
A Distributed Real-Time Algorithm for
Preference-Based Agreement

Daniel Zelazo ∗,1 Mathias Bürger ∗,1 Frank Allgöwer ∗,1

∗ Institute for Systems Theory and Automatic Control, University of Stuttgart,
Pfaffenwaldring 9, 70550 Stuttgart, Germany

(e-mail: {daniel.zelazo, buerger, allgower}@ ist.uni-stuttgart.de).

Abstract: This paper studies a real-time distributed dual sub-gradient algorithm for multi-agent
coordination. A finite-time optimal control problem with a terminal coupling consensus constraint
is considered. The algorithm is shown to be equivalent to a linear time-varying (LTV) dynamical
system with a distributed structure. The error between the multiplier values of the algorithm and the
corresponding centralized solution is also given as an LTV system. This is used to derive an error
bound for the terminal state of the algorithm to the optimal consensus value that is a function of the
communication graph and the weights of each agents objective function.

Keywords: Distributed optimization; Multi-agent systems; Finite-time consensus; Sub-gradient methods

1. INTRODUCTION

Distributed algorithms for large-scale optimization problems
are becoming increasingly important for a broad range of ap-
plications. These algorithms are motivated by scenarios where
access to global information is either unavailable or unattain-
able due to the constraints of the system. These include lim-
ited computational resources, communication bandwidth, and
power restrictions.

In multi-agent systems, it is often the goal of a team of agents
to achieve through cooperation and coordination a global ob-
jective. Due to the same constraints listed earlier, this objective
must be reached using distributed protocols for the decision
making of each agent. One well-studied problem related to this
is the consensus, or agreement protocol [Mesbahi and Egerstedt
(2010)]. In agreement problems, each agent must agree upon a
common value of interest. Within the control community, a pri-
mary focus is on the application of these distributed protocols
to physical systems.

The elegance of the agreement protocol lies in its simplicity. It
comes as no surprise that this algorithm also applies to other
classes of problems beyond the control of physical systems.
In fact, the origins of the agreement protocol can be traced to
distributed computation and optimization problems [Bertsekas
and Tsitsiklis (1989); Tsitsiklis (1984)]. More recently, sub-
gradient algorithms have become a focal point for research in
distributed optimization [Nedic and Ozdaglar (2009); Johans-
son et al. (2009); Zhu and Martı́nez (2011)]. Although the
consensus problem and distributed optimization problems are
strongly related, a major difference is that in the latter the agents
are not physical entities but processing nodes.

There has been some recent work lying at the intersection of
these two fields focusing simultaneously on the control of phys-
ical systems and distributed solutions to global optimization
problems. Such a scenario has been considered in [Johansson
et al. (2008)] where each agent negotiates a consensus value
based on some cost function using a distributed optimization
algorithm before controlling the physical system to that value.
Dual decomposition is used in [Rantzer (2008)] for an optimal
distributed controller design. In [Buerger et al. (2010)], a dual

1 The authors would like to thank the German Research Foundation (DFG) for
financial support of the project within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart and within the Priority
Program 1305 ”Control Theory of Digitally Networked Dynamical Systems.”

decomposition method is used to dynamically determine an
optimal velocity for a team of self-interested agents.

This paper studies a distributed optimization problem which is
coupled to a physical control system. A team of self-interested
agents is considered that should achieve consensus at a spec-
ified time. In particular, we consider an ensemble of single
integrator agents each equipped with a quadratic cost function
penalizing its distance to a desired state, termed it’s “prefer-
ence,” and its control energy. The agents are only coupled by
the consensus constraint at the end of the time horizon. While
this problem can be formulated as a centralized optimal control
problem, we study a distributed solution that negotiates the
consensus value in real-time based on a dual decomposition
sub-gradient algorithm. Under the premise that communication
and computation are not instantaneous, we assume that between
communication rounds, the agents are already moving in the
direction they consider to be optimal at that time instance.
The dynamic element of this problem effectively changes the
parameters of the optimization problem and we consider how
this change deviates from the solution of the centralized static
case.

The distributed dual sub-gradient algorithm we develop relies
on the notion of a shrinking horizon to account for the dynamic
changes in the system as time progresses. We show that the
evolution of the algorithm combined with the agents dynamics
can be cast as a linear time-varying dynamical system (LTV).
This provides insight into the influence of the step-size rule for
the convergence of the algorithm. In particular, we show that
the optimal Lagrange multipliers associated with the consensus
constraint varies along the trajectory of the dynamic shrinking
horizon problem. Based on this observation we analyze the
performance of the dynamic algorithm, showing that the final
distance to consensus between the agents is a function of the
error between the estimated and the optimal multiplier at the
final time. Additionally, we provide an LTV representation of
the estimation error, which allows us to draw conclusions on
suitable step-size rules for the optimization algorithm.

The organization of the paper is as follows. In the next sub-
section we introduce our notation. The general problem set-
up, including the formulation of the centralized optimal control
problem, is given in §2. In §3 the shrinking horizon preference
agreement algorithm is presented, and a convergence analysis
of the algorithm is given in §4. Finally, in §5 a simulation
example is given, and §6 provides some concluding remarks.

Proceedings of the 18th World Congress
The International Federation of Automatic Control
Milano (Italy) August 28 - September 2, 2011

978-3-902661-93-7/11/$20.00 © 2011 IFAC 8933 10.3182/20110828-6-IT-1002.03155

Notation The notation we employ is standard. The set of
real numbers is denoted R, and R> (R≥) is the set of positive
(non-negative) numbers. For a vector x ∈ Rn, we denote its
transpose by x′. The ith component of the matrix-vector product
is expressed as [Ax]i and the i jth element of the matrix A as
[A]i j. The all ones vector of length n is denoted 1n and In is
the n × n identity matrix. The Euclidean norm of a vector x is
denoted ‖x‖2. The unit vector of length n for the ith coordinate
is denoted ei,n.The communication structure between agents is
captured by a graph G with node setV = {v1, . . . , vn} and edge
set E. A spanning tree is a connected graph with |V| − 1 edges
and does not contain cycles. We define the set neighborhood of
node i as Ni = {{i, j} ∈ E}. The incidence matrix of the graph

G, E(G) ∈ Rn×|E|, is a {0,±1}-matrix with rows and columns
indexed by the vertices and edges of G such that [E(G)]ik has
the value ‘+1’ if node i is the initial node of edge k, ‘-1’ if it is
the terminal node, and ‘0’ otherwise [Godsil and Royle (2001)].
For brevity, we will omit the explicit dependence of the graph,
and simply write E.

2. THE PREFERENCE-BASED AGREEMENT PROBLEM

We study the problem of self-interested dynamical agents that
must agree upon a common state at the end of a given time hori-
zon. The agents are modeled as a group of n single integrator
systems,

xi(t + 1) = xi(t) + ui(t), xi(0) = xi0, (1)

with i = 1, . . . , n and xi(t) ∈ R. The state and control vector
for all n agents are denoted as x(t) = [x1(t), . . . , xn(t)]′ and
u(t) = [u1(t), . . . , un(t)]′. Agents can communicate with each
other according to a fixed communication graph G, assumed to
be a spanning tree. Furthermore, we only consider synchronous
communication, where all agents communicate at the same time
instant.

The self-interest of each agent is modeled as a quadratic objec-
tive, attaining its minimum at a specific individual preference
value ξi. Each agent aims to minimize the objective

Ji(t0,T, xi, ui) =
1

2

T−1
∑

t=t0

qi(xi(t + 1) − ξi)
2 + riui(t)

2

, (2)

where qi, ri ∈ R> are the state and control weights. The
individual agents are coupled by a requirement to achieve
agreement at the end of the time horizon T ; that is there is a
terminal time constraint,

x1(T) = x2(T) = · · · = xn(T)⇔ E′x(T) = 0. (3)

From a centralized perspective, the preference-based agreement
problem can be stated as the optimal control problem with
terminal constraint

OCP(t0,T, x0) : min
x,u

n
∑

i=1

Ji(t0,T, xi, ui) s.t. (1) and (3). (4)

We collect the entire state and control trajectories of each
agent into the row vectors xi =

[

xi(t0 + 1) · · · xi(T)
]

and
ui =

[

ui(t0) · · · ui(T − 1)
]

. As we are considering a team of n
agents, we introduce further notation to streamline the presen-

tation. The bold-face vectors x =
[

(x1)′ · · · (xn)′
]′
∈ Rn×T and

u =
[

(u1)′ · · · (un)′
]′
∈ Rn×T denote the complete trajectories

for the state and control of the entire ensemble of agents, and
(x,u) denotes the optimal trajectory generated by the solution
of OCP(t0,T, x0). At times, we will be interested in the state
or control trajectory value for all agents at a particular time τ;

we will denote this by x(τ) ∈ Rn×1 and u(τ) ∈ Rn×1; similarly,

xi(τ) ∈ R refers to the value of agent i at time τ.

Note that problem OCP(t0,T, x0) can be reformulated as a static
quadratic program. Using the new notation, the objective for

each agent can be stated as Ji(t0,T, xi, ui) =
1
2
(qi‖xi − 1′

T
ξi‖

2
2
+

ri‖ui‖
2
2
), and the dynamic constraint as the linear equation

xi = 1′T xi0 + uiB
′
T . (5)

Here, BT ∈ R
T×T is defined such that [BT]kl = 1 for k ≥ l and

zero otherwise.

Throughout this paper, we will not only rely on the primal
problem formulation (4), but we will often consider the dual
problem. The dual problem is obtained by relaxing the coupling
constraint with a multiplier µ into the objective to obtain the
Lagrangian,

L(x,u, µ) =

n
∑

i=1

Ji(t0,T, xi, ui) + µ
′E′x(T). (6)

The dual function is obtained by minimizing (6) subject to the
dynamic constraint (5), q(µ) = minx,uL(x,u, µ). We denote the
optimal solution of the primal and dual problems as (x, u, µ).
As OCP(t0,T, x0) is a strictly convex problem (a quadratic
program with linear constraints), we have strong duality which
implies that q(µ) = J(t0,T, x,u) [Ruszczynski (2006)].

Note that the multiplier µ is associated with each edge in G.
Equivalently, we can consider a variable associated with each
agent by defining

γ = Eµ; (7)

the Lagrangian can now be written as a function of γ with the
associated dual function q(γ).

The important feature of this re-formulation is that the dual
function q(γ) is completely separable across each agent. This
then motivates the dual sub-gradient algorithm, which can be
stated as follows. At each iteration step k of the algorithm, the

dual function is computed for a fixed value of γ̂[k]. That is, each
agent solves the following quadratic program, QPi(k),

(x̂
[k+1]
i
, û

[k+1]
i

) = arg min
x̂

[k]
i
,û

[k]
i

Ji(t0,T, x̂
[k]
i
, û

[k]
i

) + γ̂
[k]
i

x̂
[k]
i

(T) (8)

s.t. x̂
[k]
i
= 1′

T̃
xi0 + û

[k]
i

B′
T̃
,

Here we have temporarily abused our notation to facilitate this

discussion. The superscript, as in γ[k], denotes the iteration

count for the sub-gradient algorithm, and the notation (x̂
[k]
i
, û

[k]
i

)
denotes the optimization variables for QPi(k). While ensuring

that the initial values of the dual variables satisfy γ[0] =

E(G)µ[0], the next step is then to update the multiplier using
the sub-gradient as

γ̂[k+1] = γ̂[k] + α[k]EE′x̂[k+1](T). (9)

The sub-gradient for the edge multiplier µ is precisely

E′x̂[k](T), and using (7) leads to (9). The matrix EE′ is the
graph Laplacian of G [Godsil and Royle (2001)]. The choice

of the step-size α[k] is critical for the convergence properties
of this algorithm. While there are many step-size rules that can
guarantee convergence of this algorithm, tuning the step-size to
achieve desirable convergence rates can be non-trivial. With a
suitable choice for the step-size, the sub-gradient algorithm will
converge to the optimal solution of OCP(t0,T, x0),

lim
k→∞

(x̂[k], û[k], γ̂[k]) = (x
(t0,x0)
,u

(t0,x0)
, E µ

(t0,x0)).

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

8934

For a more detailed discussion of appropriate step-size rules
and sub-gradient methods the reader is referred to [Ruszczynski

(2006)]. The notation x
(t0,x0)

is used to emphasize the depen-
dence of the solution on the initial time and initial condition.
When these are unambiguously understood, we will use the

shorthand notation, i.e., x
t
, instead.

The appeal of this method is that the update rule (9) is inher-
ently distributed. That is, each agent can compute the value

γ
[k+1]
i

to use in the next iteration step solely through commu-
nication with its neighbors, as defined by the communication

graph G. In particular, agent i must only send the value x̂
[k]
i

(T)
to all neighboring agents.

While the sub-gradient algorithm is attractive due to its dis-
tributed and relatively simple architecture, we note that this al-
gorithm must be performed before each agent can begin moving
along its optimal trajectory. Indeed, for good convergence of
the algorithm, it may be required to run for a time significantly
longer than the desired horizon time T . This then motivates
the question if it is possible to derive an algorithm that can
be implemented on-line. That is, we would like to develop an
algorithm where each iteration step corresponds to the actual
physical time, while additionally propagating the agents along
a calculated trajectory. Such an algorithm should also negotiate
the final consensus value in real-time and, if possible, satisfy the
terminal time constraint at the real time T while simultaneously
minimizing the local performance index for each agent.

3. PREFERENCE-BASED AGREEMENT PROTOCOL

The need for a real-time distributed algorithm for solving
problem OCP(t0,T, x0) is based on the assumption that the
time required to compute a sufficiently good solution using an
off-line algorithm corresponds to a period where agents must
remain idle. If we consider the horizon time T as an absolute
deadline, then an optimal strategy would require each agent
to move towards their preference state in order to minimize
their individual objectives before maneuvering to the consensus

state. 2

In this direction, we propose a real-time preference-based
agreement algorithm inspired by the sub-gradient algorithm.
The algorithm also relies heavily on the existence of analytic
solutions to quadratic programs. The general strategy of this
algorithm is to physically propagate the states forward at each
iteration. The corresponding sub-problem to be solved at the
next time step is the quadratic program QPi(t) described in (8),
but with the horizon window reduced; instead of minimizing
from t = 0 to the horizon T , we minimize from t = 1. It can
be considered as a “shrinking-horizon” sub-gradient algorithm.
We note that a similar strategy was proposed in [Skaf et al.
(2010)] in the context of finite-horizon stochastic control prob-
lems.

Here we recall that the state signal xi(t) corresponds to the true
physical state of agent i at time t, where as the vectors x̂t

i
, ût

i
∈

R
T̃ correspond to the optimization variables associated with

problem QPi(t). Finally, the notation ût
i
(k) refers the element

of the vector ût
i

at time k. 3 The algorithm is presented in
Algorithm 1.

At the discrete time instant t < T , each agent i solves an

optimal control problem with the finite horizon T̃ = T −
t, using the given µ(t) for the estimated terminal constraint
multiplier value. The optimal solution of QPi(t) is then used to
propagate the actual physical system state, xi(t), forward. The

2 This reasoning assumes that T is sufficiently large. For a shorter horizon each
agent might not have enough time to reach its preference.
3 For example, for time τ = t + k, ût

i
(τ) refers to the (k + 1)-th element of the

vector.

Algorithm 1 Shrinking Horizon Preference Agreement (SHPA)

Data: Initial conditions xi(0) = xi0 and µ(0) = µ0; t = 0.

for t := 0 to T − 1 do

γt = E µ(t), T̃ = T − t

Each agent solves the sub-problem QPi(t):

minx̂t
i
,ût

i
Ji(t,T, x̂

t
i
, ût

i
) + γt

i
x̂t

i
(T̃) s.t. x̂t

i
= 1T̃ xi(t) + BT̃ ût

i

Propagate state and multipliers using solution of QPi(t):

xi(t + 1) = xi(t) + ût
i(t), i = 1, . . . , n (10)

µ(t + 1) = µ(t) + α(t)E′x̂t(T) (11)

where α(t) satisfies some step-size rule.

end for

new state is then used as the initial condition for the subsequent
iteration. The key point here is that at each step of the algorithm,
the agents are physically moving along the optimal trajectory
calculated for a given multiplier value.

We now analyze the dynamic behavior of Algorithm 1. An
immediate result that can be derived from this algorithm is
a reformulation to a linear time-varying (LTV) system. This
linear system results from the analytic solution that the problem
QPi(t) admits [Boyd and Vandenberghe (2004)]. Before we
present the LTV system, we first state the following result on
the analytic solution for ût

i
(t) and x̂t

i
(T). The proof is omitted

due to space constraints.

Lemma 1. For a given µ(t), the optimal control ût
i
(t) and ter-

minal state x̂t
i
(T) used in the update rule (10) and (11) can be

calculated analytically as

ût
i(t) = −r−1

i κ
1
i (T̃)(xi(t) − ξi) − r−1

i q−1
i κ

2
i (T̃)γi(t) (12)

x̂t
i(T) = q−1

i κ
2
i (T̃)(xi(t) − ξi) − q−1

i κ
3
i (T̃)γi(t) + ξi, (13)

where T̃ := T − t is the time horizon at time t, γ(t) = Eµ(t), and

κ
j

i
(T̃) are defined in Table 1.

The optimal solution (ût
i
(t), x̂t

i
(T)) depends on the optimization

parameters qi, ri, ξi, the actual systems state xi(t), the available

multiplier γi(t) = [Eµ(t)]i, and on time-varying functions κ j(T̃)

which are defined on the remaining time-horizon T̃ = T − t.

Explicit expressions for κ j(T̃) are given in Table 1, and a more
detailed discussion of these quantities are given in Appendix A.
The appendix provides a recursive relationship for computing
these functions in addition to some useful properties describing
their behavior. We briefly note that these functions are indepen-
dent of the actual states of the system, and can be computed off-
line and a-priori given the values for qi, ri. This is in analogy to
finite-time LQ controllers.

Having established the analytic solution of QPi(t) in Lemma 1,
we can state the following result equating Algorithm 1 with an
LTV dynamical system.

Lemma 2. Algorithm 1 is equivalent to the linear time-varying
dynamical system

[

x(t + 1)
µ(t + 1)

]

=

[

I − κ1(T̃)R−1 −R−1
κ

2(T̃)Q−1E

α(t)E′κ2(T̃)Q−1 I − α(t)E′κ3(T̃)Q−1E

]

[

x(t)
µ(t)

]

+

[

κ
1(T̃)R−1

−α(t)E′(κ2(T̃)Q−1 − I)

]

ξ, (14)

where R = diag{r1, . . . , rn} and Q = diag{q1, . . . , qn}.

Proof: Insert the expressions for (x̂t(T), ût
i
(t)) into the recur-

sions (10) and (11). �

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

8935

Table 1. Auxiliary functions (See Appendix A)

Γi(T̃) := q−1
i IT̃ + r−1

i BT̃ B′
T̃

κ1i (T̃) := 1′
T̃
Γ−1

i (T̃)1T̃

κ
j = diag{κ

j

i
, i = 1, . . . , n}

κ
2
i (T̃) := 1′

T̃
Γ−1

i (T̃)eT̃ ,T̃

κ
3
i (T̃) := 1 − q−1

i e′
T̃ ,T̃
Γ−1

i (T̃)eT̃ ,T̃

The LTV representation of Algorithm 1 is compelling for a few
reasons. With this representation we are able to directly analyze
the stability and convergence properties of the algorithm using
tools from linear systems theory. In particular, we note that

the only free parameter in (14) is the step-size α(t). 4 The
proper choice for α(t) can then be cast as a stabilization and
performance problem for the system in (14); this is the subject
of a future work.

An interesting observation is that one of the terms driving the

state x(t) is given by κ1(T̃)R−1(x(t) − ξ). In the absence of a
consensus constraint, this term can be considered as the optimal
state-feedback regulator. This term, however, is augmented with

the term −R−1
κ

2(T̃)Q−1Eµ(t) which represents the influence
of the multiplier over the state trajectory. It can be shown

for sufficiently large T̃ , that κ2(T̃) ≈ 0 (see Appendix A).
Therefore, when the remaining time horizon is large, there is
almost no influence of the estimated multiplier on the physical
system, and the state will track to its preference value. Only
sufficiently close to the final time will the multiplier influence
the trajectory, forcing the agents to move towards a consensus
state. This gives a first intuition on how the algorithm will
behave.

On the other hand, the multiplier update clearly reflects the dis-
tributed structure of the problem. Each component of the vector
µ(t) is attached to an edge of the graph G. The multiplier is then
updated using only the state x(t) and preference ξ that are inci-
dent to a particular edge. Furthermore, the multipliers attached
to the edges that are adjacent to each other also influence the
update in a weighted consensus like structure. Note, therefore,

that E′κ3(T̃)Q−1E is a weighted edge Laplacian [Zelazo and
Mesbahi (2011)] which gives rise to the consensus like update
rule.

4. PERFORMANCE AND CONVERGENCE ANALYSIS

Recall that the coupling constraint of the problem OCP requires
all agents to agree upon a common state at the end of the
horizon T , as stated in (3). The previous discussion suggested
that for sufficiently long horizons T , the dynamic system (14)
behaves as a state-feedback regulator, and each agent tracks to
its preference. A reasonable measure for the performance of this
algorithm, therefore, is how far the agents are from consensus
at the horizon time T . This is captured by the norm of the
consensus state,

‖E(G)′x(T)‖2. (15)

Note that in the static case (e.g., problem OCP(t,T, x0)), this
quantity is precisely zero.

We can make this statement more explicit by first deriv-
ing an explicit expression for the multiplier associated with
OCP(t,T, x(t)). We use the fact that the optimal control input
and the optimal terminal state can be computed from the ex-
pressions (12) and (13) by replacing the multiplier µ(t) with the

optimal multiplier µt, i.e.

(u
t
(t), x

t
(T)) = (ût(t), x̂t(T))|µ(t)=µt . (16)

Corollary 3. The optimal multiplier values µ t corresponding to
the problem OCP(t,T, x(t)) is given as

4 Although specified as a time-varying function, we note that a constant step-
size rule will also suffice.

µ
t
=

(

E′Q−1
κ

3(T̃)E
)−1

E′
(

Q−1
κ

2(T̃) (x(t) − ξ) + ξ
)

(17)

Proof: The primal feasibility of the problem OCP(t,T, x(t))
guarantees satisfaction of the terminal constraint. The matrix

E′Q−1
κ

3(T̃)E is a weighted edge-laplacian of a tree with pos-
itive weights, having only non-zero eigenvalues, and therefore
invertible [Zelazo and Mesbahi (2011)]. �

The key feature, that we restate here, is at each time-horizon

and state pair, there exists a unique optimal multiplier µ(t,x(t))

leading to perfect consensus.

If the multipliers generated by (14) are able to track the multi-

pliers µ t associated with a sequence of OCP problems varying
along the state trajectories of (14), then the terminal constraint
can be met exactly. We are now prepared to consider the multi-
plier estimation error between the system (14) and the optimal

multiplier values µ t,

ǫ(T̃ , x(t)) = µ(t) − µ (t,x(t))
. (18)

For notational convenience we will sometimes write ǫ(t) in
place of ǫ(T̃ , x(t)).

This highlights a significant difference between an implicit
objective of the shrinking horizon agreement algorithm, and
the static dual decomposition sub-gradient algorithm used to
solve OCP(t0,T, x0). In particular, for the dual decomposition

sub-gradient algorithm, it is desired that the multiplier µ[k]

converges to the multiplier for the centralized problem, µ t0 :=

µ
(t0,x0) (limk→∞ ‖µ

[k]−µ
t0‖ → 0). In contrast, with the shrinking

horizon agreement algorithm, we want the multiplier estimate
to satisfy

lim
t→T
‖µ(t) − µ(t,x(t))

‖ → 0.

We can now analyze how the error ǫ(t) evolves along the
trajectories of the system (10), (11). A main result of this work,
therefore, is the observation that the error evolves as a time-
varying linear system, with the step-size α(t) as a parameter.
We summarize the result in the following theorem.

Theorem 4. The error ǫ(t) = µ(t) − µ(t,x(t)) evolves according to
the time-varying linear dynamics

ǫ(t + 1) =
(

E′Q−1
κ

3(T̃ − 1)E−1 − α(t)I
)

E′Q−1
κ

3(T̃)Eǫ(t). (19)

The proof relies on (13), Corollary 3, properties of the constants

κ
i, and application of the principal of optimality for dynamic

programming. Due to space constraints the details are omitted.

The above results relate to the performance of the error system
for the multiplier values. It is also worth investigating how this
impacts the error of the primal system, and in particular, the
error of the terminal state as described in (15).

Recall that the algorithm computes at each time step a predic-
tion of the terminal state x̂t(T) and uses the next-step optimal
control to propagate the state forward at each time. Therefore,
the terminal state x(T) is precisely equal to the predicted state

x̂T−1(T) at the last step in the algorithm. This motivates a study
of the “predicted disagreement” for the system, e(t) = E′x̂t(T).
It is clear that E′x(T) = e(T − 1).

Theorem 5. The predicted disagreement e(t) = E′x̂t(T) evolves
according to the linear time-varying dynamics

e(t + 1) =
(

I + α(t)E′Q−1
κ

3(T̃ − 1)E
)

e(t).

Proof: Using (13), we can express the predicted disagreement
at time t, e(t) = E′x̂t(T), in terms of the multiplier value µ(t).

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

8936

Alternatively, we can express this term as a function of the
estimation error ǫ(t) as

e(t) = E′κ2(T̃)(x(t) − ξ) − E′Q−1
κ

3(T̃)Eµ (T̃ ,x(t))
+

E′ξ − E′Q−1
κ

3(T̃)Eǫ(t). (20)

Note that if the optimal multiplier µ (T̃ ,x(t)) is used to compute the
state trajectories at time t, then the final consensus error will be
identically zero (this is equivalent to the centralized solution to
OCP(t,T, x(t))). Therefore, all terms except the last one in (20)
vanish, and what remains is an expression relating the predicted
terminal state error as a function of the multiplier error,

e(t) = −E′Q−1
κ

3(T̃)Eǫ(T̃ , x(t)). (21)

Propagating the error state forward and using the dynamics for
the multiplier error dynamics in (19) leads to the desired result.
�

This result can be used to derive an error bound on the final
disagreement.

Lemma 6. The final disagreement (15) is bounded by a func-
tion of the communication graph G, the weights Q,R, and the
estimation error ǫ(T − 1) as

‖E′x(T)‖2 ≤ ‖E
′Q−1
κ

3(1)E‖2‖ǫ(T − 1)‖2. (22)

Proof: This result follows directly from (20) and the observa-
tion that the physical state at the terminal horizon is equal to the
predicted state at the previous time. �

This result illustrates that the quality of the multiplier estimate
by the system (14) affects the consensus error for the physical
state. This also highlights the structure of the graph as an
important influence on the error bound. Finally, the choice of
the step-size α has the most important effect, as it will dictate
the size of the multiplier error norm.

5. SIMULATION RESULTS

We illustrate our results with an example consisting of 5 agents
over a time horizon of 30 steps with a constant step-size of
α = 8.76. Each agent has a unique initial condition, preference
state, and weights for its state and control. Figure 1(a) shows
the resulting trajectories computed by the centralized control
problem OCP(t0,T, x0) (dashed lines), and the system (14)
(solid lines). Note that while the agents perform well at the early
stages of the algorithm (e.g., they all track to their preference),
there is still an error for their negotiated final state. We note
that this result is expected, as discussed in Lemma 6. In Figure
1(b) we plot the trajectories of the multiplier estimation error,
as in Theorem 4. This shows that the error is non-zero at all
times, reinforcing the observation that the terminal consensus
constraint is not met identically.

6. CONCLUDING REMARKS

A real-time implementation of a distributed dual sub-gradient
algorithm for a multi-agent optimal control problem was pre-
sented. This method used a shrinking horizon formulation and
was shown to be equivalent to a linear time-varying dynamical
system. The algorithm is also inherently distributed. We also
have shown that the Lagrange multipliers associated with the
terminal consensus constraint evolve dynamically in the algo-
rithm. This led to another linear and time-varying dynamical
system representation for the error between the optimal multi-
pliers and the algorithm multipliers. We additionally provided
an error bound for the final state of the agents that is a function
of the communication graph and the state and control weights
for each agent.

0 5 10 15 20 25 30

−8

−6

−4

−2

0

2

4

6

8

Time Step t

x
(t

)

(a)

0 5 10 15 20 25 30
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

(b)

Fig. 1. Simulations of SHPA algorithm. In (a), solid lines are
trajectories of (14) and dashed line is the solution of
OCP(t0,T, x0). Subfigure (b) shows the multiplier estima-
tion error, as in Theorem 4.

Appendix A. ANALYSIS OF VARIABLES κ

The functions κ j(T̃) defined in Table 1 play a crucial role in the
evolution of the system (14). This appendix provides a more
detailed analysis of these functions. The analytic solution of

each subproblem QPi(T̃) involves the inverse of the matrix

Γi(T̃) = q−1
i

IT̃ + r−1BT̃ B′
T̃

.

The structure of BT̃ allows us to precisely characterize Γ−1
i

(T̃).

To begin, we employ the matrix inverse identity (I + D−1)−1 =

D(I + D)−1 [Petersen and Pedersen (2008)] to obtain

Γ−1
i (T̃) = ri

(

BT̃ B′
T̃

)−1
(

IT̃ +
ri

qi

(

BT̃ B′
T̃

)−1
)−1

. (A.1)

We now note that
(

BT̃ B′
T̃

)−1
is a tridiagonal matrix with the

value -1 on the lower and upper diagonal, and 2 on the diagonal,
except for the last element that takes the value 1 [Usmani
(1994)]. This can be used to write

[Fi(T̃)]i j = [IT̃ +
ri

qi

(BT̃ B′
T̃

)−1]i j =

1 + 2
ri

qi

, i = j < T̃

1 +
ri

qi

, i = j = T̃

−
ri

qi

, j = i ± 1

0, otherwise

(A.2)

In [Usmani (1994)], a concise expression for the inverse of
a tridiagonal matrix is derived based upon a recurrence rela-
tion. The recursion generates two sequences each containing

T̃ elements. As each agent must compute its own sequence at

each time t, we denote the sequences as θi(T̃) and φi(T̃). The

kth element of the sequence is denoted as θ
[k]
i

(T̃) and φ
[k]
i

(T̃).

The initial conditions are θ
[0]
i

(T̃) = 1, θ
[1]
i

(T̃) = 1 + 2 ri

qi
,

φ
[T̃+1]
i

(T̃) = 1, and φ
[T̃]
i

(T̃) = 1 + ri

qi
.

θ
[k]
i

(T̃) =

(

1 + 2
ri

qi

)

θ
[k−1]
i

(T̃) −

(

r

q

)2

θ
[k−2]
i

(T̃), k = 2, . . . , T̃ − 1

θ
[T̃]
i

(T̃) =

(

1 +
ri

qi

)

θ
[T̃−1]
i

(T̃) −

(

r

q

)2

θ
[T̃−2]
i

(T̃)

φ
[k]
i

(T̃) =

(

1 + 2
ri

qi

)

φ
[k+1]
i

(T̃) −

(

r

q

)2

φ
[k+2]
i

(T̃), k = T̃ − 1, . . . , 1

Observe that this recursion also computes the determinant of

Fi(T̃), det [Fi(T̃)] = θ
[T̃]
i

(T̃).

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

8937

Proposition 7. For each agent i and horizon window T̃ , θ
[k]
i

(T̃) =

θ
[k]
i

(T̃ − 1) for k = 0, 1, . . . , T̃ − 2.

Proof: The proof follows directly from the recursion. �

Proposition 7 is important from both a computational and
memory storage standpoint. The first step in Algorithm 1 must
implicitly computes the sequence θi(T), and as time progresses,
each new sequence θi(T−t) can use the first T−t−2 elements of

θi(T). We now present some properties for the sequence θi(T̃).

Proposition 8. For each agent i and time t ∈ [0, T], the

sequence θi(T̃) satisfies 0 < θ
[T̃−1]
i

(T̃) < θ
[T̃]
i

(T̃).

Proof: From Geršgorin’s circle theorem [Horn and Johnson

(1991)] and noting that Fi(T̃) is a real and symmetric matrix,

we conclude that all the eigenvalues of Fi(T̃) lie in interval

[1, 1 + 4 ri

qi
]. This implies that θ

[T̃]
i

(T̃) ≥ 1 for all t ∈ [0, T].

We now note that θ
[T̃−1]
i

(T̃) is the determinant of a principle

minor of Fi(T̃) obtained by deleting the last row and column,

denoted as {Fi(T̃)}T̃ . Consequently, Fi(T̃) can be viewed as the
bordered matrix,

Fi(T̃) =

{Fi(T̃)}T̃

0

−
r

q

[

0 −
r

q

]

1 +
r

q

(A.3)

Denoting the eigenvalues of Fi(T̃) and {Fi(T̃)}T̃ as λ j and µk

respectively, we can invoke Cauchy’s interlacing theorem for
symmetric tridiagonal matrices [Golub and Van Loan (1996)] to
order the eigenvalues as 1 < λ1 < µ1 < · · · < µT̃−1 < λT̃ . Since
the determinant of a matrix is the product of its eigenvalues,
and as all eigenvalues are greater than 1, we can conclude that

θ
[T̃]
i

(T̃) > θ
[T̃−1]
i

(T̃). �

Proposition 9. For each agent i and time t ∈ [0, T], the

sequences θ
[T̃]
i

(T̃) and θ
[T̃−1]
i

(T̃ − 1) satisfies

θ
[T̃]
i

(T̃)

θ
[T̃−1]
i

(T̃ − 1)
>

ri

qi

. (A.4)

Proof: From Proposition 7 we have that θ
[T̃−2]
i

(T̃) = θ
[T̃−2]
i

(T̃ −

1). Therefore, we have θ
[T̃−1]
i

(T̃ − 1) = θ
[T̃−1]
i

(T̃) − ri

qi
θ

[T̃−2]
i

(T̃).

Using the recursion formula and Proposition 8, it can be shown

that
θ

[T̃]
i

(T̃)

θ
[T̃−1]
i

(T̃−1)
=

θ
[T̃−1]
i

(T̃)

θ
[T̃−1]
i

(T̃−1)
+

ri

qi
. All quantities on the right-hand

side are strictly positive which concludes the proof. �

The inverse of FT̃ can be computed as [Usmani]

[

F−1

T̃

]

uv
=

(−1)u+v

v−1
∏

k=u

(

−r

q

)

θ
[u−1]
i

(T̃)φ
[v+1]
i

(T̃)

θ
[T̃]
i

(T̃)
i f u ≤ v

(−1)u+v

u−1
∏

k=v

(

−r

q

)

θ
[v−1]
i

(T̃)φ
[u+1]
i

(T̃)

θ
[T̃]
i

(T̃)
i f u > v.

(A.5)

Algorithm 1 requires that each agent compute the values û
[1]
i

(t)

and x̂
[T̃]
i

(t) at time t (see Lemma 1). We can now use the above

results to derive expressions for κ1
i
(T̃), κ2

i
(T̃), and κ3

i
(T̃).

Proposition 10.

κ1i (T̃) =
ri

θ
[T̃]
i

(T̃)

T̃+1
∑

j=2

(

ri

qi

) j−2

φ
[j]

i
(T̃). (A.6)

Proof: Observe that 1′
T̃

(BT̃ B′
T̃

)−1 =
[

1 0T̃−1

]

. Applying (A.5)

and (A.1) yields the desired result. �

Proposition 11.

κ2i (T̃) =
ri

θ
[T̃]
i

(T̃)

(

ri

qi

)T̃−1

. (A.7)

Proof: This follows directly from (A.5). �

Proposition 12. For each agent i and t ∈ [0, T], κ2
i
(T̃) is strictly

monotonically decreasing as t → 0.

Proof: From Proposition 8 we can conclude that
κ2

i
(T̃)

κ2
i
(T̃−1)

< 1.

Since κ2
i
(T̃) > 0 for all t we conclude that κ2

i
(T̃) < κ2

i
(T̃ − 1)

and in fact limT̃→∞ κ
2
i
(T̃) = 0. �

Proposition 13.

κ3i (T̃) =
θ

[T̃−1]
i

(T̃)

θ
[T̃]
i

(T̃)
(A.8)

Proof: This follows directly from (A.5). �

REFERENCES

Bertsekas, D.P. and Tsitsiklis, J. (1989). Parallel and distributed computation.
Prentice Hall Inc., Old Tappan, NJ.

Boyd, S.P. and Vandenberghe, L. (2004). Convex optimization. Cambridge
University Press, Cambridge.

Buerger, M., Schmidt, G.S., and Allgower, F. (2010). Preference Based Group
Agreement in Cooperative Control. In Proc. of the 8th IFAC Symposium on
Nonlinear Control Systems, 149–154.

Godsil, C. and Royle, G. (2001). Algebraic graph theory. Springer.
Golub, G.H. and Van Loan, C.F. (1996). Matrix Computations. John Hopkins

University Press, Baltimore, MD, USA, 3rd edition.
Horn, R.A. and Johnson, C.R. (1991). Matrix Analysis. Cambridge University

Press, New York, NY.
Johansson, B., Speranzon, A., Johansson, M., and Johansson, K. (2008). On

decentralized negotiation of optimal consensus. Automatica, 44(4), 1175–
1179.

Johansson, B., Rabi, M., and Johansson, M. (2009). A randomized incremental
subgradient method for distributed optimization in networked systems.
SIAM Journal on Optimization, 20(3), 1157–1170.

Mesbahi, M. and Egerstedt, M. (2010). Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, Princeton, NJ.

Nedic, A. and Ozdaglar, A. (2009). Distributed Subgradient Methods for Multi-
Agent Optimization. IEEE Transactions on Automatic Control, 54(1), 48–
61.

Petersen, K.B. and Pedersen, M.S. (2008). The matrix cookbook. Version
20081110.

Rantzer, A. (2008). Using game theory for distributed control engineering.
Technical Report ISRN LUTFD2/TFRT--7620--SE, Department of Auto-
matic Control, Lund University, Sweden.

Ruszczynski, A. (2006). Nonlinear Optimization. Princeton University Press.
Skaf, J., Boyd, S., and Zeevi, A. (2010). Shrinking-horizon dynamic program-

ming. International Journal of Robust and Nonlinear Control.
Tsitsiklis, J.N. (1984). Problems in Decentralized Decision Making and Com-

putation. Ph.D. thesis, Laboratory for Information and Decision Systems,
MIT.

Usmani, R. (1994). Inversion of a Tridiagonal Jacobi Matrix. Linear Algebra
and its Applications, 212, 413–414.

Zelazo, D. and Mesbahi, M. (2011). Edge Agreement: Graph-theoretic Per-
formance Bounds and Passivity Analysis. IEEE Transactions on Automatic
Control, 56(3), 544–555.

Zhu, M. and Martı́nez, S. (2011). On distributed convex optimization under
inequality and equality constraints via primal-dual subgradient methods.
IEEE Transactions on Automatic Control (to appear).

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

8938

