
Eulerian Consensus Networks

Daniel Zelazo and Frank Allgöwer

Abstract— This work considers a special class of consensus
seeking networks that we term Eulerian consensus networks.
These consensus networks are defined over the class of graphs
known as Eulerian, and admit many combinatorial features
that are beneficial for both analysis and synthesis purposes.
We first consider the H2 performance of Eulerian consensus
systems and reveal that the performance is related to the
length of cycles in the graph. The structure of Eulerian
graphs motivates a procedure for designing large-scale Eulerian
consensus networks. We propose a suite of algorithms for
constructing these networks and demonstrate their numerical
effectiveness on a graph with 5000 nodes.

I. INTRODUCTION

A fundamental challenge related to the design of multi-
agent systems is overcoming the computational burden asso-
ciated with them. Indeed, tasks involving determining which
information structures are best suited for a particular multi-
agent application inevitably must address their combinatorial
nature, often leading to NP-hard problem formulations. A
common approach to this problem is to consider optimization
over weighted graphs or other convex relaxations [1]–[3].
However, in many scenarios, there may not be a proper jus-
tification for using weighted graphs. Even beyond that point,
there is an elegant and intuitive benefit from understanding,
in a purely binary way, why certain information links should,
or should not, be present.

The design of information structures for systems com-
prised of multiple dynamic units introduces another layer of
complexity beyond the purely combinatorial aspect described
above. Recall that for controller design of dynamic systems,
a clear characterization of system performance must be deter-
mined to design the controller in an optimal sense. For multi-
agent systems, if the objective is to design the underlying
information structure to achieve a specified performance for
the aggregate system, then a clear characterization of how
combinatorial properties affect system-theoretic properties
must be attained. An important research direction for multi-
agent systems, therefore, is a graph-theoretic characterization
of system-performance metrics.

To address this problem, significant attention has been
given to understanding what has emerged as a canonical
model for multi-agent systems, referred to as the consensus

The authors thank the German Research Foundation (DFG) for
financial support within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart and within
the Priority Program 1305 ”Control Theory of Digitally Networked
Dynamical Systems”. The authors are with the Institute for
Systems Theory and Automatic Control, University of Stuttgart,
Pfaffenwaldring 9, 70550 Stuttgart, Germany, {daniel.zelazo,
frank.allgower}@ist.uni-stuttgart.de.

protocol [4]. The simplicity of the model, most often pre-
sented as a collection of single integrators interacting over
a communication graph, reveals a deep connection between
its dynamic behavior and the underlying properties of the
graph [5]–[9]. Following this research thread, there has also
been progress related to how certain notions of systems
performance, such as the H2 or H∞ performance, relates
to the underlying graph [10]–[12]. These results have led to
synthesis scenarios for variations of the consensus problem,
including leader selection with H2 performance [13], [14],
or maximization of the algebraic connectivity of the graph
[15]–[17].

Lost in many of the synthesis strategies of these ap-
proaches is the connection to combinatorial properties of
the graph. We emphasize here a distinction between spectral
properties of the graph, i.e. the eigenvalues of the Laplacian
matrix, and combinatorial properties of a graph such as path
lengths and cycles. Indeed, spectral properties introduce a
layer of abstraction to the underlying graph that makes more
tangible design issues, such as edge costs or communication
distances, less intuitive. An important extension of these
works, therefore, is the introduction of more general notions
of systems performance in coordination with the design of
these networks.

A thorough treatment in this direction was recently given
in [12] via the introduction of the Edge Laplacian and its
corresponding edge agreement problem. The edge Laplacian
is a variant of the graph Laplacian that provides a more trans-
parent understanding of how spanning trees and cycles affect
certain algebraic properties of a graph. When the consensus
protocol is analyzed using this construction, clear graph
theoretic interpretations of the H2 and H∞ performance of
the system can be derived [12]. An open conjecture from the
work in [12] was that the cycle structure of the graph has
an impact on the corresponding system performance. A first
contribution of this work, therefore, is a resolution of this
conjecture for the class of graphs known as Eulerian graphs
[18].

Eulerian graphs, named after Leonard Euler in connec-
tion with his seminal work on the bridges of Königsberg
problem [19], have many special graph-theoretic features.
Of particular interest with this work is the property that
all Eulerian graphs can be decomposed into edge-disjoint
cycles. Surprisingly, Eulerian graphs have been identified
as useful in many applications including DNA sequencing,
circuit design, and combinatorial problems like the Chinese
postman delivery problem [20]–[23].

The contributions of this work are two-fold. First, we
extend the results in [12] providing a combinatorial char-

51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

978-1-4673-2064-1/12/$31.00 ©2012 IEEE 4715978-1-4673-2066-5/12/$31.00 ©2012 IEEE

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:58 UTC from IEEE Xplore.  Restrictions apply. 



acterization of how cycles in consensus networks influence
the H2 performance. In particular, we provide an exact
characterization of the performance when the graph con-
tains only edge-disjoint cycles, and we call such networks
Eulerian consensus networks. We show that the addition of
edge disjoint cycles to a graph improves the performance by
an amount related to the inverse of the length of the cycle.
This analytic characterization is then used to motivate a suite
of algorithms for designing large-scale Eulerian consensus
networks.

This paper is organized as follows. Section §II reviews
some fundamental properties of graphs, their algebraic repre-
sentations, and Eulerian graphs. The edge agreement problem
and a combinatorial interpretation of its H2 performance
is given in §III. In §IV we propose two companion algo-
rithms for designing Eulerian consensus networks. Numerical
simulations are presented in §V. Finally, we offer some
concluding remarks in §VI.

II. TREES, CYCLES, AND EULERIAN GRAPHS

The main graph-theoretic tool used in this work is the basic
notion of spanning trees and cycles of a graph [18]. Recall
that an undirected graph, denoted G, is composed of a node
set V = {v1, . . . , vn} and an edge set E ⊆ V ×V describing
the incidence relation between nodes. The neighborhood of
a node v is the set of nodes adjacent to it; N (v) = {u ∈
V|{v, u} ∈ E}. The degree of a node is the cardinality of
its neighborhood, dv = |N (v)|.Any connected graph G =
(V, E) can be expressed as the union of a spanning tree T =
(V, Eτ ) and the remaining edges Ec = E \ Eτ . That is,

G = T ∪ C, (1)

where C = (V, Ec).
The edges in the graph C can be viewed as those edges

that, when combined with certain edges in the tree T , form
cycles in G. Recall that a path between two nodes vi, vj ∈ V
is a sequence of distinct nodes such that each node in the
sequence is adjacent to the previous node. As an example,
the path from node v1 to v6 in the graph in Figure 1 can
be expressed as the sequence v1v2v6, or v1v2v3v5v6. For
any connected graph G with a spanning tree T , there always
exists a path using only the edges in T [18]. If the initial
node and terminal node of a path are the same, then it is
called a cycle. Therefore, any cycle can be formed by first
finding a path from, say nodes vi to vj using only the edges
in Eτ , and then using a single edge {vj , vi} ∈ Ec.

In this work, we will denote (and enumerate) the ith cycle
in a graph as a set of edges, ci = {e1, . . . , er}, where a
subset of r − 1 edges belong to the spanning tree T , and
the remaining edge to Ec. The length of a cycle is then its
cardinality, i.e., |ci|. Referring again to Figure 1, observe
that four cycles are labeled; for example, the cycle c3 =
{{v1, v2}, {v2, v4}, {v1, v4}} has length |c3| = 3.

Definition 1: Two cycles ci and cj are edge disjoint if
they do not have any edges in common; i.e. ci∩cj = ∅. Two
cycles are correlated if they are not edge disjoint.

c1

c2

c3 c4
v4

v1

v2 v3

v5

v6

Fig. 1. An Eulerian graph with 4 edge-disjoint cycles.

One of the oldest problems in graph theory attributed
to Euler is determining if there exists a walk1 on a graph
beginning and ending at the same node that traverses each
edge only once; such a walk is called Eulerian cycle [18].
Any graph that contains an Eulerian cycle is called an
Eulerian graph. There are a number of immediate properties
that can be inferred from the definition of a Eulerian graph,
summarized in the following proposition:

Proposition 1 ( [18]): Given a connected undirected
graph G = (V, E), the following statements are equivalent:

i) G is an Eulerian graph.
ii) The degree of each node is even.

iii) G is the union of edge-disjoint cycles; i.e., E = ∪k
i=1ci

and ci ∩ cj = ∅, ∀i, j.
The graph in Figure 1 is Eulerian, with disjoint cycles

c1, c2, c3, and c4; note that each node has even degree. It is
also worth mentioning that the decomposition of a Eulerian
graph into disjoint cycles is not unique. It is the third property
of Proposition 1 that will be exploited when considering the
performance of consensus networks.

A. Algebraic Representations

The characterization of trees and cycles in a graph have
up to now been purely set-theoretic. The use of algebraic
representations for graphs are also useful for the analysis
of consensus networks. The main algebraic construct we
employ in this work is the node-edge incidence matrix
E(G) ∈ R|V|×|E| of a graph with an arbitrary orientation
assigned [18].

Using an appropriate labeling of the edges in the graph,
we can always express the incidence matrix in terms of the
subgraphs T and C for a particular choice of spanning tree,
E(G) =

[
E(T ) E(C)

]
. This representation aids in the

interpretation of several results relating the sub-graphs T
and C. In particular, the observation that any cycle can be
represented by a sequence of edges from T and one edge
from C can be formalized algebraically using the incidence
matrix by defining a matrix T(T ,C) ∈ R|V|×|Ec| such that
E(T )T(T ,C) = E(C). It is then straight-forward to verify
that

T(T ,C) =
(
E(T )E(T )T

)−1
E(T )TE(C). (2)

1A walk is a sequence of vertices, not necessarily distinct, such that each
node in the sequence is adjacent to the previous node.

4716

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:58 UTC from IEEE Xplore.  Restrictions apply. 



The matrix T(T ,C), therefore, encodes information related
to the cycles that can be formed from the spanning tree T .
To further aid in the following exposition, we express T(T ,C)

in terms of its columns, T(T ,C) =
[
t1 · · · t|Ec|

]
, and

using a slight abuse in convention, we will also refer to the
ith column of T(T ,C) as the ith cycle of the graph G. Similarly,
we will refer to the ith column of E(T ) with τi as the ith
edge in the spanning tree. At times, we will refer to the
matrix R(T ,C) =

[
I T(T ,C)

]
. Using this notation, note

that E(G) = E(T )R(T ,C).
Proposition 2: The matrix TT

(T ,C)T(T ,C) encodes the fol-
lowing information about the cycles in G.

i) [TT
(T ,C)T(T ,C)]ii = tTi ti = |ci| − 1.

ii) [TT
(T ,C)T(T ,C)]ij = tTi tj = 0 if and only if cycles ci and

cj are edge-disjoint.
iii) [TT

(T ,C)T(T ,C)]ij ̸= 0 if and only if cycles ci and cj are
correlated.

Corollary 1: For a Eulerian graph G with spanning tree
T , the matrix TT

(T ,C)T(T ,C) is diagonal with each element
containing the length of the ith cycle minus 1.

The edge Laplacian is a |E|×|E| symmetric matrix defined
as [12]

Le(G) := E(G)T E(G). (3)

One of the main results in [12] showed that the edge
Laplacian is related to the graph Laplacian via a similarity
transformation. We summarize the results here and refer the
reader to [12] for the proof.

Theorem 1 ( [12]): The graph Laplacian for a connected
graph, L(G) = E(G)E(G)T , has the same non-zero eigen-
values as the matrix Le(T )R(T ,C)R

T
(T ,C).

We refer to the matrix Le(T )R(T ,C)R
T
(T ,C) as the essential

edge Laplacian. A detailed discussion of this matrix along
with its combinatorial interpretations is given in [12]. The
main feature is that the essential edge Laplacian encodes
explicitly information about the cycles in a graph. The
essential edge Laplacian is the key algebraic construct used
to derive the performance of consensus networks.

III. PERFORMANCE OF CONSENSUS NETWORKS

The main analytic tool used to derive the H2 performance
of consensus networks is based on an edge variant of the
classic consensus protocol that we term the edge agreement
problem [12]. In this section, we briefly summarize the main
results of [12], and refer the reader to that work for a more
in-depth study.

The standard noise-free consensus model is usually pre-
sented as the autonomous system [4],

ẋ(t) = −L(G)x(t). (4)

Here, the vector x(t) ∈ Rn is the concatenated state of each
agent, and L(G) is the Laplacian matrix of the graph.

The consensus protocol is based on integrator models for
each agent, and consequently noises can be injected into the
process, ẋi(t) = ui(t) + wi(t), and into the measurement
for use in generating a control as ui(t) =

∑
j∈N (vi)

(xj(t)−

xi(t)+vij(t)).2 This leads to a two-port representation of the
consensus protocol and provides a framework for considering
the presence of exogenous inputs, such as reference signals
and noises entering the measurement and process. Note that
this generalized model is not a minimal realization of the
system. Indeed, the system has an unobservable mode in
the direction of the 1 vector [12], [24]. As discussed in
[12], a minimal realization of the system can be expressed
using the essential edge Laplacian matrix via a coordinate
transformation,

Σe(G) :


ẋτ (t) = −Le(T )R(T ,C)R

T
(T ,C)xτ (t) +[

E(T )T −Le(T )R(T ,C)

] [ w(t)
v(t)

]
z(t) = xτ (t).

(5)

Here, the transformed state vector xτ (t) ∈ R|Eτ | can be
interpreted as a state associated with the edges of the
spanning tree T . The system (5) is referred to as the edge
agreement problem. In this work we consider T as a skeletal
system for the complete consensus network. In this regard,
we only observe the states along the tree, xτ (t), as the
controlled variable in the edge agreement problem.3

The H2 performance of the minimal edge agreement prob-
lem, therefore, captures how noises entering the system affect
the asymptotic deviation of the states from the consensus
value. The H2 performance was originally considered in [12]
and we only present the main result here.

Theorem 2 ( [12]): The H2 performance of edge agree-
ment problem (5) is

∥Σe(G)∥22 =
1

2
tr
[
(R(T ,C)R

T
(T ,C))

−1
]
+ (n− 1). (6)

A direct consequence of Theorem 2 leads to an upper
and lower bound for the performance of the edge agreement
problem. In particular, we observe that the performance is
upper bounded by any choice of spanning tree, and is lower
bounded by the complete graph, Kn. This observation also
indicates that cycles generally improve performance. An
open problem, therefore, is to precisely characterize how
cycles impact the performance. The first result considers how
the addition of a single edge to a spanning tree improves the
performance.

Theorem 3: Consider the edge agreement problem where
the underlying graph is a spanning tree, T = (V, Eτ ), and
consider a single edge e ∈ (V×V)\Eτ . Then the graph T ∪e
has one cycle, c, and the performance of the edge agreement
problem is given as

∥Σe(T ∪ e)∥22 = ∥Σe(T )∥22 −
1

2
(1− |c|−1). (7)

Proof: From (2), the matrix T(T ,C) can be computed
and will have only one column, therefore T(T ,C)T

T
(T ,C) is a

rank-one matrix. To compute the performance of Σe(T ∪ e),
the result of Theorem 2 must be applied. In this setting,
(R(T ,C)R

T
(T ,C))

−1 can be seen as the inverse of the identity

2For ease of presentation we assume the noises are uncorrelated white
Gaussian noises with unit covariance.

3As opposed to considering RT
(T ,C)x(t) as the controlled variable.

4717

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:58 UTC from IEEE Xplore.  Restrictions apply. 



with a rank-one update. Applying the Sherman-Morrison
formula [25] leads to

(R(T ,C)R
T
(T ,C))

−1=
(
I + T(T ,C)T

T
(T ,C)

)−1
=I − 1

|c|
T(T ,C)T

T
(T ,C).

Computing the trace yields tr[(R(T ,C)R
T
(T ,C))

−1] = n − 1 −
|c|−1
|c| . Therefore,

∥Σe(T ∪ e)∥22 =
1

2

(
n− 1− |c| − 1

|c|

)
+ n− 1.

Theorem 3 immediately leads to the following corollary,
bounding the performance increase achievable by adding
only one edge.

Corollary 2: Consider the edge agreement problem where
the underlying graph is a spanning tree, T = (V, Eτ ), and
consider a an edge e ∈ (V × V) \ Eτ . The maximum
performance gain is achieved by adding a cycle of length
equal to diam[G] + 1, while the minimum performance gain
is obtained by adding a cycle of length three (i.e., a triangle).4

This result states that in terms of the H2 performance,
longer cycles are better than shorter ones when adding a sin-
gle edge. Furthermore, it establishes a very strong connection
between a purely combinatorial property of the graph, i.e.,
the length of the cycle, to a system theoretic property of the
edge agreement problem, i.e., its H2 performance.

An immediate extension of Theorem 3 allows for an
exact characterization of the H2 performance for all Eulerian
graphs.

Corollary 3: Consider the edge agreement problem where
the underlying graph is an Eulerian graph, G = (V, Eτ ).
Then the graph can be expressed as the union of k edge-
disjoint cycles ci, G = ∪k

i=1Ci with Ci = (V, ci), and the
performance of the corresponding edge agreement problem
is given as

∥Σe(G)∥22 = ∥Σe(T )∥22 −
1

2

(
k −

k∑
i=1

1

|ci|

)
. (8)

Proof: The proof is a direct consequence of Theorem 3,
the structure of T(T ,C) for edge disjoint graphs, and repeated
application of the Sherman-Morrison formula [25].

The appeal of Corollary 3 is that it provides an exact
characterization of the performance for a very large class of
graphs. This has direct implications when considering design
problems for consensus networks, that we consider in the
sequel.

IV. DESIGN OF EULERIAN CONSENSUS NETWORKS

The results of the previous section provides a clear com-
binatorial interpretation of the role cycles play in the perfor-
mance of Eulerian consensus networks. A natural progression
is then to consider designing these networks with a guarantee
on the system’s performance. Stated naively, this reduces to

4The diameter of a graph, diam[G] is the maximum distance between
any two nodes, where the distance is the length of the shortest path.

an optimization problem of the form

min
G∈G

∥Σe(G)∥2, (9)

where G denotes an abstract set describing desired features
of the underlying graph (i.e. ensuring connectivity or inclu-
sion of certain sub-graphs). Indeed, the problem (9) can be
viewed as a mixed-integer optimization problem and, as a
result, is considered numerically intractable [26].

A common approach for solving problems of the form
(9) is to consider convex relaxations, as discussed in §I.
Other relaxation methods try to recover sparse solutions,
such as with ℓ1 relaxations [27]–[29]. Despite the appeal
of these methods, they also suffer from computational issues
as the problem size increases. In fact, relaxation methods
for solving (9) for sizes on the order of 1,000s of nodes will
generally not be tractable.

In this section we provide a computationally efficient
algorithm for designing large-scale consensus networks with
a known H2 performance. The proposed algorithm leverages
the result in Corollary 3 by considering the design of Eule-
rian graphs. The first algorithm describes how to construct an
Eulerian graph by adding edges to an existing tree structure.
The algorithm also returns the decomposition of the resulting
graph into its edge-disjoint cycles, and as a result, the exact
value of the H2 performance.

The general idea of the algorithm is as follows. We assume
that a spanning tree is given in the network (if not, one can
be created a variety of ways; for example, using a minimum
weight spanning tree algorithm). Every node vi ∈ V is
then classified as one of three types: i) a leaf, a node with
degree one, ii) a stem, a node with degree two, and iii) a
branch, a node with degree greater than two. The algorithm
adds edges to the graph by connecting leaves with branches
and then updating the degree of each node. Note that the
algorithm also includes additional logic to handle conflicts
when it is not clear where to add the new edge (lines 14-
21). Bookkeeping of the paths between leaves and branches
ensure that each edge in the tree is used only once, and the
final degree of each node will be even. The algorithm is
described in more detail in Algorithm 1.

Observe that with each iteration of the algorithm, the
number of leaves must decrease by at least one (and at most
two), ensuring that the algorithm will terminate. Construction
of the routing Θ in the algorithm can be used to maintain
the cycles and their length (i.e. |Θ| + 1) for monitoring the
performance improvement with each new cycle. The last
steps in the algorithm remove the edges in the tree that
have been used in a routing. It is also worth observing that
this algorithm in fact has a distributed architecture. Indeed,
finding routings involves only local connectivity information
and it is easy to envision a fully distributed implementation
of this algorithm.

The appeal of Algorithm 1 is in its ability to construct truly
large-scale graphs with low computational complexity and
an exact characterization of the resulting performance. This
algorithm, however, does not necessarily find the H2-optimal

4718

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:58 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Eulerian Graph Construction Algorithm
Data: A connected undirected spanning tree

T = (V, Eτ ) with |V| > 2
Result: An Eulerian graph G = (V, E) with T ⊂ G.

1 begin
2 Initialize the graph G = (V, ∅)
3 Identify the set of leaves: L = {l1, . . . , ll}
4 Identify the set of stems: S = {s1, . . . , ss}
5 Identify the set of branches: B = {b1, . . . , bb}
6 while |L| > 0 do
7 Select a leaf l ∈ L
8 Initialize the routing Θ = {l}
9 v = N (l) \Θ

10 while dv = 2 do
11 Θ = Θ ∪ {v}
12 v = N (v) \Θ
13 Θ = Θ ∪ {v}
14 if |Θ| = 2 then
15 U = N (v) \Θ
16 if U ∩ L ̸= ∅ then
17 Set v ∈ U ∩ L
18 else if U ∩ B ̸= ∅ then
19 Set v ∈ U ∩ B
20 else
21 Set v ∈ U ∩ S

22 E = E ∪ {l, v} ∪ Eτ (Θ) (Eτ (Θ) denotes edges used
in routing)

23 Êτ = Eτ \ Eτ (Θ), T = (V, Êτ )
24 Update L,S,B and node degrees with new T
25 Θ = ∅

Eulerian graph given the spanning tree T . In an effort to
address this, we propose a performance correction algorithm
that maintains the Eulerian property of the graph while
leading to an improvement in the performance. First, we
make the following observation demonstrating that multiple
shorter edge-disjoint cycles can have a larger impact than
fewer long cycles.

Proposition 3: Consider two edge-disjoint cycles c1 and
c2 that share a common node v. Assume that the edge
{v, u} ∈ c1 and {v, u′} ∈ c2. Construct a new cycle c′ by
adding an edge {u, u′} and removing the edges {v, u} and
{v, u′}; that is, c′ = (c1 ∪ c2 ∪ {u, u′}) \ {{v, u}, {v, u′}}.
Then one has the following inequality,

1− 1

|c′|
= 1− 1

|c1|+ |c2| − 1
< 2− 1

|c1|
− 1

|c2|
.

Proof: To show that c′ is a cycle simply requires
appending the routings from v to u, u to u′ using the new
edge, and u′ to v. The length of the new cycle is easily
verified. It is straightforward to verify that the inequality is
true, recalling that any cycle must have length at least equal
to 3.

The implications of Proposition 3 when viewed in the
context of Corollary 3 suggest that multiple short cycles are
more beneficial than fewer longer cycles. This then motivates
the new algorithm that effectively breaks longer cycles into
shorter ones. A simple combinatorial observation is that for
a cycle to be ‘split’, it must have a length of at least 5. The
proposed algorithm searches for cycles of length greater than
5, and then splits that cycle into a smaller one of length 3
and one with the remaining edges. This operation will add
a new cycle at each iteration.

Algorithm 2: Performance Enhancing Algorithm
Data: An Eulerian graph G = (V, E) with its cycle

decomposition C = {c1, . . . , cc}.
Result: An Eulerian graph G′ = (V, E ′) with improved

H2 performance.
1 begin
2 Initialize the graph G′ = G
3 while maxi |ci| ≥ 5 do
4 Select cycle c ∈ C with maximum length
5 Select any edge e = {u, v} ∈ c
6 Set E ′ = (E ′ ∪ {{u, s}, {v, s}} \ e where s is

contained in the cycle c, and is 2 hops away
from u and |c| − 3 hops away from v.

7 C = C \ c

V. SIMULATION EXAMPLE

In this section we present some simulations demonstrating
the applicability of Algorithm 1 for designing large-scale
Eulerian consensus networks. First, we present a simulation
on only 50 nodes to better visualize the construction of
Eulerian graphs. The H2 performance for the tree (Figure
2(a)) can be calculated as ∥Σ(T )∥22 = 73.5. The Eulerian
graph generated by Algorithm 1 (Figure 2(b)) has perfor-
mance ∥Σ(G)∥22 = 65.813 and added 20 new cycles to
the graph. The Eulerian graph generated by Algorithm 2
has performance ∥Σ(Ĝ)∥22 = 64.125 and created 3 new
cycles using the split procedure. The next simulation is for
a Eulerian graph on 5000 nodes.5 This algorithm took under
1 minute to generate the graph running MATLAB 7.12 on a
2.66 GHz Intel Core 2 Duo processor. The performance of
the spanning tree can be calculated as ∥Σ(T )∥22 = 7498.5.
The Eulerian graph generated by Algorithm 1 has perfor-
mance ∥Σ(G)∥22 = 6, 700.224 and added 2,061 new cycles
to the graph. The Eulerian graph generated by Algorithm
2 has performance ∥Σ(Ĝ)∥22 = 6535.75 and created 268
new cycles using the split procedure. The affect the the
performance enhancing algorithm is that the resulting graph
only has cycles of length 3 and 4.

VI. CONCLUDING REMARKS

This work provided an analysis for the H2 performance of
a special class of consensus networks. We considered con-

5The size of the graph prohibits any meaningful visualization so a figure
is not included.

4719

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:58 UTC from IEEE Xplore.  Restrictions apply. 



(a) A spanning tree on 50 nodes. (b) Result from Algorithm 1. (c) Result from Algorithm 2.

Fig. 2. Illustration of Algorithms 1 and 2 on 50 nodes.

sensus networks defined over Eulerian graphs, and used the
special structure of these graphs to make precise statements
on the system performance. In particular, we showed that the
performance is proportional to the inverse of the length of the
cycles in the Eulerian decomposition, and that multiple short
cycles are better than fewer long cycles in terms of the overall
performance. The particular structure of the Eulerian graph
motivated a constructive algorithm for the design of Eulerian
consensus networks. The algorithms permits very large-scale
design with an exact characterization of the resulting system
performance.

REFERENCES

[1] S. P. Boyd, “Convex Optimization of Graph Laplacian Eigenvalues,”
in International Congress of Mathematicians, vol. 3, no. 1-3, Madrid,
dec 1998, pp. 1311–1310.

[2] S. Y. Shafi, M. Arcak, and L. El Ghaoui, “Designing node and edge
weights of a graph to meet Laplacian eigenvalue constraints,” in 2010
48th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, Sep. 2010, pp. 1016–1023.

[3] L. Xiao, S. P. Boyd, and S. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, no. 1, pp. 33–46, Jan. 2007.

[4] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ: Princeton University Press, 2010.

[5] M. Nabi-abdolyousefi and M. Mesbahi, “Circulant Networks : Con-
trollability , Observability , and Linear Quadratic Control,” Control,
no. 1, 2011.

[6] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multiagent systems: from a graph-theoretic perspective,” SIAM Journal
on Control and Optimization, vol. 48, no. 1, pp. 162–186, 2008.

[7] B. Briegel, D. Zelazo, M. Bürger, and F. Allgöwer, “On the Zeros
of Consensus Networks,” in Proc. 50th IEEE Conference on Decision
and Control (to appear), Orlando, FL, 2011.

[8] S. Tonetti and R. M. Murray, “Limits on the network sensitivity func-
tion for homogeneous multi-agent systems on a graph,” in American
Control Conference (ACC), June 2010, pp. 1–33.

[9] M.-G. Yoon and K. Tsumura, “Transfer function representation of
cyclic consensus systems,” Automatica, vol. 47, no. 9, pp. 1974 –
1982, 2011.

[10] P. Lin, Y. Jia, and L. Li, “Distributed robust H-consensus control
in directed networks of agents with time-delay,” Systems & Control
Letters, vol. 57, no. 8, pp. 643–653, Aug. 2008.

[11] L. Scardovi, M. Arcak, and E. D. Sontag, “Synchronization of Inter-
connected Systems With Applications to Biochemical Networks: An
Input-Output Approach,” IEEE Transactions on Automatic Control,
vol. 55, no. 6, pp. 1367–1379, Jun. 2010.

[12] D. Zelazo and M. Mesbahi, “Edge Agreement: Graph-Theoretic
Performance Bounds and Passivity Analysis,” IEEE Transactions on
Automatic Control, vol. 56, no. 3, pp. 544–555, Mar. 2011.

[13] A. Clark and R. Poovendran, “A Submodular Optimization Framework
for Leader Selection in Linear Multi-agent Systems,” in Proc. 50th
IEEE Conference on Decision and Control, Orlando, FL, 2011, pp.
3614–3621.

[14] F. Lin, M. Fardad, and M. R. Jovanovic, “Algorithms for Leader
Selection in Large Dynamical Networks: Noise-corrupted Leaders,”
in Proc. 50th IEEE Conference on Decision and Control, Orlando,
FL, 2011.

[15] R. Dai and M. Mesbahi, “Optimal Topology Design for Dynamic
Networks,” in 50th IEEE Conference on Decision and Control and
European Control Conference (CDC 2011). Orlando, FL: IEEE, 2011,
pp. 1280–1285.

[16] S. P. Boyd and A. Ghosh, “Growing Well-connected Graphs,” in
Proceedings of the 45th IEEE Conference on Decision & Control,
San Diego, 2006, pp. 6605–6611.

[17] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” in Proceedings of the
2005 American Control Conference. Portland, OR: IEEE, 2005, pp.
99–103.

[18] C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2009.
[19] L. Euler, “Solutio problematis ad geometriam situs pertinentis,” Com-

mentarii academiae scientiarum Petropolitanae, vol. 8, pp. 128–140,
1741.

[20] M. Guan, “The Maximum Weighted Cycle-packing Problem and Its
Relation to the Chinese Postman Problem,” in Progress in Graph
Theory, J. Bondy and U. Murty, Eds. New Yotk: Academic Press,
1984, pp. 323–326.

[21] J. Blazewicz, “On some properties of DNA graphs,” Discrete Applied
Mathematics, vol. 98, no. 1-2, pp. 1–19, Oct. 1999.

[22] B. Carlson, C. Chan, and D. Meliksetian, “An efficient algorithm
for the identification of dual Eulerian graphs and its application to
cell layout,” in 1992 IEEE International Symposium on Circuits and
Systems, vol. 5. San Diego, CA: IEEE, 1992, pp. 2248–2251.

[23] P. A. Pevzner, H. Tang, and M. S. Waterman, “An Eulerian path
approach to DNA fragment assembly.” Proceedings of the National
Academy of Sciences of the United States of America, vol. 98, no. 17,
pp. 9748–53, Aug. 2001.

[24] D. Zelazo and M. Mesbahi, “Graph-Theoretic Analysis and Synthesis
of Relative Sensing Networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 5, pp. 971–982, May 2011.

[25] K. Petersen and M. Pedersen, The Matrix Cookbook. Technical
University of Denmark, 2008.

[26] B. H. Korte and J. Vygen, Combinatorial optimization: theory and
algorithms. Berlin: Springer-Verlag, 2000.

[27] E. J. Candes, M. B. Wakin, and S. Boyd, “Enhancing sparsity
by reweighted ℓ1 minimization,” Journal of Fourier Analysis and
Applications, vol. 14, no. 5, pp. 877–905, 2008.

[28] F. Lin, M. Fardad, and M. R. Jovanović, “Design of Optimal Sparse
Feedback Gains via the Alternating Direction Method of Multipliers,”
IEEE Transaction on Automatic Control (submitted), p. 32, Nov. 2011.

[29] S. Schuler, P. Li, J. Lam, and F. Allgöwer, “Design of Structured
Dynamic Output-feedback Controllers for Interconnected Systems,”
International Journal of Control, vol. 84, no. 12, pp. 2081–2091, 2011.

4720

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:58 UTC from IEEE Xplore.  Restrictions apply. 


