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Abstract—This work explores the definiteness of the
weighted graph Laplacian matrix with negative edge
weights. The definiteness of the weighted Laplacian is
studied in terms of certain matrices that are related via
congruent and similarity transformations. For a graph
with a single negative weight edge, we show that the
weighted Laplacian becomes indefinite if the magnitude of
the negative weight is less than the inverse of the effective
resistance between the two incident nodes. This result is
extended to multiple negative weight edges. The utility of
these results are demonstrated in a weighted consensus
network where appropriately placed negative weight edges
can induce a clustering behavior for the protocol.

I. INTRODUCTION

The combinatorial graph Laplacian matrix is one of
the most important and useful matrix representations of
a graph. The spectral properties of the graph Laplacian
matrix can be used to study many combinatorial proper-
ties of a graph. Well-known results in this venue include
the Matrix-Tree Theorem which states that the number
of spanning trees in a graph is equal to any cofactor
of the Laplacian matrix, or the algebraic connectivity
that relates the connectedness of a graph to the smallest
non-zero eigenvalue of the Laplacian [1]–[3]. The graph
Laplacian has also proved useful in the study of random
walks and Markov chains, graph partitioning, spectral
clustering, and more [4]–[6]. Within the controls com-
munity, the Laplacian matrix has taken a central role in
the control and coordination of multi-agent systems due
to its distributed structure and utility for problems related
to formation control and synchronization [7].

The notion of edge weights in a graph is a natural
mathematical extension to the combinatorial theory of
graphs. Edge weights are also motivated by the modeling
of physical processes [8], or as a design parameter
in engineered systems used to improve certain perfor-
mance metrics [9]. For many reasons, edge weights
are often taken to be non-negative numbers. Indeed, in
this case the weighted graph Laplacian matrix admits
many favorable properties. For example, the weighted
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Laplacian with positive weights belongs to the class of
Z−matrices for which many results are known [10].
Another important property is that for undirected graphs
with non-negative edge weights, the weighted Laplacian
matrix is always positive semi-definite.

Recently there has been a growing interest in graphs
containing negative edge weights. In [9] it was shown
that negative edge weights appear as an optimal solution
for finding the fastest converging linear iteration used in
distributed averaging. The introduction of negative edge
weights in problems related to the control of multi-agent
systems can lead to steady-state configurations that are
clustering [11], [12]. In [13], negative weights are used
to model antagonistic interactions in a social network
and conditions are provided for when such weights lead
to bipartite consensus. Finally, bounds on the number of
positive, negative, and zero eigenvalues of the weighted
Laplacian with negative weights are provided in [14].

The study of the weighted Laplacian with negative
edge weights is therefore of interest to a broad range
of communities, and motivates the contributions of this
work. In particular, we examine conditions on how both
the magnitude and location of negative weight edges in a
weighted graph impact the definiteness of the weighted
Laplacian. This is achieved by first providing general
results on how the signature of the weighted Laplacian
is related to certain associated matrices, including the
weighted edge Laplacian matrix [15] and another matrix
related to the cut space of a graph [2]. These results
are then used to make conclusions on the definiteness
of the weighted Laplacian. For the case of a graph with
a single negative edge weight, we demonstrate that the
definiteness of the Laplacian depends on the magnitude
of that weight and is intimately related to the effective
resistance between the incident nodes. This result is also
extended to graphs with multiple negative edge weights.
We demonstrate the utility of these results in the context
of a linear weighted consensus protocol showing how
careful selection of negative weight values can lead to a
clustering steady-state configuration.

The organization of the paper is as follows. Some
basic mathematical preliminaries related to graph theory
are given in the next sub-section. In Section II, results
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on the signature of the weighted Laplacian are provided.
The main results on the definiteness of the weighted
Laplacian and the connection to effective resistance is
presented in Section III. Section IV shows how these
results can be used in a weighted linear consensus
protocol. Finally, some concluding remarks are offered
in Section V.

Preliminaries: This work makes use of basic no-
tions from algebraic graph theory [2]. An undirected
weighted graph G = (V, E ,W) is a triple consisting
of the node set V , edge set E ⊆ V × V , and weight
function that maps each edge to a scalar value, W :
E → R \ {0}.Note that we do not require the weights
to be positive. We often collect the weights of all the
edges in a diagonal matrix W ∈ R|E|×|E| such that
[W ]kk =W(k) = wk with k = (i, j) ∈ E .

A spanning tree subgraph of G is a connected graph
T = (V, ET ) ⊆ G that contains no cycles. Similarly,
a spanning forrest subgraph of G is the graph F =
(V, EF) ⊆ G that contains no cycles (note that F can
be a disconnected graph). Every graph G can always be
expressed as the union of a spanning tree (or forrest if the
graph is not connected) and another subgraph containing
the remaining edges, i.e., G = T ∪ C (G = F ∪ C). The
subgraph C necessarily “completes cycles” in G, and is
defined as C = (V, EC) ⊂ G with EC = E \ ET (similarly
defined with a forrest instead of tree); we refer to this
as the cycle subgraph.

The incidence matrix of a graph, E(G) ∈ R|V|×|E| is
defined in the normal way.With an appropriate labeling
of the edges, we can always express the incidence matrix
as E(G) =

[
E(T ) E(C)

]
(E(G) =

[
E(F) E(C)

]
).

An important property of the incidence matrix is that
E(G)T1 = 0 for any graph G, where 1 is the vector
of all ones. For a more compact notation, we will write
E := E(G), ET = E(T ), EF = E(F), and EC = E(C).

II. THE SIGNATURE OF THE WEIGHTED LAPLACIAN

In this section we explore properties related to the
signature of the weighted Laplacian.1 Knowledge of the
signature can be used, for example, to draw conclusions
about the definiteness of that matrix. An important result
on the the signature of a matrix is Sylvester’s Law
of Inertia, which states that all congruent symmetric
matrices have the same signature [16].2

Recall that for a weighted graph with only positive
edge weights, one has σ(L(G)) = (|V| − c, 0, c), where

1The signature of a real symmetric matrix A, denoted by the triple
σ(A) = (n+, n−, n0), is the number of positive, negative, and zero
eigenvalues of the matrix.

2A square matrix A is congruent to a square matrix B of the same
dimension if there exists an invertible matrix S such that B = STAS.

c is the number of connected components of G [2]. For a
graph with negative weights, however, this is not true in
general. Furthermore, the number of eigenvalues at the
origin will no longer be a function of only the number
of connected components in the graph.

To understand how the presence of negative edge
weights influences the definiteness of the weighted
Laplacian, we consider the definiteness of certain associ-
ated matrices that are related via congruent transforma-
tions. In this direction, we first review the notion of the
edge Laplacian [15], and provide here an extension for
weighted graphs. For a weighted graph G = (V, E ,W),
the weighted edge Laplacian matrix is defined as

Le(G) =W
1
2ETEW

1
2 ∈ R|E|×|E|. (1)

We now present some basic results relating the
weighted edge Laplacian matrix to the graph Laplacian.

Proposition II.1 The weighted Laplacian matrix
L(G) = EWET is similar to the matrix[

Le(F)R(F,C)WRT
(F,C) 0

0 0c

]
, (2)

where G has c connected components, F ⊆ G is a
spanning forrest of G, and

R(F,C) =
[
I Le(F)−1ET

FEC
]
=
[
I T(F,C)

]
.

Proof: Define the transformation matrices

S =
[
EF NF

]
, S−1 =

[
Le(F)−1ET

F

NT
F

]
,

where IM[NF ] = span[N (ET
F )]. It is straightforward to

verify that the matrix in (2) equals S−1L(G)S.
The matrix Le(F)R(F,C)WRT

(F,C) := Less(F) is re-
ferred to as the essential edge Laplacian [17] (for a con-
nected graph with spanning tree T , we write Less(T )).
Indeed, if G is connected, then Less(F) has the same
non-zero eigenvalues as the weighted Laplacian. For a
more in depth discussion on the matrices R(F,C) and
T(F,C), please see [15], [17]. Note also that the matrix
Le(F)−1ET

F is the left-inverse of EF ; we denote this
matrix as EL

F . Proposition II.1 immediately leads to the
first result on the signature of the weighted Laplacian
and its relationship to the essential edge Laplacian.3

Theorem II.2 Assume G has c connected components
and σ(L(G)) = (n+, n−, n0). Then σ(Less(F)) =
(n+, n−, n0 − c).

3We use a slight abuse of terminology by referring to the signature
of Less(F) as it is not a symmetric matrix in general. However, it is
straight forward to show Less(F) is similar to a symmetric matrix,
and thus the meaning of σ(Less(F)) is clear.
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The result of Proposition II.1 and Theorem II.2 shows
that the presence of negative edge weights can introduce
both negative and zero eigenvalues. The next result
relates the signature of the essential edge Laplacian
matrix to the matrix R(F,C)WRT

(F,C).

Corollary II.3

σ(Less(F)) = σ(R(F,C)WRT
(F,C)).

Proof: Using the similarity transformation matrix
Le(F)

1
2 we have that Le(F)R(F,C)WRT

(F,C) is similar to
Le(F)

1
2R(F,C)WRT

(F,C)Le(F)
1
2 . This matrix is congru-

ent to R(F,C)WRT
(F,C) and thus has the same signature

as Le(F)R(F,C)WRT
(F,C).

Corollary II.4 Assume G has c connected
components and σ(L(G)) = (n+, n−, n0). Then
σ(R(F,C)WRT

(F,C)) = (n+, n−, n0 − c).

The matrix R(F,C)WRT
(F,C) turns out to be closely

related to many combinatorial properties of a graph. For
example, the rows of the matrix R(F,C) form a basis
for the cut-space of the graph [2]. This matrix is also
intimately related to the notion of effective resistance
of a graph, which will be discussed in the sequel.
Corollary II.4 thus shows that studying the definiteness
of the weighted Laplacian can be reduced to studying the
matrix R(F,C)WRT

(F,C) which contains in a more explicit
way information on how both the location and magnitude
of negative weight edges influence it spectral properties.

III. EFFECTIVE RESISTANCE AND THE
DEFINITENESS OF THE WEIGHTED LAPLACIAN

The results of Section II reveal that σ(L(G)) is related
to σ(R(F,C)WRT

(F,C)). In this section, we exploit the
structure of this matrix to show how the negative edge
weights affect the definiteness of the weighted Laplacian.
The derived conditions turn out to be related to the notion
of the effective resistance of a graph.

It is well known that the weighted Laplacian of a
graph can be interpreted as a resistor network [18]. Each
edge in the network can be thought of as a resistor
with resistance equal to the inverse of the edge weight,
rk = W(k)−1 = w−1k for k ∈ E .4 The resistance
between any two pairs of nodes can be determined using
standard methods from electrical network theory [18]. It
may also be computed using the Moore-Penrose pseudo-
inverse of the graph Laplacian, denoted L(G)†.

4Thus, the edge weight wk can be interpreted as an admittance.

Definition III.1 ( [18]) The effective resistance be-
tween nodes u, v ∈ V in a weighted graph, denoted
Ruv(G), is

Ruv(G) = (eu − ev)
TL†(G)(eu − ev)

= [L†(G)]uu − 2[L†(G)]uv + [L†(G)]vv,
where eu is the indicator vector for node u, that is eu =
1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance be-
tween two nodes is related to the matrix R(T ,C)WR(T ,C).
In this direction, we first derive an expression for the
pseudo-inverse of the graph Laplacian using the essential
edge Laplacian matrix.

Proposition III.2 Let G be a connected graph and as-
sume σ(L(G)) = (n+, n−, 1). Then the pseudo-inverse
of the weighted graph Laplacian can be expressed as

L†(G) = (EL
T )

T
(
R(T ,C)WRT

(T ,C)

)−1
EL
T

= (EL
T )

TLess(T )−1ET
T , (3)

where EL
T = Le(T )−1ET

T is the left-inverse of ET .

Proof: From Theorem II.2 we conclude the essen-
tial edge Laplacian is invertible and it follows that

Less(T )−1 =
(
R(T ,C)WRT

(T ,C)

)−1
Le(T )−1,

and

L†(G) = S

[ (
R(T ,C)WRT

(T ,C)

)−1
Le(T )−1 0

0 0

]
S−1,

where S is the transformation matrix defined in Propo-
sition II.1, and (3) follows directly.

From Proposition III.2, it is clear that the effective
resistance between nodes u, v ∈ V can be expressed as

Ruv(G) =(eu−ev)
T (EL

T )
T
(
R(T ,C)WRT

(T ,C)

)−1

EL
T (eu−ev).

We now show that this equivalent characterization of
the effective resistance is useful for understanding the
definiteness of the weighted Laplacian.

Theorem III.3 Assume that G = (V, E ,W) has one
edge with a negative weight, e− = (u, v) ∈ E . Let
G+ = (V, E \ {e−},W) and G− = (V, e−,W) and
assume G+ is connected. Furthermore, let Ruv(G+)
denote the effective resistance between nodes u, v ∈ V
over the graph G+. Then L(G) is positive semi-definite
if and only if |W(e−)| ≤ R−1uv (G+).

Proof: Denote by E− the incidence matrix of G−,
and E+ = ET+R(T+,C+) the incidence matrix of G+ =
T+∪C+. The Laplacian matrix can now be expressed as

L(G) = ET+R(T+,C+)W+R
T
(T+,C+)E

T
T+
−E−|W(e−)|ET

−.
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Ruv(G+)

u v

r�

Fig. 1. Resistive network interpretation with one negative weight edge.

By the Schur complement, L(G) ≥ 0 if and only if[ |W(e−)|−1 ET
−

E− ET+R(T+,C+)W+R
T
(T+,C+)E

T
T+

]
≥ 0.

Applying a congruent transformation to the above matrix
using

S =

[
I 0

0
[
(EL
T+

)T 1
] ]

leads to the following LMI condition,[
|W(e−)|−1 ET (EL

T+
)T

EL
T+
E− R(T+,C+)W+R

T
(T+,C+)

]
≥ 0.

Applying again the Schur complement, we obtain the
equivalent condition that the matrix

|W(e−)|−1 − ET
−(E

L
T+)

T (R(T+,C+)W+R
T
(T+,C+))

−1EL
T+E

must also be positive semi-definite. Observe now that

ET
−(E

L
T+)

T (R(T+,C+)W+R
T
(T+,C+))

−1EL
T+E− = Ruv(G+).

This then leads to the desired conclusion that
|W(e−)| ≤ R−1uv (G+).

The above result has a very intuitive physical inter-
pretation. The entire network G+ can be considered as
a single lumped resistor between nodes u and v with
resistanceRuv(G+). The negate-weight edge can thus be
thought of adding another resistor in parallel between the
nodes, as in Figure 1. The equivalent resistance between
u and v is well-known to be

Ruv(G) =
Ruv(G+)r−
Ruv(G+) + r−

.

If r− is a negative resistor, then choosing r− =
−Ruv(G+) corresponds to an equivalent resistance that
is infinite, i.e., an open circuit. The open circuit can be
thought of as a cut between the terminals u and v.

The result in Theorem III.3 can be generalized to
multiple negative weight edges with some additional
assumptions on how those edges are distributed in the
graph. In this direction, let E− and E+ denote, respec-
tively, the edges with negative and positive weights. For
each edge k = (u, v) ∈ E−, define the set Pk ⊆ E+ to

be the set of all edges in G+ = (V, E+) that belong to a
path connecting nodes u to v,

Pk = {e ∈ E+ | k = (u, v) ∈ E−,∃ a path in G+
from u to v using edge e} . (4)

Let G+(Pk) ⊆ G+ be the subgraph induced by the
edges in Pk.5 Note that if Pk ∩ Pk′ = ∅ for edges with
distinct nodes (i.e. k = (u, v) and k′ = (u′, v′) ∈ E−),
then there exists no cycle in G+ containing the nodes
u, v, u′, v′.An important class of graphs that can admit
such a partition are the cactus graphs [19]. Using this
characterization, the following statement on effective
resistance with multiple negative weight edges can be
stated as follows.

Theorem III.4 Assume that G+ is connected and
|E−| > 1. Let Rk(G+) denote the effective resistance
between nodes u, v ∈ V with k = (u, v) ∈ E− over the
graph G+, and let R = diag{R1(G+), . . . ,R|E−|(G+)}.
Furthermore, assume that Pi ∩Pj = ∅ for all i, j ∈ E−,
where Pi is defined in (4). Then the weighted Laplacian
is positive semi-definite if and only if |W−| ≤ R−1.

Proof: As in the proof of Theorem III.3, we
consider the LMI

|W−|−1−ET
−(E

L
T+)

T (R(T+,C+)W+R
T
(T+,C+))

−1EL
T+E− ≥ 0

Due to the location of the negative weight edges
assumed in the graph, it can be verified that the matrix
ET
−(E

L
T+

)T (R(T+,C+)W+R
T
(T+,C+))

−1EL
T+
E− is in fact a

diagonal matrix with Rk(G+) for k = 1, . . . , |E−| on the
diagonal, denoted as R. To see this, observe that EL

T+
E−

is a {0,±1} matrix that describes which edges in the
spanning tree T+ can create a cycle with each edge in E−
(this is related to the matrix T(T ,C) used in Proposition
II.1 since T+ = T and therefore E− ⊆ Ec). Observe
also that an edge k ∈ E− can only be incident to nodes
in the subgraph G+(Pk). Therefore, the matrix EL

T+
E−

has a partitioned structure (after a suitable relabeling of
the edges) such that the kth column of EL

T+
E− will

contain non-zero elements corresponding to edges in
T+ ∩ G+(Pk).

The LMI condition can now be expressed as
|W−|−1 ≥ R which implies that |W−| ≤ R−1 con-
cluding the proof.

Theorem III.4 also has the same physical interpreta-
tion as Theorem III.3. Indeed, the resistance between
two nodes contained in a sub-graph G+(Pk) is not
determined by any other edges in the network. Both

5Thus, G+(Pk) = (V(Pk), Pk) where V(Pk) ⊆ V are the nodes
incident to edges in Pk .
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Theorems III.3 and III.4 provide a clear characterization
of how negative weight edges can impact the definiteness
of the weighted Laplacian, and how that is related to
the effective resistance in the graph. In fact, we also can
observe an additional property relating the total effective
resistance between all nodes incident to edges in E− and
the definiteness of the graph, independent of the actual
location of these edges in the network.

Corollary III.5 Assume that G+ is connected. If the
weighted Laplacian is positive semi-definite, then∑

k∈E−
|W(k)|−1 ≥ Rtot,

where

Rtot=trace
[
ET

−(E
L
T+)

T (R(T+,C+)W+R
T
(T+,C+))

−1EL
T+E−

]
.

Corollary III.5 indicates that a weighted Laplacian
with negative weights can still be positive semi-definite,
and in that case the total magnitude of the negative
weight edges is closely related to the total effective
resistance in the network (defined over the nodes incident
to E−). The notion of total effective resistance has also
appeared in works characterizing the H2 performance of
certain multi-agent networks [20]–[22]. While Corollary
III.5 only provides a sufficient condition for the definite-
ness of the weighted Laplacian, it nevertheless reinforces
its connection to the notion of effective resistance.

IV. CLUSTERING WITH NEGATIVE WEIGHTS

In this section we demonstrate how the previous
results can be used to design edge weights for a linear
weighted consensus protocol that results in bounded
trajectories that are clustering. That is, the agents com-
prising the system form clusters, and agents within a
single cluster reach agreement on a common state that
is different than agents in other clusters.

In this direction, we consider the linear weighted
consensus protocol over a weighted and undirected graph
on |V| = n nodes, G = (V, E ,W) [7],

ẋ(t) = −L(G)x(t). (5)

As an illustrative example, consider the graph in
Figure 2 (without the edge (u, v)) with edge weights
wi = 1, i = 1, . . . , 8. It can be verified that the effective
resistance between nodes u and v is Ruv(G) = 4.
Consider now the graph Ĝ = (V, E ∪ {(u, v)}, Ŵ),
and assume that the added edge has a negative weight
(i.e., wuv = Ŵ((u, v)) < 0). Theorem III.3 can now
be used to conclude that any edge weight satisfying

w1 w2

w3

w4 w5

w6

w7w9 w8
u v

(a)

Fig. 2. A graph without and with a negative weight edge (in red/double
line).

wuv ≥ −0.25 guarantees that the weighted Laplacian
will be positive semi-definite.

In the context of the weighted consensus protocol, this
result can be used to produce very different trajectories
of the system. For example, even in the presence of a
negative weight, the agreement protocol over the graph
Ĝ can still reach agreement among all agents. Figure 3(a)
demonstrates this using wuv = −0.1 as the weight, and
σ(L(Ĝ)) = (8, 0, 1). More interesting are the trajectories
generated by the consensus protocol when the negative
weight edge is exactly matched to the effective resis-
tance between the incident nodes. Figure 3(b) shows the
trajectories of the system for edge weight wuv = −0.25.
In this case it can be verified that L(Ĝ) is still positive
semi-definte, but the multiplicity of the zero-eigenvalue
has increased, i.e., σ(L(Ĝ)) = (7, 0, 2). The trajectories
generate a clear clustered structure.

In fact, using the results form Theorem III.4, we
can formulate a very precise statement regarding the
clustering structure of a weighted consensus protocol
with negative edge weights. Due to space limitations, we
provide here a proof for the clustering structure obtained
by a graph with a single cycle and single negative weight
edge.

Proposition IV.1 Consider the consensus protocol (5)
over a connected weighted graph G. Assume that G
contains only one cycle, G+ is connected, and there
is only one negative weight edge e− = (u, v) with
|W−(e−)| = R−1uv (G+). Then for any initial condition,
the trajectories generated by (5) form q clusters, where
q is the number of components in the graph obtained by
removing all the edges in G contained in the cycle.

Proof: Observe that G+ is in fact a spanning
tree (T ), and the cycle subgraph C = G−. By Corol-
lary II.4 it follows that the matrix R(T ,C)WR(T ,C)

has one less eigenvalue at the origin than L(G). We
now show that R(T ,C)WR(T ,C) has one eigenvalue at
the origin. From the assumption on the structure of
G, it can be shown that [T(T ,C)]i = 1 whenever
edge i in T is in the cycle, and 0 otherwise. Thus,
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(a) Synchronization is achieved
even with a negative edge weight
(wuv = −0.1).
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(b) Cluster synchronization from
a negative edge weight (wuv =
−0.25).

Fig. 3. The consensus protocol for the graph in Figure 2.

R(T ,C)WR(T ,C) = W+ + W−(e−)T(T ,C)T
T
(T ,C) is sim-

ilar to Ruv(G+)I − W
− 1

2
+ T(T ,C)T

T
(T ,C)W

− 1
2

+ . The ma-

trix W
− 1

2
+ T(T ,C)T

T
(T ,C)W

− 1
2

+ is a rank-one matrix with
eigenvalue equal precisely to Ruv(G+) showing that
R(T ,C)WR(T ,C) has only one eigenvalue at the origin.

Having verified that L(G) contains two eigenvalues at
the origin, we are now able to explicitly construct a null-
space eigenvector orthogonal to 1. Such a vector must
satisfy

ETx =W−1
[
T(T ,C)

−1

]
.

This vector will have a characteristic structure such that
all entries corresponding to nodes in the cycle have
unique values and sum to zero, and the remaining en-
tries must be constant corresponding to each component
obtained by removing all the edges in G contained in the
cycle. The trajectories generated by (5) will thus reach
agreement on each of these components resulting in the
claimed clustering structure.

V. CONCLUDING REMARKS

This work provided an analysis of the definiteness of
the weighted Laplacian with negative edge weights. It
was shown that the signature of the weighted Laplacian
is related to two special matrices, the essential edge
Laplacian and the matrix R(F,C)WRT

(F,C). These matrices
were then shown to be intimately related to the notion
of effective resistance in a graph. In this way, we could
conclude that the definiteness of the weighted Laplacian
depends on both the magnitude of the negative edge
weights and their location in the graph. In particular,
a single negative edge weight must have a magnitude
inversely proportional to the effective resistance between
the incident nodes to produce an indefinite weighted
Laplacian. These results were also extended to more
general scenarios, and their utility demonstrated on a
linear weighted consensus protocol.
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