
We now propose the control

u(t) = −∇F (p(t)) (10)

to solve Problem 1. The closed-loop dynamics then take the
following form:

ṗ(t) = −R(G, p(t))T (R(G, p(t))p(t)− d2
)−Qp(t), (11)

whereQ is a block diagonal matrix with |V0| blocks, where each
block is |Γi|d× |Γi|d. With the labeling of the nodes defined
earlier, Q can always be written as

Q =

⎡
⎢⎢⎣
Q1

. . .

Q|V0|

⎤
⎥⎥⎦

and

[Qi]uv =

⎧⎪⎨
⎪⎩
dΓi

(u)I, u = v, u ∈ Γi

−τ(γuv), uv ∈ E , u, v ∈ Γi

0, o.w.

where dΓi
(u) denotes the degree of node u in the induced

subgraph G(Γi). Observe thatQi can be expressed as the matrix
product E(Γi)E(Γi)

T , where E(Γi) has a similar structure as
the incidence matrix. For an edge k = uv with u, v ∈ Γi, one
has [E(Γi)]uk = I if the edge k leaves vertex u, [E(Γi)]uk =
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−τ(γvu) if the edge k enters the vertex u, and [E(Γi)]uk = 0
otherwise. Therefore Qi (and consequently Q) is a positive
semidefinite matrix. To further simplify notation, we define
Ē(Γ) = diag{E(Γi)}i=1:|V0|, and therefore, Q = Ē(Γ)Ē(Γ)T .
It follows that any configuration that is in a symmetric position
must lie in the kernel of Q.

It is also useful to examine the expression of the closed-loop
dynamics for each agent. For an agent i in the vertex orbit Γu,
the dynamics are

ṗi(t) =
∑
ij∈E

(‖pi(t)− pj(t)‖2 − (dij)
2)(pj(t)− pi(t))

+
∑
ij∈E

i,j∈Γu

(τ(γij)pj(t)− pi(t)).

We now show that the closed-loop dynamics (11) has an invariant
quantity.

Proposition 1: Consider the closed-loop dynamics (11) and
let

z(t) =
∑
v∈V

∑
γ∈Γ

τ(γ)pv(t). (12)

Then, z(t) remains invariant along the trajectories of (11), i.e.,
ż(t) = 0.

Proof: We examine the derivative of z(t)

ż(t) =
∑
v∈V

∑
γ∈Γ

τ(γ)ṗv(t). (13)

We will study separately the contribution of the distance con-
straint term and the symmetry-forcing term from each agent in
(13).

To begin, we examine the symmetry-forcing contribution to
ż(t) from an edge ij ∈ E with i, j ∈ Γu for any u ∈ V0. This
leads to∑

γ∈Γ
τ(γ) (τ(γij)pj − pi) +

∑
γ∈Γ

τ(γ) (τ(γji)pi − pj)

=

⎛
⎝
⎛
⎝∑

γ∈Γ
τ(γ)

⎞
⎠ τ(γij)−

∑
γ∈Γ

τ(γ)

⎞
⎠ pj(t)

+

⎛
⎝
⎛
⎝∑

γ∈Γ
τ(γ)

⎞
⎠ τ(γji)−

∑
γ∈Γ

τ(γ)

⎞
⎠ pi(t) = 0

where the last equation follows from the fact that
(
∑

γ∈Γ τ(γ))τ(γ
′) =

∑
γ∈Γ τ(γ) for any γ′ ∈ Γ. Note that this

holds for each edge connecting agents in the same vertex orbit.
We now look at the contribution from the distance constraint

terms in the agent dynamics. Consider again the edge ij ∈ E
(with no restriction on agent j being in the same vertex orbit of
agent i). Let aij = aji = ‖pi − pj‖2 − d2

ij . Then, it is straight-
forward to verify that∑

γ∈Γ
τ(γ)aij(pj − pi) +

∑
γ∈Γ

τ(γ)aji(pi − pj) = 0.

This also holds for each edge in E . Together this shows that
ż(t) = 0 as claimed. �

Fig. 5. τ(Γ)-symmetric graph with y-axis symmetry not satisfying As-
sumption 2.

We now present the main result of [12].
Theorem 2 (See [12]): Consider a team of n agents (2)

interacting over a Γ-symmetric graph G (with a homomorphism
τ : Γ → O(Rd)) satisfying Assumption 2 in Rd, and let

Ff = {p ∈ Rdn | ‖pi − pj‖ = dij ij ∈ E}
and

Fs = {p ∈ Rdn | τ(γ)(pi) = pγ(i) ∀γ ∈ Γ, i ∈ V}.
Then, for initial conditions pi(0) satisfying∑

ij∈E
(‖pi(0)− pj(0)‖ − d2

ij) ≤ ε1,

and ‖pi(0)− τ(γj)pj(0)‖2 ≤ ε2

for all i ∈ V0 and j ∈ Γi, for a sufficiently small and positive
constant ε1 and ε2, the control

u = −∇F (p(t)) (14)

renders the set Ff ∩ Fs exponentially stable, i.e.,

lim
t→∞‖pi(t)− pj(t)‖ = dij and lim

t→∞τ(γ)(pi(t)) = lim
t→∞pγ(i)(t)

for all γ ∈ Γ, i ∈ V.
The implementation of the control (11) assumes that agents

within the same vertex orbit are able to exchange information
with each other (i.e., Assumption 2 is satisfied). This may not
be the case for different symmetries, as illustrated in the next
example.

Example 5: Consider the graph in Fig. 5 . This is a τ(Γ)-
symmetric framework with the point group symmetry specified
by the reflection in the y-axis. The vertex orbits for this symme-
try are Γ1 = Γ2 = {1, 2}, Γ3 = Γ6 = {3, 6}, and Γ4 = Γ5 =
{4, 5}. Note that the nodes in the orbit Γ3 are not connected by
edges in G. Since Assumption 2 is not satisfied, implementation
of (10) requires establishing additional communication between
nodes 3 and 6.

We also note that the implementation of (11) requires |E|
communication/sensing links for each distance constraint, and
that the subgraph induced by the vertex orbits are connected.
In fact, Assumption 2 can be relaxed further to require only a
spanning tree for each subgraph induced by the vertex orbits.

Corollary 2: The conditions stated in Theorem 2 hold if the
induced subgraph of each vertex orbit, G(Γi), is a spanning tree.

The proof remains unchanged from Theorem 2. The corollary
shows that symmetry between agents in the same vertex orbit,
say Γi, can be maintained with only |Γi| − 1 edges. Neverthe-
less, the control proposed in Theorem 2 still requires to use all
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the edges encoding the distance constraints. We now show that
this too is redundant and only edges from the representative edge
set E0 need to be considered.

B. Orbit Rigidity Potentials and Formation Stabilization

In this direction, we define a new potential function that aims
to satisfy the distance constraints over the representative edges
in the edge orbits

Fe(p(t)) =
1

4

∑
e=ij∈E0

(
‖pi − τ(γ)pj‖2 − d2

iγ(j)

)2

where γ ∈ Γ is the label of the edge in the quotient gain graph.
Thus, the new forced-symmetric formation control potential can
be expressed as

F (p(t)) = Fe(p(t)) + Fs(p(t)) (15)

where Fs(p(t)) was defined in (8). As before, we now propose
the control

u(t) = −∇F (p(t)). (16)

To help simplify notations, we denote by p0(t) the restriction of
the configuration vector p(t) to only the agents in the represen-
tative vertex set V0. The remaining agents are denoted by the
vector pf (t), so with an appropriate labeling of the agents we

can write p̃(t) = Pp(t) =
[
pT0 (t) pTf (t)

]T
, for some permu-

tation matrix P . Then, the control for each agent i ∈ V0 can be
expressed as

ui(t) = u
(a)
i (t) + u

(b)
i (t) + u

(c)
i (t) (17)

where
u
(a)
i (t)=

∑

iγ(j)∈E0
j∈V0, i �=j

(‖pi(t)−τ(γ)pj(t)‖2−d2
ij

)
(τ(γ)pj(t)−pi(t))

u
(b)
i (t)=−

∑

iγ(i)∈E0
(‖(I−τ(γ))pi‖2−d2

iγ(i))
(
2I−τ(γ)− τ(γ)−1

)
pi

u
(c)
i (t) =

∑

ij∈E(Γi)

(τ(γij)pj(t)− pi(t)).

The control for the agents in V \ V0 is simply

ui(t) =
∑

ij∈E(Γv)

(τ(γij)pj(t)− pi(t)) (18)

for each v ∈ V0.
When expressing the dynamics in a state-space form, the orbit

rigidity matrix explicitly appears, and we obtain[
ṗ0(t)

ṗf (t)

]
=

⎡
⎣−OT (G0, p0(t))

(
O(G0, p0(t))p0(t)− d2

0

)
0

⎤
⎦

− PQPT

[
p0(t)

pf (t)

]
. (19)

Here, d0 are the distance constraints for the edges in E0. It is
interesting to observe the structure of this system. The orbit
rigidity matrix in (19) plays the role of the rigidity matrix for
(4) in preserving the distances.

It is now useful to define an error system to study the stability
and convergence properties of the system. In this direction, we
let

σ̄(t) = O(G0, p0(t))p0(t)− d2
0, and q̄(t) = Ē(Γ)TPT p(t)

with ē(t) =
[
σ̄(t)T q̄(t)T

]T
. Then, the error dynamics can be

expressed as[
˙̄σ(t)

˙̄q(t)

]
= −

[
OOT OĒ0(Γ)

ĒT
0 (Γ)OT ĒT (Γ)Ē(Γ)

][
σ̄(t)

q̄(t)

]

= −
[ [

O 0
]

ĒT (Γ)PT

][[
OT

0T

]
PĒ(Γ)

][
σ̄(t)

q̄(t)

]
. (20)

Here,
[
Ē0(Γ)

T Ēf (Γ)
T
]T

= PĒ(Γ). We refer to (20) as the

orbit error system. For notational simplicity, we have dropped
the explicit dependence of the orbit rigidity matrix on G0 and
p0(t). We also can characterize its equilibria by the set

X0 =
{
(σ̄, q̄) | OT σ̄ + Ē0(Γ)q̄ = 0 and Ēf (Γ)q̄ = 0

}
. (21)

Our first result shows that the set X0 is asymptotically stable.
Theorem 3: Consider the error system (20) for a τ(Γ)-

symmetric framework satisfying Assumption 1. The set of equi-
libria (20) is asymptotically stable. Furthermore, on the set X0,
the control u(t) = 0 and the configuration vector p(t) converge
to a fixed point under the dynamics (19).

Proof: We define the Lyapunov function

V (ē(t)) =
1

2

[
σ̄(t)T q̄(t)T

] [σ̄(t)
q̄(t)

]
=

1

2
ē(t)T ē(t).

The derivative of V along the trajectories of (20) is

V̇ (ē(t)) = −ē(t)T
[ [

O 0
]

ĒT (Γ)PT

][[
OT

0T

]
PĒ(Γ)

]
︸ ︷︷ ︸

M

ē(t)

= −
∥∥∥∥∥
[[

OT

0T

]
PĒ(Γ)

]
ē(t)

∥∥∥∥∥
2

≤ 0.

Note that for any ρ > 0, the set Ψ(ρ) = {ē : V (ē) ≤ ρ} such
that ē(0) ∈ Ψ(ρ) is compact and positively invariant with respect
to (20). Therefore, by LaSalle’s Theorem, every solution starting
inΨ(ρ) must approach the largest invariant set where V̇ (ē) = 0,
which is precisely the set X0.

Now, observe from (19) that the control can be expressed as
follows:

u(t) = −
[
OT

0

]
σ̄(t)− PĒ(Γ)q̄.

Therefore, on the set X0, it follows that u(t) ≡ 0. Since u(t) →
0, it follows that p(t) must converge to a constant value. �

Theorem 3 guarantees that both the orbit error dynamics and
the formation dynamics behave nicely. However, the set X0

itself may be difficult to characterize, and Theorem 3 does not
guarantee, for example, convergence to the correct symmetric
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formation shape. Analogous to classic results from formation
control (see [9]), by imposing additional assumptions on the
framework, we can show that, in fact, the error dynamics locally
converge exponentially fast to the origin.

Theorem 4: Let p� be the target formation satisfying con-
ditions (i) and (ii) of Problem 1, and assume that (G, p�) is a
τ(Γ)-symmetric isostatic framework satisfying Assumption 1.
Furthermore, assume that Assumption 2 holds and that the
matrices E(Γi) are constructed using only a spanning tree
subgraph of G(Γi). Then, the origin is a locally exponentially
stable equilibrium of (20).

Proof: Let Ψ(ρ) = {ē : V (ē) ≤ ρ} for a sufficiently small ρ
such that for all points inΨ(ρ), the formation is τ(Γ)-symmetric
isostatic. By Corollary 1, the orbit rigidity matrix must have full
row-rank on this set. We now consider the set X0 in (20). Note
that by Assumption 2, the matricesE(Γi) have full column rank,
and in particular, so must Ēf (Γ). Therefore, q̄ = 0. Similarly,
sinceOT also has full column rank inΨ(ρ), it follows that σ̄ = 0,
and we conclude that X0 = {0}.

We conclude the proof using the same Lyapunov function
from the proof of Theorem 3. Observe that due to the assump-
tions of the corollary,λmin = mine∈Ψ(ρ) λ(M) > 0. SinceΨ(ρ)
is compact, the existence of λmin is guaranteed. Then one has

V̇ (ē(t)) ≤ −λmin‖ē(t)‖2 = −2λminV (ē(t))

which indicates that V (e(t)) is negative definite for e(t) ∈
Ψ(ρ) \ {0}. Thus, the exponential stability of the equilibrium
e = 0 in the error system (20) is proved. �

In summary, minimally forced-symmetric rigidity provides
an architecture for Problem 1 that ensures (local) exponen-
tial stability to the desired symmetric formation shape. As in
rigidity-based formation control strategies, this result is local
since we must still be concerned with flip ambiguities of the
framework. We also note that the controlled system (19) requires
fewer edges than the ordinary rigidity-based control.

Theorem 5: In the setting of Theorem 4, the controlled
system (19) uses at most (1 + 1/|Γ|)|V| edges.

Proof: Let G0 = (V0, E0) be the quotient graph as used in
the description of the control. By the assumption that the vertex
set of each orbit induces a tree in the communication graph,
the control uses |E0|+ (|Γ| − 1)|V0| edges. It is known that if
(G, p∗) is a τ(Γ)-symmetric isostatic framework, then |E0| ≤
2|V0|; see, e.g., [13, Thm. 62.1.4]. This relation is the symmetric
analog of the well-known fact that any isostatic framework has
2|V| − 3 edges. Hence, the number of edges in the control is
bounded by (|Γ|+ 1)|V0|. By the assumption that Γ acts freely
on V , every vertex orbit is of size |Γ|, and hence, |V| = |Γ||V0|.
Thus, (|Γ|+ 1)|V0| = (1 + 1/|Γ|)|V|. �

The bound in Theorem 5 is significantly smaller than that
required for stabilizing infinitesimally rigid frameworks without
any additional symmetry constraints (which requires at least
2|V| − 3 edges).

It should also be noted that if a τ(Γ)-symmetric frame-
work (G, p∗) is infinitesimally rigid in the ordinary sense (that
is, the framework has a rigidity matrix with rank 2|V| − 3),
then one can always extract a subgraph H such that (H, p∗)
is τ(Γ)-symmetric isostatic. Hence, as long as Assumption 2

holds, our control can be applied to a subgraph of G with
|E0|+ (|Γ| − 1)|V0| edges.

Example 6: We now consider the graph on n = 10 nodes
shown in Fig. 6(a). This is a τ(Γ)-symmetric framework with Γ
corresponding to the rotational group, where τ(γ) is the rotation
matrix of 2π/5 radians. Note that this graph has 15 edges. To
solve the formation control problem using the standard approach
in (4), we would require an additional two edges to ensure MIR of
the framework (17 total). On the other hand, the control strategy
in (19) requires only nine edges, with the subgraph shown in
Fig. 6(b). The quotient graph for this framework is shown in
Fig. 6(c). Fig. 6(d) shows the resulting trajectories when running
(19).

Remark 2: One well-known challenge in formation con-
trollers of the form (4) is to avoid the invariant subspace of
colinear solutions [5]. While the symmetry-forced formation
control (19) is not immune to this problem, it depends greatly
on the chosen symmetry. For example, rotational symmetries, as
in Example 6, do not have colinear solutions as an invariant set,
while a reflection symmetry only has colinear invariant solutions
that are orthogonal to the mirror axis.

Of note is that the symmetries used to define the τ(Γ)-
symmetric framework are defined with respect to a common
inertial frame [see Fig. 6(d)]. In the sequel, we propose a
modification to (20) to relax this point.

C. Symmetry Forced Formations With Centroid
Consensus

The τ(Γ)-symmetric frameworks by definition have the point-
group symmetries defined with respect to some fixed inertial
point (the origin). As seen in Fig. 6(d), for agent initial conditions
that are far from the origin, the system in (19) will drive the agent
to the correct formation, but with respect to the origin. In fact,
it would be more desirable for the agents to be able to arrange
themselves to the correct symmetric formation with respect to
any point. This is further a necessary requirement if we want to
include formation maneuvering as well.

In this direction, we propose the addition of a consensus term
that will allow the agents to distributedly agree on a different
origin that is a function of the initial conditions. Each agent will
augment its state-vector with the centroid estimate, ri(t) ∈ Rd.
The classic consensus algorithm is then run on these virtual
states

ṙi(t)=
∑
ij∈E

(rj(t)−ri(t)) ⇔ ṙ(t)=−(L(G)⊗ Id)r(t) (22)

where L(G) is the combinatorial graph Laplacian matrix of G.
It is well-known that under the assumption that G is connected,
we have [26]

r(t) → r� = 1|V| ⊗
(
(1/|V|)(1T ⊗ Id)r(0)

)
. (23)

We are now able to use the virtual state ri(t) for each agent to
effectively shift the origin in the control (19).

We define the shifted state c̄(t) =
[
cT0 (t) cTf (t)

]T
=

P (p(t)− r(t)). The modified control, together with (21), then
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Fig. 6. Results from Example 6. We consider the τ(Γ)-symmetric framework in (a) with the 2π/5 rotational symmetry. The framework has two
vertex orbits, indicated by the blue and green nodes in (b), along with three edges in the edge orbit [red edges in (b)]. For the implementation
of (19), we only require a spanning tree subgraph from each G(Γi) and the edges in E0, shown in (b). (c) Corresponding quotient gain graph.
(d) and (e) Resulting trajectories without and with the additional consensus term, respectively. (a) A τ(Γ)-symmetric isostatic framework. (b)
Subgraph used to implement control strategy. (c) Quotient graph. (d) Trajectories generated from (19). (e) Trajectories with centroid consensus
term, (22) and (24).

takes the following form:[
ṗ0(t)

ṗf (t)

]
=

⎡
⎣−OT (G0, c0(t))

(
O(G0, c0(t))c0(t)− d2

0

)
0

⎤
⎦

− PQPT

[
c0(t)

cf (t)

]
. (24)

The combined dynamics (21) and (23) are in a cascade form.
Following the same approach as before, we define the error
signals:

σ̄(t) = O(G0, c0(t))c0(t)− d2
0, and q̄(t) = Ē(Γ)TPT c̄(t).

The error dynamics can now be expressed as[
˙̄σ(t)

˙̄q(t)

]
=

−
[
O(G0, c0(t))OT (G0, c0(t)) O(G0, c0(t))Ē0(Γ)

ĒT
0 (Γ)OT (G0, c0(t)) ĒT (Γ)Ē(Γ)

][
σ̄(t)

q̄(t)

]

+

[[
O(G0, c0(t)) 0

]
P (L(G)⊗ Id)

ĒT (Γ)(L(G)⊗ Id)

]
r(t). (25)

To assist in our analysis of the cascade system (22) and (25), we
perform a simple change of coordinates. Let p̂(t) = p(t)− r�,
r̂(t) = r(t)− r�. With this definition, note that ĉ(t) = p̂(t)−
r̂(t) = c(t), similarly for the error signals σ̄(t) and q̄(t) (i.e.,
σ̂(t) = σ̄(t) and q̂(t) = q̄(t)). With this definition, the shifted
cascade system can be represented as[

˙̂σ(t)
˙̂q(t)

]
=

−
[
O(G0, ĉ0(t))OT (G0, ĉ0(t)) O(G0, ĉ0(t))Ē0(Γ)

ĒT
0 (Γ)OT (G0, ĉ0(t)) ĒT (Γ)Ē(Γ)

][
σ̂(t)

q̂(t)

]

+

[[
O(G0, ĉ0(t)) 0

]
P (L(G)⊗ Id)

ĒT (Γ)(L(G)⊗ Id)

]
r̂(t) (26)

˙̂r(t) = −(L(G)⊗ Id)r̂(t). (27)

We will now show that the cascade system (26) and (24) is
locally exponentially stable. To do so, we must first show that
these dynamics are locally input-to-state stable [27].

Theorem 6: Let p� be the target formation such that p�

satisfies conditions (i) and (ii) of Problem 1, and assume that
(G, p�) is a τ(Γ)-symmetric isostatic framework satisfying As-
sumption 1. Assume that Assumption 2 holds and that the matri-
ces E(Γi) are constructed using only a spanning tree subgraph
of G(Γi). Then, the cascade system (26) and (24) is locally
exponentially stable.

Proof: First, we establish that (26) is locally input-to-state
stable while interpreting the signal r̂(t) as the input. When
r̂(t) = 0, we have that ĉ0(t) = p̂0(t) and the dynamics (26)
reduce to (20). Using the same arguments as in Theorem 4, this
system is locally exponentially stable, which shows the system
must be locally input-to-state stable [27]. To establish that the
cascade system is exponentially stable, all we need is to recall
that (24) is exponentially stable and converges from any initial
condition to the origin [26]. It can then be concluded that the
cascade system is also locally exponentially stable [28]. �

Finally, we can establish the agent trajectories that will then
converge to a symmetric configuration with respect to the cen-
troid of the virtual state r(t), defined in (22).

Theorem 7: Consider the cascade dynamics (22) and (23)
and assume that (G, p� − r�) is a τ(Γ)-symmetric isostatic
framework. Then, for all initial conditions sufficiently close to
p�, and r� given in (22), p(t) exponentially converges to p�.

Proof: From Theorem 6, we have that σ̂(t) and q̂(t) con-
verge to the origin. The remainder of the proof follows the
same argument as Theorem 3 but on the shifted state p̂(t).
Therefore, since p̂(t) locally and exponentially converges to a
τ(Γ)-symmetric isostatic framework, p̂(t) → p� − r�, it follows
that p(t) → p� + r�. �

This result assumes that p(0)− r� is sufficiently close to a
τ(Γ)-symmetric configuration. This may be problematic since
in general the vector r� may not be globally known to all agents.
On the other hand, it is only as restrictive as Theorem 3 and so
does not introduce any new conservativeness.

Example 6 (Continued): We return to the same setup as
Example 6 and now implement the centroid consensus version
of the dynamics (23). The resulting trajectories can be seen in
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Fig. 6(e). Here, we initialize the virtual state r(t) to be the initial
condition of the agents, r(0) = p(0). The formation converges to
the correct symmetry-forced configuration, but now with respect
to the centroid of the initial conditions.

V. CONCLUSION

This work presented a formation control strategy for con-
trolling a network of agents to a formation characterized by its
symmetry properties. Leveraging recent results from symmetry-
forced rigidity theory, a gradient control strategy was derived
with two main components based on a chosen symmetry group
of the formation: one maintains distances between edges in the
edge orbits, while the other forces agents within the same vertex
orbit to a symmetric position. The stability results turn out to
be related to properties of the so-called orbit rigidity matrix,
which is a central object in symmetry-force rigidity theory.
While the results in this work focused only on symmetries that
are free, extending these ideas to the nonfree case should be
straightforward and is the topic of future research.
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