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Abstract 

In order for filter banks to be able to process finite length 
input signals, appropriate modifications must be made to 
either the input signal (via signal extension techniques) or 
to the filter bank itself (boundary filters). This paper 
shows how to choose appropriate boundary filters for the 
analysis portion of any filter bank. The boundary filters 
can be chosen to satisfy any number of criteria, such as 
frequency selectivity or number of vanishing moments, and 
are only required to be linearly independent of the'original 
filter bank filters. .The synthesis filter bank is found by 
calculating the dual of the analysis bank, which is the same 
as finding the inverse. This results in a biorthogonal, 
perfect reconstruction filter bank. 

" 

I. Introduction 

Many applications in multirate digital sign2 processing 
requires the analysis of finite length input signals. 
Multirate filter banks provide an excellent and efficient 
means of analyzing infinite length input signals, but 
stumbles when the input signal is finite length. Filter 
banks for finite length signals have been extensively 
studied, and there are many solutions to this problem. 
These solutions include boundary filter design [1-6] and 
signal extension techniques [6][7]. Signal extension 
techniques are compntationally simple, but generally result 
in an expansive filter bank (more sub-band coefficients 
than the original length of the input signal), andor exhibit 
non-ideal behavior at the boundaries. Boundary filter 
design techniques are length preservative, but can not 
guarantee certain properties (i.e. frequency selectivity or 
number of vanishing moments) for a wide range of analysis 
filters (i.e. minimum phase filters). 

This paper describes a method for choosing boundary 
filters for the analysis bank of any filter bank. The 
synthesis bank is found by calculating the dual of the 
analysis bank, thus creating a biorthogonal filter bank The 
filter bank is guaranteed to be perfect reconstruction and 
sub-band length preservative. Furthermore, the boundary 
filters can be chosen to satisfy various criteria such as 
frequency selectivity or number of vanishing moments. 

The remainder of this paper will provide a brief review of 
filter bank theory. A.short review of previously used 
techniques for finite length signal analysis will also be 
presented. Section 111 will present our design technique 

0-7803-7488-6/02/$17.00 8 2002 IEEE. 

followed by a short example in section IV and conclusion 
in section V. A brief discussion on future work is given in 
section VI. 

11. Filter Banks 

It is well known that filter banks can be interpreted from a 
linear algebra perspective [6]. The linear algebra 
perspective provides a powerful and notationally compact 
representation of filter banks. For simplicity, we will study 
the ZLchannel case, although all results can be extended to 
M channels. Figure 1 shows a block diagram of a 2- 
channel filter bank. The filters ho and h, are respectively, 
.the analysis, or decomposition, low and high pass filters. 
The filters fo and f, are the synthesis, or reconstruction 
filters. In a perfect reconstruction (PR) filter bank x = x'. 

Subhand 

Figure 1. 2-Channel Filter Bank (a) Analysis @) Synthesis 

For an infinite length input vector x, and finite impulse 
response (FIR) analysis and synthesis filters, the analysis 
and synthesis portions of the filter bank can be expressed 
as infinite banded block toeplitz matrices. The block 
diagram in Figure 1 can now be expressed as a linear 
transformation of the input vector x. 

E x  = Ir.1 
L J  I )  

In Equation I ,  E is the matrix representation of the 
analysis filter bank, and F is the matrix representation of 
the synthesis filter bank. Note that the analysis matrix can 
be premultiplied by a permutation matrix P to achieve an 
interleaving of the low-pass and high-pass sub-band 
coefficients (F must then be multiplied by P'). Figure 2 
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In the orthogonal case, the boundary filters can be found by 
using a Gram-Schmidt based technique as described in [4]. 
However, this technique can not guarantee any feature 
beyond orthogonality for the boundary filters. As stated 
earlier, for a biorthogonal ,filter bank, only linear 
independence of the rows are necessary. 

For the leR boundary we will need b, boundary filters, and 
for the right we will need 6, filters, with b, + b, = N.- 2. 
The number of left and right filters can he chosen 
arbitrarily, but the structure of the problem suggests that 
they should be as nearly balanced as possible. There are 
also no constraints on the length of the filters (except that 
they he <=L), but as 'their purpose is to analyze the 
boundaries of the input signal (beginning and end), their 
support should reflect that. Therefore, we will require that 
the support of the boundary filters he equal to or less than 
the support of the analysis filters. . .  

Beyond the requirements specified above, there are no 
further restrictions for the design of the boundary filters. 
Therefore, for the left boundary case, any row vector bT 
with support less than or equal to N, is suitable provided 
the following is true: 

For the right boundary case, Equation 5 becomes: 

Stated another way, the vector [bT 01 (or [O b']) must not 
lie in the row space of H, to be considered a candidate (this 
would violate Equations 5 and 6). If Equation 5 (or 6) is 
satisfied for a particular bT, then that row is kept, and the 
truncated matrix is updated to include the new row. 
Equation 5 and 6 are repeated for each additional row that 
is added until H, becomes square. 

To further simplify the computation, the same boundary 
filters for the left side can be used bn the right side, 
provided that the non-zero values of the filters do not 
overlap. This can be easily seen by a simple example. Let 
L = 6, and the first left boundary filter b,=[l 1 0 0 0 01, a 
Haar low-pass filter. The right boundary filter can be 
chosen to be b,=[O 0 0 0 1 11. This filter is guaranteed to 
be independent of the left boundary filter, and if it also 
satisfies Equation 6, it is a valid, candidate. In most 
practical applications Equations 5 and 6 are easily satisfied. 

With.this method, the boundary filters can be designed 
using various FIR design methods, or by choosing 
established filters that exhibit the desired behavior 
(frequency selectivity, number of vanishing moments, 
etc.. .). The next step is to determine the dual of the now 
square analysis matrix. 

The dual of any square invertable matrix is its inverse. 
Equations 5 and 6 guarantees that the analysis matrix will 
have full rank, and therefore it is invertable. , I f  H. is the 
newly created square analysis matrix, then the synthesis 
matrix F, can he expressed as 

Although conceptually simple, calculating the inverse of a 
large matrix can be a computational nightmare. However, 
the bulk of the computation can be avoided due to the 
strucmre of H,. The most important point is that the 
steady-state portion of the finite synthesis matrix will be 
identical to its infinite counterpart. This is a consequence 
of how the analysis matrix was designed. The middle of F, 
is just a truncated version of the infinite ~ matrix F. 
Furthermore, due to the sparse structure of H, and with 
proper partitioning of H, the boundaries of the synthesis 
matrix can be found with significantly less computational 
complexity. One side effect of the inverse operation is that 
the synthesis matrix will have more boundary filters than 
the analysis matrix, and is directly proportional to the 
number of analysis boundary filters used and their support. 

1V. Design Example 

One application.where finite length input signals are used 
is segmentation based audio coding.. Using boundary 
filters, an audio signal can be divided into short frames 
without overlap or windowing. 

Consider a 2-channel filter bank that uses the Daubechies 
%tap (dh4) analysis filters. The db4 filters can be used to 
create an orthogonal filter hank for the infinite input case. 
The filters also have 4 vanishing moments. For this 
example, we will analyze the first 1000 samples of the 
attack transient portion of a piano note, shown in Figure 4. 

F, = H y ' ,  17) 

. . . . ._ - . . . 

Figure 4. First 1000 samples of a piano note. 

The finite analysis filter bank matrix will require 6 
boundary filters. For this application, we want the 
boundary filters to be as identical to the db4 filters as 
possible in terms of frequency selectivity and number of 
vanishing moments. Therefore, we need to find two sets of 
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low/high pass filters with the necessary properties to use as 
boundary filters (note that we can use the same filters for 
the left and right boundaries as discussed earlier). 

The db4 filters come from wavelet analysis. It would be 
reasonable to choose boundary filters that also come from 
wavelets because of their similar properties. Therefore, we 
can choose one set of lowihigh pass filters to be the Symlet 
8-tap analysis filters (Sym4). This filter also has 4 
vanishing moments and frequency selectivity identical to 
the db4 filters. For the second se t  we can use the db3 
analysis filters which has 3 vanishing moments and very 
similar frequency selectivity. Figure 5 shows the 
magnitude response of the boundary filters and the main 
analysis filters. 

. .  
i 
I 
! 
! , _ _ ~  

. k q - * u w -  
a-*-. 

Figure 5.  Frequency response of boundary filters and main 
analysis filters. Frequency selectivity is nearly identical. 

Figure 6 shows the sub-band coefficients after analysis is 
performed. The coefficients are smooth at the boundaries 
(no large jumps), and the total length of the sub-band 
coefficients is equal to the original signal length. 

. . . ~ --. .- . - 

Figure 6. Sub-band coefficients of analyzed piano sample. 
Upper plot is high pass channel, and lower plot is low pass 
channel. 

The signal can be exactly reconstructed by calculating the 
inverse of the analysis matrix. The resultant filter bank is 
biorthogonal; even though the initial filters are orthogonal. 

V. Conclusions 

In this paper, design methods for boundary filters were 
presented. For any choice of analysis filters, corresponding 
boundary filters can be designed to satisfy any criteria 
including frequency selectivity and number of vanishing 
moments. The resulting filter bank will be a biorthogonal 
filter bank. The synthesis bank is calculated by finding the 
dual of the analysis bank. 

VI. Discussion 

The advantage of this method lies in the control over the 
analysis bank. The synthesis bank, however, does not have 
any freedom of design. No guarantees can be made about 
the characteristics of the boundary filters added to the 
synthesis bank. 

The methods described can be used in reverse, with the 
analysis bank resulting from the dual of the synthesis bank. 
The methods presented are extendable to M channel filter 
banks with input vectors of arbitrary length. Furthermore? 
these methods can be extended to time-varying filter banks. 
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