
Cycles and Sparse Design of Consensus Networks

Daniel Zelazo, Simone Schuler, and Frank Allgöwer

Abstract— This work considers the role that cycles play
in consensus networks. We show how the presence of cycles
improve the H2 performance of the consensus network. In
particular, we provide an explicit combinatorial characteri-
zation relating the length of cycles to the improvement in
the performance of the network. This analysis points to a
general trade-off between the length of the cycle and how many
edges the cycle shares with other cycles. These analytic results
are then used to motivate a design procedure for consensus
networks based on an ℓ1 relaxation. This relaxation method
leads to sparse and {0, 1}-solutions for the design of consensus
graphs. A feature of the ℓ1 relaxation is the ability to include
weighting terms in the objective. The choice of weighting
functions are related to the combinatorial properties of the
graph. The applicability of this scheme is then shown via a set
of numerical examples.

I. INTRODUCTION

As the scale of multi-agent systems increases, it becomes
essential to understand how certain features of the inter-
connection structure affect the performance, stability, and
behavior of the entire network. The dynamics of each agent
comprising these systems and the interaction structure that
couples them leads to a highly complex network that requires
new perspectives and tools for their analysis [1].

In an attempt to better understand the role of the inter-
connection structure of these systems, many simpler models
have been proposed. Of these models, the consensus protocol
has emerged as a canonical system for multi-agent networks.
The appeal of this model is the transparency between its
dynamic behavior and the properties of the graph describing
the interaction structure. Despite its simplicity, the consensus
protocol has proven to be an essential component of many
multi-agent systems ranging from formation control to dis-
tributed computation and sensor fusion [2], [3].

The importance of consensus networks requires a complete
theory closing the loop between analysis and design. Notions
of systems performance, such as the H2 norm, should
be interpreted from the perspective of the interconnection
structure. There have been recent contributions attempting to
connect certain properties of the underlying graph with the
dynamic behavior of the system [4]–[6]. A detailed treatment
of the H2 performance for consensus networks was recently
given in [7]. Despite this progress, it still remains unclear

The authors thank the German Research Foundation (DFG) for fi-
nancial support within the Cluster of Excellence in Simulation Tech-
nology (EXC 310/1) at the University of Stuttgart and within the Pri-
ority Program 1305 ”Control Theory of Digitally Networked Dynam-
ical Systems”. The authors are with the Institute for Systems The-
ory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9,
70550 Stuttgart, Germany, { daniel.zelazo, simone.schuler,
frank.allgower}@ist.uni-stuttgart.de.

how basic combinatorial properties of the network, such as
spanning trees and cycles, directly impact its performance.

A first contribution of this work, therefore, is a charac-
terization of how cycles affect the H2 performance of a
consensus seeking network. The main analytical tool used
to derive this result is based on a companion system, known
as the edge agreement problem [7]. We consider this system
with noises and disturbances entering both the process and
the measurement and show that cycles can improve the
performance. In particular, we show that the length of a cycle
and the number of edges it shares with other cycles affects
how much it can improve the H2 performance.

The combinatorial understanding of performance moti-
vates new perspectives for the design of consensus networks.
Many approaches related to the synthesis of consensus
networks have focused on designing graphs to improve the
rate of convergence using, for example, convex relaxations,
mixed-integer programs, or simple heuristics [8]–[11]. Re-
lated design problems, such as leader selection, have also
been considered with an H2 performance objective [12],
[13].

The second contribution of this work is a methodology for
designing consensus networks. We formulate an optimization
problem that aims to add a fixed number of edges to
an existing network with the objective of maximizing the
improvement of the H2 performance. While this problem
can be considered as a combinatorial one, we develop an ℓ1
relaxation method for solving it. An important observation
regarding the problem formulation is that it can be stated as
an ℓ0-optimization problem, which is a measure of sparsity
in a vector. Using recent results from compressive sensing,
we are able to relax and re-formulate the problem as an
ℓ1-optimization problem [14], [15]. The ℓ1-optimization for-
mulation is known to achieve sparse solutions [16], [17], and
we demonstrate this in our set-up. An important aspect of
the relaxation is the introduction of a weighting mechanism
for the optimizer. It turns out this mechanism serves as an
important engineering tuning parameter, and we discuss how
the combinatorial insights gained from the analysis leads
to useful weighting functions, such as cycle lengths and
correlations.

This paper is organized as follows. Section §II reviews
some fundamental properties of graphs and their algebraic
representations. The edge agreement problem and a combi-
natorial interpretation of its H2 performance is given in §III.
In §IV we formulate the synthesis problem and derive the
ℓ1-relaxation method. Numerical simulations are presented
in §V. Finally, we offer some concluding remarks in §VI.

51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

978-1-4673-2064-1/12/$31.00 ©2012 IEEE 3808978-1-4673-2066-5/12/$31.00 ©2012 IEEE

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:54 UTC from IEEE Xplore. Restrictions apply.

A. Notations

The notation used is standard. The set of real numbers is
denoted by R. For a vector x ∈ Rn, its transpose is given
by xT and the ith component by xi; The ijth element of
a matrix A is denoted [A]ij . The cardinality of a set M is
denoted as |M |. The ℓ1-norm of a vector x ∈ Rn is defined
as ∥x∥1 =

∑
i |xi|. The ℓ0-norm of a vector is defined as

∥x∥0 = |{i |xi ̸= 0}|, the number of non-zero elements in
the vector x.1

II. GRAPH CYCLES AND THE EDGE LAPLACIAN

We first provide a brief review of concepts from graph
theory [18]. A graph, denoted G = (V, E), consists of a
set of nodes V = {v1, . . . , vn}, and a set of edges E ⊆
V × V , describing the incidence relation between pairs of
nodes. In this work we deal with undirected graphs but at
times will assign an arbitrary orientation to each edge. In
this way, we denote an edge e ∈ E with the ordered pair
(vi, vj) ∈ V × V as the directed edge connecting vi to vj ;
we also use the notation vi ∼ vj to denote that these two
nodes are connected (or adjacent). A path is a sequence of
distinct nodes such that consecutive nodes are adjacent to
each other. If the initial and terminal node of a path are the
same, it is called a cycle. The length of a path (cycle) is the
number of edges traversed in the path sequence. For example,
a triangle is a cycle of length 3. The diameter of a graph,
denoted diam[G], is the maximum distance between any two
nodes, where the distance is the length of the shortest path.
A graph is connected if there exists a path between any pair
of nodes; otherwise it is called disconnected. In this work,
we always assume connected graphs.

Any connected graph G = (V, E) can be decomposed
(non-uniquely) into a spanning tree, denoted T = (V, Eτ),
and a graph we term the cycle graph C = (V, E \Eτ). In this
way, we can always express a graph as the union of a tree
and cycle graph, i.e. G = T ∪ C. Note that the edges in C
are used to create cycles in the graph G.

Of particular use in this work are the algebraic represen-
tations of graphs [18]. The incidence matrix of the graph G
with arbitrary orientation, E(G) ∈ R|V|×|E|, is a {0,±1}-
matrix with rows and columns indexed by the vertices and
edges of G such that [E(G)]ik has the value ‘+1’ if node i
is the initial node of edge k, ‘-1’ if it is the terminal node,
and ‘0’ otherwise. Using an appropriate labeling of the edges
in the graph, we can always express the incidence matrix in
terms of the subgraphs T and C for a particular choice of
spanning tree,

E(G) =
[
E(T) E(C)

]
.

This representation aids in the interpretation of several results
relating the sub-graphs T and C. For example, a signed
path vector ξ ∈ RE is a {0,±1}-vector corresponding to
a path in G, such that ξi takes the value ‘+1’ (‘-1’) if edge
ei ∈ E is traversed positively (negatively), and ‘0’ otherwise.
Any path, therefore, can be expressed using only edges from

1Note that the ℓ0-norm is not a true norm and we use the term to facilitate
the understanding that it represents a sparsity measure for the vector x.

the sub-graph T . Observe that the length of a path can be
computed from its signed path vector as ξT ξ. Furthermore,
a cycle can be expressed using exactly one edge from C, and
the remaining edges from T .

The notion that cycles are dependent on edges in a
spanning tree can be formalized algebraically by the notion
of linear dependence of columns of the incidence matrix. We
define the matrix T(T ,C) ∈ R|V|×|Ec| as [7]

T(T ,C) =
(
E(T)E(T)T

)−1
E(T)TE(C), (1)

satisfying E(T)T(T ,C) = E(C).
In the following, we express T(T ,C) in terms of its columns,

T(T ,C) =
[
c1 · · · c|Ec|

]
, and using a slight abuse in

convention, we will also refer to the ith column of T(T ,C) as
the ith cycle of the graph G. Similarly, we will refer to the ith
column of E(T) with τi as the ith edge in the spanning tree.
At times, we will refer to the matrix R(T ,C) =

[
I T(T ,C)

]
.

Using this notation, note that E(G) = E(T)R(T ,C).
The matrix T(T ,C) also encodes information related to the

length of each cycle, denoted l(ci), and correlations between
different cycles in G. In this direction, we first define the
notion of edge-disjoint cycles and correlated cycles.

Definition 1: Two cycles are said to be edge-disjoint if
they do not have any edges in common. Two cycles are
correlated if they are not edge-disjoint.
For correlated cycles, we denote the quantity sij as the
number of edges cycles ci and cj share; note that |cTi cj | =
sij . Also observe that cTi ci = l(ci) − 1, the length of cycle
ci minus 1. Figure 1 shows a graph with cycles illustrating
the definitions.

Proposition 1: The matrix T(T ,C)T
T
(T ,C) encodes the fol-

lowing information about the cycles in G.
1) [T(T ,C)T

T
(T ,C)]ii is the number of times edge τi is used

to construct the cycles in C.
2) [T(T ,C)T

T
(T ,C)]ij is the number of times edges τi and

τj are used in the same cycle. The sign of the entry
is positive if both edges are traversed in the same
direction, and negative otherwise.

3) (I + T(T ,C)T
T
(T ,C)) is invertible.

The properties described in Proposition 1 will prove useful
in the sequel.

The matrix T(T ,C) becomes useful when considering an
edge-variant of the Laplacian, that we term the edge Lapla-
cian [7],

Le(G) := E(G)T E(G). (2)

One of the main results in [7] showed that the edge Laplacian
is related to the graph Laplacian via a similarity transforma-
tion. We summarize the results here and refer the reader to
[7] for the proof.

Theorem 1 ([7]): The graph Laplacian for a connected
graph L(G) = E(G)E(G)T with cycles is similar to the
matrix [

Le(T)R(T ,C)R
T
(T ,C) 0

0 0

]
.

We refer to the matrix Le(T)R(T ,C)R
T
(T ,C) ∈ R|ET |×|ET |

as the essential edge Laplacian. A direct consequence of
Theorem 1 is that for any connected graph the essential

3809

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:54 UTC from IEEE Xplore. Restrictions apply.

c1

c2

c3

v4

v1

v2

v3

v5

v6

Fig. 1. The cycles c1 and c2 are correlated, but are edge-disjoint with c3.

edge Laplacian has only positive eigenvalues, and they are
precisely the non-zero eigenvalues of L(G). Furthermore,
when the underlying graph is a tree (i.e. G = T), then
Le(T)R(T ,C)R

T
(T ,C) = E(T)TE(T) is a symmetric positive-

definite matrix.
The essential edge Laplacian is the main tool used to de-

rive an edge variant of the consensus protocol. It is important
to emphasize that the similarity transformation discussed in
Theorem 1 preserves both the algebraic properties of the
Laplacian, along with structural properties relating the graph
to its matrix representation. The benefit of this transformation
is explored in the sequel.

III. PERFORMANCE OF CONSENSUS NETWORKS

The standard noise-free consensus model is built on a
collection of n single integrator agents that exchange relative
state information over an information exchange graph to
generate a control [1],

ẋ(t) = −L(G)x(t). (3)

Noises and external disturbances can be injected into the
process as ẋi(t) = ui(t) + wi(t), and into the measurement
for use in generating a control as ui(t) =

∑
j∈N (vi)

(xj(t)−
xi(t)+vij(t)).2 This leads to a two-port representation of the
consensus protocol and provides a framework for considering
the presence of exogenous inputs, such as reference signals
and noises entering the measurement and process. Using the
result of Theorem 1 one can obtain a minimal realization;
such a realization leads to what we term the edge agreement
problem. Its derivation is given in [7] and the reader is
referred to that work for details. We present here only the
minimal system.

Σe(G) :

ẋτ (t) = −Le(T)R(T ,C)R

T
(T ,C)xτ (t) +[

E(T)T −Le(T)R(T ,C)

] [w(t)
v(t)

]
z(t) = xτ (t).

(4)

Here, the transformed state vector xτ (t) ∈ R|Eτ | can be
interpreted as a state associated with the edges of the
spanning tree T . In this work we treat T as a given skeletal
system for the complete consensus network. In this regard,
we only observe the states along the tree, xτ (t), as the
controlled variable in the edge agreement problem.3

2For ease of presentation we assume the noises are uncorrelated white
Gaussian noises with unit covariance.

3As opposed to considering RT
(T ,C)x(t) as the controlled variable.

Σe(T)

[

w(t)
v(t)

]

z(t)

u(t)

T(T ,C)T
T

(T ,C)

Fig. 2. Cycles as a feedback mechanism.
An interesting interpretation of the minimal system Σe(G)

is that the cycles in the graph can be viewed as an internal
feedback mechanism for the system. To elucidate on this
idea, consider the following dynamic system over a spanning
tree T ,

ẋτ (t) = −Le(T)xτ + Le(T)u(t) + Γ

[
w(t)
v(t)

]
, with

a state-feedback control u(t) = −T(T ,C)T
T
(T ,C)xτ (t), and

Γ =
[
E(T)T −Le(T)R(T ,C)

]
. The state-feedback gain,

therefore, can be viewed as a cycle-creating gain, and thus
leads to the feedback interpretation. This is visualized in
Figure 2.

Cycles as a feedback mechanism can lead to a deeper
understanding of their role in consensus. Indeed, when cast
as a feedback problem one can conclude that cycles can
be used to reduce the sensitivity of the system to external
disturbances. The two-port feedback paradigm in control
systems provides a powerful framework for formulating and
solving problems related to optimal controller design [19].
Therefore, based on this new interpretation of cycles as
feedback, one can now attempt to cast problems related
to the optimal design of graphs to that of the optimal
synthesis of feedback controllers. We will return to this after
first characterizing the performance of the edge agreement
problem.

In the context of consensus systems, the H2 performance
captures how noises entering the system affects the asymp-
totic deviation of the states from the consensus value. The
H2 performance was originally considered in [7] and we
summarize the main result here.

Theorem 2 ([7]): The H2 performance of edge agree-
ment problem (4) is

∥Σe(G)∥22 =
1

2
tr
[
(R(T ,C)R

T
(T ,C))

−1
]
+ (n− 1). (5)

Theorem 2 states that the performance is intimately related
to the cycle structure of the graph. However, at first glance
it is difficult to decipher the impact of cycles by examining
the matrix (R(T ,C)R

T
(T ,C))

−1. To resolve this, we first consider
how the performance changes by adding a single edge to an
already existing graph.

Theorem 3: Consider the edge agreement problem over
the graph G = (V, E) with spanning tree T and its associated
performance ∥Σe(G)∥22. Adding a single edge e ∈ V ×V \E
to the graph will always improve the performance, and the
resulting system has an H2 performance of

∥Σe(G ∪ e)∥22 = ∥Σe(G)∥22 −(
R(T ,C)R

T
(T ,C)

)−1
ccT

(
R(T ,C)R

T
(T ,C)

)−1

2(1 + cT
(
R(T ,C)RT

(T ,C)

)−1
c)

, (6)

3810

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:54 UTC from IEEE Xplore. Restrictions apply.

where c is the cycle formed by adding the new edge e with
the underlying spanning tree T .

Proof: The proof is a direct application of the Sherman-
Morrison formula for the inverse of a rank-one update [20].
Note that the second term on the right-hand side of (6) must
always be positive, showing that the performance always
improves with the addition of an edge.

An immediate corollary of Theorem 3 reveals the essential
combinatorial feature of this result.

Corollary 1: Consider the edge agreement problem where
the underlying graph is a spanning tree, T = (V, Eτ), and
consider a single edge e ∈ (V×V)\Eτ . Then the graph T ∪e
has one cycle, c, and the performance of the edge agreement
problem is given as

∥Σe(T ∪ e)∥22 = ∥Σe(T)∥22 −
1

2
(1− l(c)−1). (7)

Proof: Observe that for a spanning tree R(T ,C) = I .
The proof follows from the interpretation of T(T ,C) given in
§II and the result of Theorem 3.

An interesting and important consequence of Corollary 1
is the relation of the cycle length to the improvement in
performance. Indeed, when adding only a single edge to
a tree, long cycles will yield the largest improvement in
the performance. However, it is also easy to verify from
Corollary 1 that adding many short and edge-disjoint cycles
can improve the performance more than fewer long cycles.

It is also interesting to consider the affect of adding cycles
that are correlated.

Corollary 2: Consider the edge agreement problem where
the underlying graph is a spanning tree, T = (V, Eτ), and
consider adding 2 edges e1, e2 ∈ Eτ , such that the new
edges add 2 new cycles. Then the performance of the edge
agreement problem is given as

∥Σe(T ∪ {e1, e2})∥22 = ∥Σe(T)∥22 −(
1− l(c1) + l(c2)

2(l(c1)l(c2)− s212)

)
. (8)

Proof: The matrix T(T ,C) must have two columns
and consequently T(T ,C)T

T
(T ,C) has rank 2. The non-zero

eigenvalues of T(T ,C)T
T
(T ,C), denoted µi, are the same as the

non-zero eigenvalues of

TT
(T ,C)T(T ,C) =

[
l(c1)− 1 ±s12
±s12 l(c2)− 1

]
.,

which can be determined analytically. The result can then be
obtained using the Sherman-Morrison formula for the inverse
of a rank-one update [20].

Corollary 2 leads to the interpretation that correlated
cycles are not as beneficial as edge-disjoint cycles. In this
direction, we observe that there is a fundamental performance
tradeoff that must be considered when adding edges to a
consensus network. On the one hand, long and edge dis-
joint cycles provide the greatest performance improvement.
However, longer cycles are also more likely to be correlated
with other cycles. These insights will prove important when
considering the design of consensus networks.

IV. DESIGN OF CONSENSUS NETWORKS

The analysis results provide a combinatorial interpretation
of system-theoretic properties of the consensus network.
More importantly, these results can be used as guidelines for
considering the design of consensus networks. When com-
bined with the feedback interpretation of Figure 2, we can
consider formal approaches for the synthesis of consensus
systems. The synthesis problem we consider then takes the
following form.

Problem 1 (Consensus Design): Consider a consensus
network over a spanning tree T = (V, Eτ) and a set of
candidate edges in Ec = (V × V \ Eτ). Add k edges to
T from the set Ec that leads to the largest improvement in
the H2 performance of the edge agreement problem. That is,
solve the following optimization problem:

min
T(T ,C)∈R|V|×k

∥Σe(G)∥2, (9)

subject to the constraint that T(T ,C) satisfies the relationship
induced by (1).

The main challenge associated with Problem 1 is that the
decision to add a new cycle to the tree is a binary one; either
a candidate edge is added or not added. This means that Prob-
lem 1 falls under the realm of mixed-integer programming
(MIP), implying it is a computationally difficult problem to
solve [21]. We address this problem by considering an ℓ1
relaxation of the problem. Before discussing the relaxation,
we first formulate a more detailed description of the problem
(9).

To begin, note that given a spanning tree T = (V, Eτ),
all the candidate edges that can be added belong to the set
Ec = (V×V\Eτ) with cardinality (1/2)(n−1)(n−2). The se-
lection of edges can be equated to the determining of weights
wi ∈ {0, 1} assigned to each edge in Ec. In this direction, the
essential edge Laplacian for an arbitrary graph with spanning
tree T can be represented as Le(T)

(
I + T(T ,T)WTT

(T ,T)

)
,

where W = diag{w1, . . . , w|Eτ |}, and T is the complement
of the graph T , with edge-set Ec.

The two-port feedback interpretation of the edge agree-
ment problem leads to a standard transformation of the
objective in (9) to a (mixed-integer) semi-definite program;
see for example [22].

min
M,wi

tr [M] (10a)

s.t.
[

M I
I I + T(T ,T)WT(T ,T)

]
≥ 0 (10b)∑

i

wi = k, wi ∈ {0, 1} (10c)

A common strategy for relaxing this integer program is
by relaxing the integer constraints to a box constraint; the
weights can take values continuously on the interval [0, 1].
The main drawback of this approach is there will be no
guarantee that the solution will be integer, or even sparse.
An attempt to force sparse solutions is by reformulating the
objective (10a) by including an ℓ0 objective, tr [M] + ∥w∥0.

3811

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:54 UTC from IEEE Xplore. Restrictions apply.

Note, however, that optimization of the ℓ0 norm is still
combinatorial [14]. Similar to the convex relaxation for rank
minimization in [23], we will use the convex envelope of
∥w∥0 defined next.

Let the map f be defined as f : X 7→ R, where X ⊆ Rn.
The convex envelope of f (on X) , denoted fenv, is defined
as the point-wise largest convex function g such that g(x) ≤
f(x) for all x ∈ X.

Lemma 1 ([24]): The convex envelope of the function
f = ∥x∥0 =

∑n
i=1 |sign(xi)| on X = {x ∈ Rn|∥x∥∞ ≤ 1}

is fenv(x) = ∥x∥1 =
∑n

i=1 |xi|.
With this, we can relax the non-convex ℓ0-minimization with
the convex ℓ1-minimization objective. note that this can be
solved using linear programming. Additionally, this is the
best possible convex relaxation since the ℓ1-norm is the
convex envelope of the ℓ0-norm.

As described in [16], reweighted ℓ1-minimization can be
used to improve the results of the minimization. In this
direction, weights mi > 0 can be assigned to each variable
wi as

min
M,wi

tr [M] +

n∑
i=1

miwi. (11)

These weights should be considered as free design param-
eters. In fact, in the context of the results of §III, the weights
can be chosen to promote or discourage certain edges from
appearing; for example, edges forming long cycles or edge-
disjoint cycles.

This brings us to the complete ℓ1-relaxation of Problem 1,

min
M,wi

αtr [M] + (1− α)
∑
i

miwi (12a)

s.t.
[

M I
I I + T(T ,T)WT(T ,T)

]
≥ 0 (12b)∑

i

wi = k, 0 ≤ wi ≤ 1. (12c)

Here we have also introduced a weighting factor α ∈ [0, 1]
as a tuning parameter for the relative emphasis on each term
in the objective function.

We now discuss possible weighting options for the relaxed
version. In the following, we explore a variety of edge
weights based on the results of §III. Possible weights are
summarized in Table I. Weights can also be combined. For

TABLE I
WEIGHTING OPTIONS FOR CONSENSUS DESIGN.

long cycle weight mlc
i = diam(G)− ∥ci∥1 + 1

short cycle weight msc
i = ∥ci∥1

cycle correlation weight ms
i =

1
|Ec|

∑
j ̸=i

∣∣∣[T(T ,C)]ij

∣∣∣
uniform weight mi = 1

example, one might choose a weight of the form βmlc
i m

s
i to

try and promote long cycles that are not highly correlated.
While in practice these weighting functions will lead to

sparse and {0, 1} solutions for the cycle weights wi, there
may arise situations where the optimization problem does
not return an integer solution. This can be remedied via an

Fig. 3. A spanning tree on 30 nodes.

iterative approach, where problem (12) is solved repeatedly
and the weights are updated at each iteration count h as
m

(h+1)
i = 1

w
(h)
i +ϵ

, for some ϵ > 0. See [16] for more details
on this approach.

As discussed earlier, the first step of the algorithm, i.e.,
the initial choice of edge weights, greatly influences the
solution. From an engineering design stand-point, this can be
seen as a favorable feature. Indeed, there may be additional
features a designer might want to promote when solving
Problem 1 without including additional constraints. This can
be accomplished via an appropriate choice of edge weights.
This point will be illustrated in the simulations provided in
the sequel.

V. SIMULATION EXAMPLE

In this section we demonstrate the design procedure de-
scribed in §IV with a few numerical examples. For each
example we will work with the same spanning tree graph on
|V| = 40 nodes, generated randomly in MATLAB; see Figure
3. The H2 performance for this graph can be determined as
∥Σ(T)∥22 = 58.5 and for the complete graph ∥Σ(Kn)∥22 =
39.975. The longest cycle in this graph is determined by its
diameter, diam(G) = 9.

For this example, there are |Ec| = 741 possible edges that
can be added. We will consider Problem 1 while attempting
to add 40 new edges. First, we compare the H2 performance
when using the different weighting functions in problem
(12). The resulting graphs are shown in Figure 4. Observe
that the different weighting options generate graphs with
qualitatively different features, as expected by the analysis.
The resulting performance for each case is given besides the
captions in Figure 4. In this simulation, choosing a weight
that attempts to promote short cycles (ms

i) produces the best
result, while the weights promoting long cycles produced
the worst performance, likely due to the large number of
correlated cycles.

VI. CONCLUDING REMARKS

This work provided a combinatorial characterization of
how cycles impact the H2 performance of consensus net-
works. In particular, the purely combinatorial property of
cycle lengths and cycle correlations were shown to directly
impact the H2 performance of the system. The analytic
results were then used to formulate an optimization problem
for the design of consensus networks. Using an ℓ1-relaxation,

3812

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:54 UTC from IEEE Xplore. Restrictions apply.

(a) Long cycle weights,
∥Σ(G)∥22 = 50.223.

(b) Short cycle weights,
∥Σ(G)∥22 = 48.704.

(c) Cycle correlation weights,
∥Σ(G)∥22 = 48.939.

(d) Long cycle and correlation
weights, ∥Σ(G)∥22 = 50.017.

(e) Short cycle and correlation
weights, ∥Σ(G)∥22 = 48.795.

(f) Uniform weights,
∥Σ(G)∥22 = 49.489.

Fig. 4. The weighting function for cycle design has a large affect on the resulting graph.

the problem was transformed into a semi-definite program.
This relaxation turns out to be very sensitive to the weighting
function used on the edges. This provides an important
tuning parameter for design of these systems. The results
were demonstrated via some numerical simulations.

REFERENCES

[1] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ: Princeton University Press, 2010.

[2] I. Akyildiz, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, Aug. 2002.

[3] R. Olfati-saber, J. A. Fax, R. M. Murray, and R. Olfati-Saber, “Consen-
sus and Cooperation in Networked Multi-Agent Systems,” Proceedings
of the IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[4] M. Nabi-abdolyousefi and M. Mesbahi, “Circulant Networks : Con-
trollability , Observability , and Linear Quadratic Control,” Control,
no. 1, 2011.

[5] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multiagent systems: from a graph-theoretic perspective,” SIAM Journal
on Control and Optimization, vol. 48, no. 1, pp. 162–186, 2008.

[6] M.-G. Yoon and K. Tsumura, “Transfer function representation of
cyclic consensus systems,” Automatica, vol. 47, no. 9, pp. 1974 –
1982, 2011.

[7] D. Zelazo and M. Mesbahi, “Edge Agreement: Graph-Theoretic
Performance Bounds and Passivity Analysis,” IEEE Transactions on
Automatic Control, vol. 56, no. 3, pp. 544–555, Mar. 2011.

[8] S. P. Boyd, “Convex Optimization of Graph Laplacian Eigenvalues,”
in International Congress of Mathematicians, vol. 3, no. 1-3, Madrid,
dec 1998, pp. 1311–1310.

[9] R. Dai and M. Mesbahi, “Optimal Topology Design for Dynamic
Networks,” in 50th IEEE Conference on Decision and Control and
European Control Conference (CDC 2011). Orlando, FL: IEEE, 2011,
pp. 1280–1285.

[10] S. P. Boyd and A. Ghosh, “Growing Well-connected Graphs,” in
Proceedings of the 45th IEEE Conference on Decision & Control,
San Diego, 2006, pp. 6605–6611.

[11] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” in Proceedings of the
2005 American Control Conference. Portland, OR: IEEE, 2005, pp.
99–103.

[12] A. Clark and R. Poovendran, “A Submodular Optimization Framework
for Leader Selection in Linear Multi-agent Systems,” in Proc. 50th
IEEE Conference on Decision and Control, Orlando, FL, 2011, pp.
3614–3621.

[13] F. Lin, M. Fardad, and M. R. Jovanovic, “Algorithms for Leader
Selection in Large Dynamical Networks: Noise-corrupted Leaders,”
in Proc. 50th IEEE Conference on Decision and Control, Orlando,
FL, 2011.

[14] E. J. Candès, J. K. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: exact signal reconstruction from highly incomplete frequency
information,” IEEE Trans. Information Theory, vol. 52, no. 2, pp. 489–
509, 2006.

[15] D. L. Donoho, “Compressed sensing,” IEEE Trans. Information The-
ory, vol. 52, no. 4, pp. 1289–1306, 2006.

[16] E. J. Candes, M. B. Wakin, and S. Boyd, “Enhancing sparsity
by reweighted ℓ1 minimization,” Journal of Fourier Analysis and
Applications, vol. 14, no. 5, pp. 877–905, 2008.

[17] S. Schuler, P. Li, J. Lam, and F. Allgöwer, “Design of Structured
Dynamic Output-feedback Controllers for Interconnected Systems,”
International Journal of Control, vol. 84, no. 12, pp. 2081–2091, 2011.

[18] C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2009.
[19] G. Dullerud and F. Paganini, A course in robust control theory: a

convex approach. New York: Springer-Verlag, 2000.
[20] K. Petersen and M. Pedersen, The Matrix Cookbook. Technical

University of Denmark, 2008.
[21] A. Schrijver, Theory of linear and integer programming. West Sussex,

England: John Wiley & Sons Ltd., 1986.
[22] C. W. Scherer and P. Gahinet, “Multiobjective output-feedback control

via LMI optimization,” IEEE Transactions on Automatic Control,
vol. 42, no. 7, pp. 896–911, Apr. 1997.

[23] M. Fazel, H. Hindi, and S. Boyd, “A rank minimization heuristic
with application to minimum order system approximation,” in Proc.
American Control Conference (ACC), 2001, pp. 4734–4739.

[24] M. Fazel, “Matrix rank minimization with applications,” Ph.D. dis-
sertation, Department of Electrical Engineering, Stanford University,
2002.

3813

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:54 UTC from IEEE Xplore. Restrictions apply.

