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Abstract: This work proposes a solution to the distance-constrained formation control problem
to attain symmetric formations. Utilizing recent results from rigidity theory for symmetric
frameworks, we design a gradient-based control strategy that simultaneously drives the agents to
the desired inter-agent distances and also a special position characterizing additional symmetry
constraints on the graph. We show that for graphs where there exist edges between agents in the
same vertex orbit induced by the automorphism group, no additional information exchange links
are required. Furthermore, leveraging the symmetry constraints of the system it is possible to
solve the formation control problem with fewer edges than standard approaches. In particular,
the framework is not required to be minimally infinitesimally rigid in this case. Our results are

demonstrated with a numerical example.
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1. INTRODUCTION

In the study of multi-agent coordination problems, forma-
tion control takes a leading role. It is central to many ap-
plication domains, including vehicle platooning (Dai et al.
(2018)), synthetic aperture interferometry (Rosen et al.
(2000)), and surveillance networks (Drake et al. (2005)),
to mention just a few. The design of distributed control
protocols to solve the formation control problem has also
been an active research topic in the systems and controls
community (Ahn (2020); De Queiroz and Feemster (2019);
Oh et al. (2015); Zhao and Zelazo (2019)).

Gradient-based control strategies for solving the forma-
tion control problem are appealing because they lead to
distributed protocols. More interesting is the connection
between the potential functions used to define the control
laws, and the combinatorial theory of rigidity. Rigidity the-
ory considers questions of the following form: given a dis-
crete configuration of geometric objects (points, lines, etc.)
in a given Euclidean space (called a framework), and a set
of geometric constraints (distances, bearings, etc.), deter-
mine whether the set of polynomial equations representing
these constraints (a) has a solution (independence); (b) has
locally isolated solutions (rigidity); or (c) has exactly one
solution in the given space up to isometric motions (global
rigidity) (Asimow and Roth (1978); Jackson (2007)). The
seminal work from Krick et al. (2009) provided the first
formal result showing that (minimal) infinitesimal rigidity
of the interaction network in a team of integrator agents is

* 8. Tanigawa acknowledges the support JST PRESTO Grant
Number JPMJPR2126.

required to ensure that a the gradient controller (locally)
converges to the correct formation shape.

Since the work of Krick et al. (2009), there has been an
increased interest in understanding the interplay between
the system dynamics induced by the gradient controller
and the combinatorial properties of rigid graphs. Funda-
mental to these works is the conclusion that infinitesimal
rigidity of a framework is an architectural requirement of a
formation-seeking multi-agent system. For planar forma-
tions with n agents (frameworks embedded in R?), this
amounts to having at least 2n — 3 edges in the interaction
graph, providing a lower-bound on the sparsity of infor-
mation exchange in the system.

Motivated by this discussion, we first ask if it is possible
to solve the formation control problem in R? with less
than 2n — 3 edges, i.e., over frameworks that are not
minimally infinitesimally rigid. It turns out by exploiting
properties found in symmetric frameworks this is indeed
possible. The impact of symmetry on the rigidity and
flexibility of frameworks has received a lot of interest
in recent years; see (Schulze and Whiteley (2017b)), for
example, for a summary of results. There are two different
settings for studying the rigidity of symmetric frameworks:
1) the symmetry is incidental and might be broken by
any motions; 2) the symmetry is forced by something in
the construction, and will be preserved by any motions.
For our purposes, we can make use of results from the
theory of forced-symmetric rigidity. In particular, for a
framework to be forced-symmetric infinitesimally rigid we
don’t necessarily need it to have 2n — 3 edges. Instead
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there are adapted counts involving the number of edge
and vertex orbits under the symmetry group; see (Jorddn
et al. (2016); Schulze and Whiteley (2011)), for example.

The contributions of this work are as follows. We provide a
gradient-based control strategy that aims to drive a team
of integrator agents to a geometric shape characterized
by a given forced symmetry. We show that under certain
conditions, the communication and sensing requirements
of the network, in terms of the number of edges, are
less than what is needed in the standard gradient-based
formation control strategies, such as in Krick et al. (2009).

The paper outline is as follows. Section 2 presents pre-
liminary background on rigidity theory and formation
control. In Section 3, symmetry notions for frameworks
are introduced. The main results are presented in Section
4 with a numerical example given in Section 5. Finally,
some concluding remarks are offered in Section 6.

2. PRELIMINARIES FROM GEOMETRIC
RIGIDITY AND FORMATION CONTROL

This section provides an overview of basic concepts from
geometric rigidity theory and the formation control liter-
ature. It will serve as the foundation for the main results
in this work.

2.1 Rigidity Theory

A framework in R? is defined to be a pair (G,p) consisting
of a finite simple graph G = (V,€) and a map p : V — R%.
We may think of p as a point in R4Vl in which case we refer
to p as a configuration of |V| points in R?. A framework
(G, p) is rigid if the only edge-length-preserving continuous
motions of the vertices arise from isometries of R?, and
flexible otherwise. The rigidity and flexibility analysis of
frameworks is a well-developed theory with a rich history
and many practical applications (see, e.g. Schulze and
Whiteley (2017a); Connelly and Guest (2022); Whiteley
(1996)).

A common approach to study the rigidity of frameworks
is to linearise the problem by differentiating the length
constraints on the edges. This leads to the notion of in-
finitesimal (or equivalently, static) rigidity. An infinitesi-
mal motion of a framework (G,p) in R? is an assignment
of velocity vectors, one to each vertex, u : V — R%, such
that

<pi—pj,ui—uj> =0 for all z’jeé’, (1)
where p; = p(i) and u; = u(i) for each ¢. An infinitesimal
motion u of (G, p) is trivial if there exists a skew-symmetric
matrix S and a vector ¢ such that u; = Sp; + ¢ for
all i € V, and (G,p) is infinitesimally rigid if every
infinitesimal motion of (G, p) is trivial, and infinitesimally
flexible otherwise.

The |€] x d|V| matrix corresponding to the linear system
in (1) is called the rigidity matriz of (G,p), denoted as
R(G,p). The row of R(G,p) corresponding to the edge
ij € £ is of the form

(0--0 (pi = p;))" 0---0 (p; —pi)" 0---0).
We also employ the useful algebraic representation of the
rigidity matrix,

R(G,p) = diag{(p; — p;)" }ijee (BT ® 1), (2)
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where E is the directed |V| x |€]| incidence matrix with
E;; = 1if the edge e; leaves vertex i, F;; = —1 if the edge
e; enters the vertex ¢, and F;; = 0 otherwise. So the kernel
of R(G,p) is the space of all infinitesimal motions of (G, p),
and it is well known that (G, p) is infinitesimally rigid if

and only if the rank of R(G,p) is d|V| — (3"), provided
that the points p; affinely span all of R? (Whiteley (1996)).
While an infinitesimally rigid framework is always rigid,
the converse does not hold in general. Asimov and Roth,
however, showed that for ‘generic’ configurations p (i.e. an
open dense subset of configurations), infinitesimal rigidity
is equivalent to rigidity (Asimow and Roth (1978)).

2.2 Formation Control

We review the now well-studied distance-constrained for-
mation control problem (Oh et al. (2015)). Consider a net-
work of n = [V| agents described by integrator dynamics,

pi(t) = uq(t), (3)

where p;(t) € R? is the position of agent i, and u; €
R? is the control. As in the development of rigidity
theory in §2.1, the configuration of the network is the
stack of the agent positions, p(t) = [p{ (t) - pf(t)]T
(similary defined for w(t)). The agents are tasked with
attaining a spatial formation using only measurements
and/or communication with neighboring agents, as defined
by a graph G = (V, £). The formation is specified by a set
of desired inter-agent distances, d7,, for each edge ij € &£,
and we denote d* as the stack of all desired distances.

It is well-known that a gradient-based control strategy can
solve the formation control problem. In this direction, we
define the formation potential function,

1 2
Fr(p(®) = 7 > (I = p(OI° = (@) (4)
ijeE
Then the gradient controller u(t) = —VFy(p(t)) solves the
formation control problem. That is, the closed-loop system

p(t) = =V F(p(t)) (5)
satisfies tli}m Ipi(t) — p; ()| = df; for all ij € £. Here,
R(G,p(t)) is the rigidity matrix defined in §2.1.

3. SYMMETRY IN GRAPHS AND FRAMEWORKS
8.1 Symmetry in graphs

Symmetry in objects can be described mathematically
via the fundamental algebraic notion of a group (see e.g.
Dummit and Foote (1991)).

Definition 1. A group is defined to be a set, I', together
with an operation o, such that for any two elements
a,b € T', aob is also in I'. The operation o satisfies
the associativity law. Moreover, each group has a special
element id, called the identity element, such that for any
elementa € I', aoid =idoa = a. Fach element a of I also
has an inverse a~' in I’ such that aoa™ =a~ ' oa = id.
The number of elements in a group is called the order of
the group. A subset B of I that also form a group under
o is called a subgroup of I.
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The combinatorial symmetries of a finite simple graph
G = (V,€) are described by its group of automorphisms.
An automorphism of G can be loosely understood as a
permutation of V that maps adjacent vertices to adjacent
vertices, and non-adjacent vertices to nonadjacent vertices,
and hence preserves all structural properties of G. The
formal definition is as follows.

Definition 2. An automorphism of the graph G = (V,€)
is a permutation v 1V — V of its vertex set such that

Y()Y(u) € £ & vueé.

It is clear, then, that the identity permutation, denoted
id, is an automorphism of any graph, and for an auto-
morphism 1), ¥)~! is also an automorphism. So it is easy
to see that the set of all automorphisms of G forms a
group under composition of maps. This group is called
the automorphism group of G and is denoted by Aut(G).

A common way to represent a permutation for an automor-
phism is by a two-row array. For a graph G with [V| =n
vertices, one can write the automorphism ) as

w= 1 2 ... n
S \v@) ¥(2) - p(n) )
Equivalently, one can express every permutation more
compactly as a composition of disjoint cycles of the per-
mutation. A cycle is a successive action of the permutation
that sends a vertex back to itself, ie., i — (i) —
B(0) — - — $5() = i, where $F = o oq.
———
k times
Such a cycle is compactly written using the cycle notation,
denoted by (i1 (i) ---¥*~1(i)). The integer k is the length
of the cycle.
Definition 3. A graph G is I'-symmetric for any sub-
group T' C Aut(G). The symmetry is free if v(i) # i for
all v €V and non-identity v € T'.

A key structural property of a I'-symmetric graph G is its
sets of vertex and edge orbits under I'. Loosely speaking,
the orbit of a vertex ¢ (or edge e) of G under T is the set of
vertices (edges, resp.) of G that i (e, resp.) can be mapped
to by elements in T'.

Definition 4. For a T'-symmetric graph G = (V,&) and
verter i € V, the set I'; = {~v(i)|y € T} is called the
vertex orbit of i. Similarly, for an edge e =15 € £, the set
L. = {v(i)y(j) |y € T} is termed the edge orbit of e.

The size of the vertex orbits depends, of course, on the
sub-group I'. Since all nodes in a given orbit are somehow
equivalent under a group action, we often consider repre-
sentative vertices from each vertex orbit. We denote by
the set of representative vertices for each orbit, such that
[Vo| are the number of vertex orbits, and i € Vy means
that vertex 4 is only in one vertex orbit.

Fig. 1. The cycle graph Cy has 8 automorphisms in Aut(G).

Daniel Zelazo et al. / I[FAC PapersOnLine 56-2 (2023) 10552-10557

Example 1. Figure 1 shows the cycle graph on 4 nodes,
Cy. We will identify all the automorphisms of Aut(Cy).
First, consider a clock-wise rotation by 90° of C4 as drawn
in the figure. This gives the automorphism

1234
¢“::<3142>'

The cycle notation is 1 = (1342). With 1, we also
have 2 = 11 o ap1,93 and ¥i = id in Aut(G), where
o = (14)(23) and s = (1243) may be interpreted
geometrically as rotations by 180° and 270°. Additional
permutations can be found by considering reflections. Fig-
ure 1 shows 4 reflection symmetries. Consider first the
reflection about the vertical red line, giving the permutation
(in cycle notation) ¥y = (12)(34). Similarly, the horizon-
tal reflection (blue line) yields s = (13)(24), the diagonal
reflection (green line) gives v = (1)(2, 3)(4), and the
brown line reflection 7 = (14)(2)(3). Thus, we have
that Aut(Cy) = {id, 91,..., %7} has 8 automorphisms. As
an abstract group, it is the dihedral group Dg of order 8
(Dummit and Foote (2004)). Note that any vertex can be
mapped to any other under the automorphisms in Aut(Cly)
and hence Cy has only one vertex orbit (and only one edge
orbit) under Aut(Cy). If, however, we considered Cy as a
-symmetric graph, where T is the subgroup of Aut(Cy)
of order 2 consisting of the identity and ¥4, for example,
then Cy has two vertex orbits, namely {1,2} and {3,4},
and three edge orbits, namely {12},{34} and {13,24}.

3.2 Symmetry in frameworks

Having defined notions of symmetries for graphs, we now
consider symmetry of frameworks.
Definition 5. Let G be a I'-symmetric graph, and let
I' be represented as a point group, i.e., a subgroup of
the orthogonal group O(RY), via a homomorphism T :
I' — O(RY). In other words, T assigns an orthogonal
matriz (describing an isometry of R? such as a rotation or
reflection) to each element of T'. Then a framework (G, p)
in R? is called 7(T')-symmetric if

T(V)(pi) = pyy forally €T and allic V.  (6)

We use the standard Schoenflies notation for point groups
in this paper (Altmann and Herzig (1994); Atkins et al.
(1970)). The only possible point groups in dimension 2
are the reflection group Cs (consisting of the identity and
a single reflection about an axis o), the rotational groups
C, of order m, where n > 1 (generated by a rotation
¢n, about the origin in counter-clockwise direction by an
angle of 27 /n), and the dihedral groups C,, of order 2n,
where n > 2 (generated by a reflection o and a rotation
¢n). If we think of the graph drawing in Figure 1 as a
framework in the plane, for example, then this framework
is C4p-symmetric.

If a framework (G,p) is 7(I')-symmetric, then the con-
figuration p is in a special geometric position that may
no longer be ‘generic’. Thus, symmetry can lead to unex-
pected infinitesimal flexibility (as well as unexpected rigid-
ity). Since symmetry is very common in both natural and
man-made structures, the rigidity and flexibility analysis
of symmetric frameworks has grown into a major research
area over the last two decades; see (Schulze and Whiteley
(2017b)) for a summary of this work.
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4. STABILIZATION OF
SYMMETRIC CONFIGURATIONS

We now would like to study a variation of the formation
control problem where the goal of each agent in the
network is to obtain a formation corresponding to a
symmetric configuration. In other words, starting with a
I'-symmetric graph G, which can be drawn with maximum
point group symmetry S in R¢, we would like to drive the
agents to a special position p* such that the framework
(G,p*) is 7(I")-symmetric for a desired subgroup of S.

For a I'-symmetric graph G and a vertex orbit I'; of G
under T', it follows immediately from the definition of T';
(Definition 4) that for every vertex j in I'; thereisay; € T
such that v;(j) = 4. So for a 7(I')-symmetric framework
(G,p) and for every j € I';, there is a ; € T' such that
7(vj)p; = ps for all j € I';. With this notion in place we
now formally state the control problem.

Problem 1. Consider a group of n integrator agents (3)
that interact over the I'-symmetric sensing graph G. Let
p* € R be a configuration such that (G,p*) is 7(T')-
symmetric for some desired point group 7(I'), and let Vg
be a set of representatives of the vertex orbits of G under
T'. Design a control u;(t) for each agent i such that

(1) im0 |[pi(t) —p; (W) = P} — pjll for allij € E;
(it) for each i € Vo, limy_,o0 |pi(t) — 7(v;5)p;(t)|| = O for
all] el;.

We would like to solve Problem 1 in a distributed fashion,
ideally allowing agent ¢ to only obtain information from
neighboring agents as defined by G. Before we proceed, we
comment on the information needed to solve this problem.

Requirement (i) in Problem 1 is the standard formation
control constraint introduced in §2.2. That is, [|p} — pj|| =
dy; are the desired distances between neighboring agents.
Requirement (ii) aims to enforce the symmetric position
between agents that are in the same vertex orbit. Here we
point out that it may not be the case that j € I'; implies
that ij € £. We will comment on this point later.

Our approach to solve Problem 1 follows the same gradient
dynamical system approach used in solving the standard
formation control problem. In this direction, we define a
symmetric potential

E0) =5 3 3 Init) ~ v 0% ()

i€Vo jEL;
The symmetric formation potential can then be defined as
F(p(t)) = Fr(p(t)) + Fs(p(t)), (8)

where Fy(p(t)) is the formation control potential defined
in (4). Here recall that Vg is a set of representatives from
each of the vertex orbits of a I'-symmetric graph.

We now propose the control
u(t) = =VF(p(t)), )

to solve Problem 1. The closed-loop dynamics then take
the form

p(t) = —R(G,p(t))" (R(G, p(t))p(t) — (d°)*) — Qp(t),

where @ is a block matrix and
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(0| = DI, i=4i€V
_T(’Vj)v (RS V07j el
Qij =11, i=34,7¢Vo,jel;.
—7(;)7Y,  jEVo, i €Ty
0, 0.W.

Note that without loss of generality, we can label the nodes
such that the matrix @ thus has a block-diagonal structure
with |Vo| blocks, where each block is |T';|d x |T';|d,

Q1

Q=
Qv

Furthermore, since the off-diagonal blocks Q;; is an ele-

ment of the orthogonal group O(RY) (see Definition 5),

it follows that 7(v;)~' = 7(y;)" and therefore Q is a
symmetric matrix. Finally, each block matrix of @); can

be shown to be positive-semidefinte, since det(Q;) = 0
and all the principle minors are strictly positive.

Before presenting the main result, we introduce an addi-
tional assumption on the graph structure.

Assumption 1. For eachi € Vy and j € T';\{i}, the edge
ij isin .

Assumption 1 ensures that the resulting controller (9)
does not require additional communication/sensing links
beyond the given graph G. Relaxing this assumption is
the subject of ongoing research.

Theorem 1. Consider a team of n agents (3) interacting
over a I'-symmetric graph G satisfying Assumption 1, that
can be drawn with mazimum point group symmetry S in
RY, and let

Fr=1{p € R™"||Ipi — pjll = df; ij € &},
and
Fo={p €R"|7(7)(pi) = pyy VY €T, i € V).

Then for initial conditions p;(0) satisfying

> UIpi(0) = p; ()| = df)* < e,

ijeE
and

1ps(0) = 7(3;)p; (0)[I* < e2

for all i € Vo and j € Ty, for a sufficiently small and
positive constant €1 and €3, the control

uw=—VF(p(t)),
renders the set Fy N Fs exponentially stable, i.e.

e N
tli{gollpl (t) Dby (t)” dz]

(10)

and
lim 7(7)(pi(t)) = lim p,;)(2)

forallyeT,ieV.
t—o00 t—o00

Proof. Let ox(t) = |pi(t) — p;(t)||* — (d};)* represent
the distance error for the agents incident to the edge
k=1ij € & Let qu(t) = pi(t) — 7(v5)p;(t) for i € Vy
and j € I'; be the position error relative to the special
position in the group Symmetry .S. We can now define the
Lyapunov function

V(o) a(t) = 1o o(t) + 3o a(t),

where o(t) is the stack of all the distance errors, and
q(t) the stack of the position errors. Differentiating
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along the system trajectories, we obtain V(o(t), q(t)) =
1o(t)TR(G, p)u(t) + q(t)TTu(t), where T is the block ma-
trix of the form
T
T= .
Tivy|
with T; € RUTil=1dxdli| Each block row of T} has the
identity I for the entry corresponding to the representative
vertex, and —7(v;) in the jth block entry for each node

in the vertex orbit. With this structure we have that
TTT = Q. Tt also follows that q(t) = Tp(t).

Plugging in (10) now gives
V(o(t),q(t)) = —oTR(G,p) (R(G,p)To + Qp)
—q®)"T (R(G,p)"o + Qp)
= 0" R(G,p)R(G,p) 0 — 20" R(G,p)Qp — p" Q°p
=—(R(G.p)"o +Qp)"(R(G,p)" o + Qp)
= —|IR(G,p) o+ Qpl* < 0.

The requirement that the initial condition is sufficiently
close to the target formation is standard in the formation
control literature, and ensures the gradient dynamical
system converges to a critical point corresponding to the
correct formation.

O

Remark 1. The existence of flip ambiguities common in
distance constrained formation control problems exist also
here. That is, if the initial conditions are not sufficiently
close to the target formation, a symmetric and equivalent
formation may be attained that is not the desired shape.

5. AN EXAMPLE

The use of formation flight for aircraft originated in the
first world war to offer fighter pilots improved visual
communication with squadrons and defensive advantages
(Wikipedia (2022)). The original formation, referred to as
the Vic formation, is meant to emulate the V-formation
seen by migrating birds. Since WWI, many works have
studied the advantages of these formations in terms of fuel
efficiency and drag reduction, as well as control strategies
for maintaining the formation Seanor et al. (2006); Pachter
et al. (2001); Stipanovié et al. (2004).

Our interest in the Vic formation is the natural symmetry
it possesses, as can be seen in Figure 2(a). In this example
we consider n = 7 agents and note that the vertex orbits
are {1},{2, 3}, {4, 5}, {6, 7}, where the symmetry “mirror”
passes through vertex 1 (marked by the red dashed line).
The symmetry we are concerned with is the reflection
along the y-axis, and this framework is 7(I")-symmetric,
with 7(v) : (z,y) — (—=z,y). This can be represented by

the linear map
-10
7(v) = { 0 1:| .

We will demonstrate our control strategy on the flexible
graph shown in Figure 2(b). We will also employ the stan-
dard formation controller (5) to highlight the advantages
of our method.
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(a) Vic formation. (b) Flexible

framework.

(c¢) Rigid framework.

Fig. 2. Example of the symmetric Vic formation on 7
nodes. Figure (b) includes edges between nodes in
the same vertex orbit but is still flexible, while (c)
is a minimally rigid framework.

Before presenting the simulation results, we first make a
comment on the number of edges (representing informa-
tion exchange) required for our strategy compared to the
classic formation controller. Here we observe that Figure
2(b) has 9 edges, while the minimally rigid graph in Figure
2(c) has 13 edges. More generally, for a Vic formation with
n (odd) nodes, the symmetry forced graph requires only
3(n — 1)/2 edges, compared to 2n — 3 edges for minimal
rigidity. For large n this requires significantly less number
of edges.

For the numerical simulation, we aim to attain a Vic
formation that is congruent to that shown in Figure
2(a), with pf = (0,0), and the remaining agents on each
“wing” of the formation spaced v/2 units from each other.
Figure 3(a) shows the agent trajectories and Figure 3(b)
the distance measurements between each agent when the
symmetry-forcing control (10) is applied. It can be seen
that the agents converge to the correct formation with
correct inter-agent distances. On the other-hand, if only
the formation controller, as in (5) is applied on the graph
in Figure 2(b), the agents do not converge to the correct
shape, shown in Figure 4.

6. CONCLUDING REMARKS

In this work we demonstrated how to exploit properties
of symmetric frameworks to drive a team of integrator
agents into a symmetric formation with specified distances.
Of note is that this approach for certain graphs does
not require additional communication between agents,
and also can be implemented with graphs that are not
minimally infinitesimally rigid. In this way formation
control problems can be solved for sparser networks than
typically required in formation control. In future work we
will characterize more formally the class of graphs that
can take advantage of this approach, and how to modify
the control strategy for graphs that do not (i.e., graphs
for which there are no edges between nodes in the same
vertex orbit).
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