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Abstract— This work presents an H2 performance analysis of
the agreement protocol in the presence of noise. The agreement
protocol is first transformed into an equivalent system induced
by the dynamics of the relative, or edge, system states. The
edge based representation is used to perform an H2 analysis
of the system highlighting the roles of cycles in this context.
For spanning trees and and certain k-regular graphs, a char-
acterization of the H2 norm is given in terms of properties of
the graph. These results are used to formulate a semi-definite
program for sensor selection and placement. Each sensor has an
associated cost and fidelity and the developed SDP determines

which sensors to use and where to place them such that the
H2 norm of the system, in addition to the sensor costs, are
minimized.

I. INTRODUCTION

The linear consensus problem has been extensively studied

in the dynamic systems and controls community [6], [9].

Applications of linear consensus include distributed compu-

tation algorithms [1], sensor fusion [8], [11], and formation

flying [10]. The literature includes many variations of the

basic setup including random and switching topologies,

stochastic versions, and state-dependent versions [3], [4],

[5], [12] . The common analytic theme in all of these

approaches relates to the stability and convergent properties

of the underlying system.

While these properties describe fundamental aspects for

this protocol, they still lack the kind of analysis that is com-

mon for more general dynamic systems. For example, the

notion of the H2 performance of the consensus protocol in

the context of analysis and synthesis has yet to be examined.

This work aims to address this missing systems theoretic

component while also providing strong connections between

classic systems results and graph theoretic properties.

At the heart of the analysis in this paper lies the edge

variant of the consensus problem. Considering the consensus

problem from the perspective of states defined over the edges

of a graph leads to a transformed system built around an edge

variant of the the graph Laplacian, which we term the Edge

Laplacian [13], [14]. A distinct advantage of studying these

problems from an edge perspective is that the dominating

dynamics - orthogonal to the agreement space - can be

isolated while maintaining strong algebraic properties of the

graph in the state matrix.

In this direction, we develop an input-output model based

on the edge variant of the consensus protocol. We intro-

duce noise as an exogenous input and consider the H2
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Fig. 1. Example of 3 k-regular graphs

performance of the system as a function of the underlying

connection topology. The effects of different topologies are

examined, emphasizing analytic results for certain classes of

graphs including spanning trees and k-regular graphs. The

role of cycles in terms of the H2 performance is also exam-

ined. These results are then applied to develop a synthesis

procedure for choosing sensors for the consensus protocol.

A semi-definite program is developed that determines where

sensors of varying fidelity should be placed in the underlying

network to achieve the best H2 performance.

II. PRELIMINARIES: GRAPHS AND THE EDGE LAPLACIAN

An undirected (simple) graph G is specified by the vertex

set V and edge set E whose elements characterize the

incidence relation between distinct pairs of elements of V .

The cardinalities of the vertex and edge sets of G will be

denoted by |V| and |E|, respectively. A subgraph of G is a

graph whose vertex and edge sets are subsets of those of G.

An orientation of an undirected graph G is the assignment

of directions to its edges, i.e., an edge ek ∈ E is an ordered

pair (i, j) such that i and j are, respectively, the initial and

the terminal nodes of ek.

Graphs admit a set of convenient matrix representations.

The |V| × |E| incidence matrix E(G) for an oriented graph

G is a {0,±1}-matrix with rows and columns indexed by

vertices and edges of G, respectively, such that [E(G)]ik has

the value ‘+1’ if node i is the initial node of edge ek, ‘-1’

if it is the terminal node, and ‘0’ otherwise.

From the definition of the incidence matrix it follows that

the null space of its transpose, N (E(G)T ), contains the

subspace span {1}, where 1 is the vector with all entries

equal to one. The rank of the incidence matrix depends only

on |V| and the number of its connected components, c, with

rank E(G) = |V| − c [2].

The degree of a vertex vi ∈ V , di, is the cardinality of the

set of vertices adjacent to it. The degree matrix of G, ∆(G),
is a diagonal matrix with the degree of vertex i at its (i, i)
position.

The complete graph on n nodes, Kn, is the graph where

all possible pairs of vertices are adjacent, or equivalently, if

the degree of all vertices is | V | − 1. Figure 1(a) shows the
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complete graph on 10 nodes, K10. When every node in a

graph has the same degree k, it is called a k-regular graph.

The k-regular graph for k = 2 is also called the cycle graph,

Cn. Figure 1(b) and 1(c) shows the cycle graph C10 and a

4-regular graph.

A sequence of r + 1 distinct and consecutively adjacent

vertices, starting from vertex i and ending at vertex j, is

called a path of length r (form i to j); when i = j, we

call this path a cycle. We call a graph connected if there

exists a path between any pair of vertices. A connected graph

without cycles is referred to as a tree. Equivalently, a tree is

a connected graph on | V | vertices with | V | − 1 edges.

Any connected graph G can be written as the union of

two edge-disjoint subgraphs, G = Gτ ∪ Gc, where Gτ is

a spanning tree subgraph and Gc contains the remaining

edges that necessarily complete the cycles in G. Similarly,

the columns of the incidence matrix for the graph G can

always be permuted such that E(G) can be written as

E(G) =
[

E(Gτ ) E(Gc)
]

. (1)

For notational simplicity, we will use Eτ and Ec to represent

the incidence matrix for the tree subgraph and cycle subgraph

respectively.

The cycle edges can be constructed from linear combina-

tions of the tree edges, as

EτT c
τ = Ec, (2)

where T c
τ = (ET

τ Eτ )−1ET
τ Ec. Using (2) we obtain the

following alternative representation of the incidence matrix.

E(G) = Eτ

[

I T c
τ

]

= EτR(G). (3)

In the language of [2], we note that the rows of R(G) forms

a basis for the cut space of G, and the matrix
[

−T c
τ I

]T

forms a basis for the flow space;

IM
{

E(G)T
}

=

[

I
(T c

τ )T

]

, Ker {E(G)} =

[

−T c
τ

I

]

.

The matrix R(G), which will play an important role in

the present work, has a close connection with a number of

structural properties of the underlying network. For example,

the number of spanning trees in a graph, τ(G), can be

determined from the cut space basis [2], as

τ(G) = det
[

R(G)R(G)T
]

. (4)

The graph Laplacian of an oriented graph is defined as

L(G) := E(G)E(G)T (5)

which is independent of a particular orientation of the graph.

The graph Laplacian of G is a rank deficient positive semi-

definite matrix. The eigenvalues are real and will be ordered

and denoted as 0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λ|V|(G).
The Edge Laplacian is a variant of the graph Laplacian

[13] and is defined as

Le(G) := E(G)T E(G). (6)

The non-zero eigenvalues of Le(G) are equivalent to those

of L(G), and each cycle in G corresponds to an eigenvalue

at 0 in Le(G).
Theorem 2.1 ([14]): The graph Laplacian for a connected

graph, L(G), is similar to
[

Le(Gτ )R(G)R(G)T 0
0 0

]

,

where Gτ is a spanning tree subgraph of G, and the matrix

R(G) is defined in (3).

Proof: We define the transformation matrix

S =
[

Eτ (ET
τ Eτ )−1 V

]

, (7)

where Eτ is the incidence matrix of Gτ and the columns of

V are a basis for the null space of L(G), e.g., the vector 1.

The matrix S is non-singular; in fact its inverse is

S−1 =

[

ET
τ

(1/|V|) 1T

]

. (8)

Applying the transformation matrix as

S−1L(G)S =

[

ET
τ Eτ

0

]

R(G)R(G)T
[

I 0
]

=

[

Le(Gτ )R(G)R(G)T 0
0 0

]

, (9)

leads to the desired result.

Note that when G = Gτ (no cycles), then R(G) = I
and we see a tight connection between the graph and edge

Laplacians. Furthermore, for a connected graph Gτ , the edge

Laplacian is guaranteed to be invertible as all its eigenvalues

are strictly positive.

III. GRAPH-THEORETIC PERFORMANCE BOUNDS FOR

CONSENSUS

The noise-free consensus problem is comprised of a col-

lection of n first order dynamic systems of the form

ẋi(t) = ui(t). (10)

The dynamic evolution of each agent is coupled through

the control input ui(t) which is defined to be the sum of

the differences between states of an individual unit and its

neighbors,

ui(t) =
∑

j∈N (i)

(xj(t) − xi(t)), (11)

where N (i) denotes the set of agents that are neighbors of

agent i, as defined by the connection topology G. Expressing

the dynamic evolution of the resulting system in a compact

matrix form with x(t)T =
[

x1(t), . . . , xn(t)
]T

, we arrive

at the following autonomous system,

ẋ(t) = −L(G)x(t). (12)

Agreement of the system (12) is an asymptotic property

where each state approaches the same value. For connected

graphs, we have that limt→∞ x(t) = (1/n)Jx(0), where J
is the matrix of all ones [7].
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∫

u(t) y(t)
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v(t)

−E(G)

E(G)T

Fig. 2. Open-loop consensus system with output feedback

We now consider a general scenario where noise is in-

troduced at both the process and measurement levels of the

consensus protocol. Equation (10) is first modified to include

the process noise for each agent, as

xi(t) = ui(t) + wi(t). (13)

We assume that wi(t) is a zero-mean white Gaussian noise

with covariance E[w(t)w(t)T ] = σ2
wI .

The measurement is also corrupted by noise, as

y(t) = E(G)T x(t) + v(t). (14)

Here, v(t) ∈ R
|E| is also a zero-mean white Gaussian noise

with covariance E[v(t)v(t)T ] = σ2
vI .

Equations (13) and (14) can be considered the open-loop

consensus model. We denote the open-loop system as Σol,

Σol :

{

ẋ(t) = u(t) + w(t)
y(t) = E(G)T x(t) + v(t)

. (15)

When the output-feedback control u(t) = −E(G)y(t) is

applied, the system leads to a generalized consensus protocol

with noise. The noisy consensus model will be referred to

as the Σ model;

Σ :







ẋ(t) = −L(G)x(t) +
[

I −E(G)
]

[

w(t)
v(t)

]

z(t) = E(G)T x(t)
. (16)

Here, the variable z(t) is introduced as a performance signal

to monitor. Note that as x(t) → (1/N)Jx(0) we have that

z(t) → 0. The open-loop system is shown in Figure (2) with

the consensus output-feedback law.

The first limiting factor for an H2 analysis is that for

any connected graph, the system Σ has an unbounded H2

norm due to the presence of the 0 eigenvalue. Therefore,

we can consider the performance analysis on the subspace

orthogonal to the 1 vector, the eigenvector associated with

the 0 eigenvalue.

In this direction, we introduce the coordinate transforma-

tion Sx̂(t) = x(t), where S is defined in (7). Applying this

transformation yields

Σ̂ :







˙̂x(t) =

[

−Lτ
eRRT 0
0 0

]

x̂(t) +

[

ET
τ −Lτ

eR
1
N

1T 0

][

w(t)
v(t)

]

z(t) =
[

RT
0

]

x̂(t)
.

(17)

We use the shorthand notation Lτ
e = Le(Gτ ) and R = R(G).

The benefit of such a transformation is the algebraic structure

of the underlying connection topology is preserved through

the Edge Laplacian. Furthermore, we note that the new state

x̂(t) can be partitioned as x̂T (t) =
[

xT
τ (t) xT

1 (t)
]T

where xτ (t) represents the relative state information across

the edges of a spanning tree of G, and x1(t) is the mode in

the 1 subspace, which corresponds to an unobservable mode

of the system.

We can now consider the truncated system containing

only the states xτ (t) for analysis considerations; in fact, the

truncated system represents a minimal realization of (16).

We refer to this as the Στ system;

Στ :

{

ẋ(t) = −Lτ
eRRT xτ (t) + σwET

τ ŵ(t) − σvLτ
eRv̂(t)

z(t) = RT xτ (t)
.

(18)

The signals ŵ(t) and v̂(t) are the normalized process and

measurement noise signals. The performance variable, z(t),
contains information on the tree states in addition to the cycle

states. Here we recall that the cycle states are linear combina-

tion of the tree states and we note that z(t) actually contains

redundant information. This is highlighted by recognizing

that the tree states converging to the origin forces the cycle

states to do the same. Consequently, we will consider the

system with cycles as well as a system containing only the

tree states at the output, which we denote as Σ̂τ . This also

allows for a means to quantify the affect of cycles on the

performance.

Σ̂τ :

{

ẋ(t) = −Lτ
eRRT xτ (t) + σwET

τ ŵ(t) − σvLτ
eRv̂(t)

z(t) = xτ (t)
.

(19)

The H2 norm of Στ and Σ̂τ can be calculated as

‖Στ‖
2
2 = Tr[RT X∗R], ‖Σ̂τ‖

2
2 = Tr[X∗], (20)

where X∗ is the positive-definite solution to the Lyapunov

equation

−Lτ
eRRT X∗ − X∗RRT Lτ

e + σ2
wLτ

e + σ2
vLτ

eRRT Lτ
e = 0.

(21)

The structure of (21) suggests that any solution be dependent

on certain properties of the graph. In fact, the solution can

be written by inspection by noting that

σ2
wLτ

e + σ2
vLτ

eRRT Lτ
e = Leτ

(

σ2
w(Lτ

e )−1 + σ2
vRRT

)

Lτ
e .

The solution to (21) is

X∗ =
1

2

(

σ2
w(RRT )−1 + σ2

vLτ
e

)

, (22)

and we arrive at the following result.

Theorem 3.1: The H2 norm of the Στ system is

‖Στ‖
2
2 =

σ2
w

2
(n − 1) + σ2

v |E|. (23)

The H2 norm of the Σ̂τ system is

‖Σ̂τ‖
2
2 =

σ2
w

2
Tr[(RRT )−1] + σ2

v(n − 1). (24)
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Proof: The proof follows from (22) and noting that

Tr[Lτ
e ] = 2(n − 1), or twice the number of edges in a

spanning tree.

We note that ‖Στ‖2
2 is a linear function of the number of

edges in the graph. This has a clear physical interpretation,

as the addition of each edge corresponds to an amplification

of the noises.

While a general graph theoretic characterization of (24)

may be hard to derive, certain graph structures allow for

complete characterizations of the solution, which we present

below.

A. Spanning Trees

The first case resulting in a simplification of (23) arises

when G is a spanning tree. In this case R = I and (23)

simplifies to

‖Σ̂τ‖
2
2 = (n − 1)

(

σ2
w

2
+ σ2

v

)

(25)

An interesting consequence of this result is that all span-

ning trees result in the same system performance. That is, the

choice of spanning tree (e.g. a path or a star) does not affect

the performance. As expected, in this scenario ‖Στ‖2
2 =

‖Σ̂τ‖2
2. We also note that when the noises have different

covariance values, this analysis becomes significantly more

complicated, and we consider this in §IV.

B. k-Regular Graphs

Regular graphs also lead to a simplification of (24). Any

connected k-regular graph will contain cycles resulting in a

non-trivial expression for RRT . The H2 norm is therefore

intimately related to the cut space of the graph. A direct

characterization of RRT in terms of basic properties of the

graph is challenging for arbitrary k-regular graphs. However,

certain k-regular graphs leads to further simplifications, as

presented below.

Denote the eigenvalues of RRT by µi and note that

Tr
[

(RRT )−1
]

=

n−1
∑

i=1

1

µi

=
1

τ(G)

n−1
∑

i=1

n−1
∏

j 6=i

µj (26)

The quantity
∏n−1

j 6=i µj is recognized as a first minor of the

matrix RRT .

Lemma 3.2: The k-regular graph with degree 2 (cycle

graph) has n spanning trees and

Tr
[

(RRT )−1
]

=
(n − 1)2

n
. (27)

The H2 norm of the Σ̂τ system when the underlying graph

is the cycle graph Cn is given as

‖Σ̂2‖
2
2 = (n − 1)

(

σ2
w(n − 1)

n
+ σ2

v

)

. (28)

Proof: Without loss of generality, we consider a di-

rected path graph on n nodes, with initial node v1 and

terminal node vn as the spanning tree subgraph Gτ . Index

the edges as ei = (vi, vi+1). The cycle graph is formed

0 50 100 150 200 250 300 350 400 450 500
4.7

4.75

4.8

4.85

4.9

4.95

5

tr
a

c
e

[(
R

R
T
)−

1
]

Fig. 3. Tr[(RRT )−1] for random 5-regular graphs

by adding the edge en = (vn, v1). For this graph, we have

T c
τ = 1n−1 and RRT = I + Jn−1. From this it follows that

det
[

RRT
]

= N and all its first minors have value N − 1.

Combined with (23) yields the desired result.

Lemma 3.3: The k-regular graph with degree n−1 (com-

plete graph) has nn−2 spanning trees and

Tr
[

(RRT )−1
]

=
2(n − 1)nn−3

nn−2
=

2(n − 1)

n
. (29)

The H2 norm of the Σ̂τ system when the underlying graph

is the complete graph Kn is given as

‖Σ̂τ‖
2
2 = (n − 1)

(

σ2
w

n
+ σ2

v

)

. (30)

Proof: Without loss of generality, we consider a star

graph with center at node v1 and all edges are of the form

ek = (v1, vk+1). Then the cycles in the graph are created

by adding the edges e = (vi, vj), i, j 6= 1 and RRT =
nI − Jn−1. It then follows that det

[

RRT
]

= nn−2 and all

the first minors have value 2nn−3. Combined with (23) yields

the desired result.

In general, one expects the system norm to decrease as

the regularity increases. However, it is not clear how the

cycle structure directly affects the norm. To illustrate this,

500 random regular graphs of degree 5 were generated in

MATLAB. For each instance, the value Tr[(RRT )−1] was

calculated, sorted, and plotted in Figure 3. In this example,

although the degree of each node remains constant, the actual

cycle structure, meaning both the number of independent

cycles and the length of those cycles, varies greatly.

The above analysis suggests that other classes of graphs

may exist that lead to a simplification of the expression in

(23). Ultimately, any such simplification will relate to the

matrix (RRT )−1, which is intimately related to the cycles

of the graph.

C. Cycle Contributions

Using the above analysis we can begin to quantitatively

understand how cycles affect the H2 performance. For ex-

ample, examining the ratio

‖Στ (G)‖2
2

‖Στ (Gτ )‖2
2
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can give a good indication of how the cycles increase the H2

norm. Recall that G is in general a graph containing cycles

and Gτ ⊆ G is the spanning tree subgraph.

For example, consider the cycle graph Cn and assume unit

covariance for both the process and measurement noises. The

ratio becomes

‖Στ (Cn)‖2
2

‖Στ (Gτ )‖2
2

=
3n − 1

3(n − 1)
. (31)

In this case, we note that as the number of nodes increases

the effect of the cycle (there is only 1) decreases and becomes

negligible in the limit.

Similarly, for the complete graph Kn we have

‖Στ (Kn)‖2
2

‖Στ (Gτ )‖2
2

=
n + 1

3
. (32)

Here we see that the norm is amplified linearly as a function

of the number of nodes in the graph. It is worth mentioning

here that typical performance measures for consensus prob-

lems, such as λ2(G), would favor the complete graph over the

cycle graph. However, in terms of the H2 performance we

see that there is a penalty to be paid for faster convergence.

Alternatively, insight is also gained by considering the

ratio
‖Στ (G)‖2

2

‖Σ̂τ (G)‖2
2

,

which highlights the effects of including cycles in the per-

formance variable z(t).

For the cycle graph we have

‖Στ (Cn)‖2
2

‖Σ̂τ (Cn)‖2
2

=
n(3n − 1)

2(n − 1)(2n − 1)
. (33)

Here we note that as n → ∞ the ratio approaches 0.75,

which suggests that the effect of including the cycle for

performance evaluation does not vary significantly with the

size of the graph.

For the complete graph we have

‖Στ (Kn)‖2
2

‖Σ̂τ (Kn)‖2
2

=
n

2
. (34)

As with (32) we see that the inclusion of cycles results in a

linear function of the number of nodes in the graph.

IV. SENSOR PLACEMENT WITH H2 PERFORMANCE

In this section we consider the problem of sensor selection

and placement for consensus in the context of its H2 per-

formance. Consider, for example, a scenario where there are

two types of sensors available for the relative measurements

in the open-loop consensus problem. One sensor is a high-

fidelity and high cost sensor, with associated noise covariance

σ2
v . The other sensor is cheaper with covariance σ2

v > σ2
v.

When synthesizing the topology for the consensus problem,

the designer must consider the tradeoff between the sensor

costs and the system performance.

In this direction, we consider a modification of the system

in (18),

Στ :







ẋ(t) = −Lτ
eRRT xτ (t) + σwET

τ ŵ(t)−
LT

e RΓv̂(t)
z(t) = RT xτ (t)

,

(35)

where ŵ(t) and v̂(t) are the normalized noise signals. The

matrix Γ is a diagonal matrix with elements σi corresponding

to the variance of the sensor on edge i.
The most general version of this problem considers a finite

set of p sensors each with an associated variance,

P = {σ2
i , i = 1, 2, . . . , p}. (36)

For each element σ2
i ∈ P there is an associated cost c(σ2

i ).
The cost function has the property that c(σ2

i ) > c(σ2
j ) if

σ2
i < σ2

j . The mixed-integer program can then be written as

P1 (37)

min
X,W

λTr[RT XR] +

|E|
∑

i=1

c(wi)

s.t. W = diag{w1, . . . , w|E|},

wi ∈ P,
∑

i

wi ≤ σ,

−LT
e RRT X − XRRT LT

e + σ2
wLτ

e + LT
e RWRT Lτ

e = 0,

where λ represents a weighting on the H2 performance of the

solution, and σ represents the maximum allowable aggregate

noise. Note that in general |E|mini σ2
i ≤ σ ≤ |E|maxi σ2

i .

The problem P1 is combinatorial in nature, as a discrete

decision must be made as to which sensor to use and where to

place it in the network. While a tractable solution algorithm

is still under investigation, certain relaxations can be made

that lead to a more approachable problem. The first relaxation

removes the discrete nature of the set P into a simple box-

type constraint, as

P̂ =
[

σ2, σ2
]

. (38)

The cost function now can be written as a continuous map

c : P̂ 7→ R that is a covex and strictly decreasing function.

The simplest version of such a function would be the linear

map c(σ2
i ) = −βσ2

i for some β > 0. These relaxations lead

to the following modified program, P2;

P2 (39)

min
X,W

λTr[RT XR]− βTr[W ]

s.t. W = diag{w1, . . . , w|E|},

σ2 ≤ wi ≤ σ2,
∑

i

wi ≤ σ,

−LT
e RRT X − XRRT LT

e + σ2
wLτ

e + LT
e RWRT Lτ

e = 0.

As in the analysis of §III, we would expect that certain

topologies lead to a simplification in the above programs. As
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Fig. 4. A graph on 10 nodes with optimal sensor selection

an example of P2, we consider the sensor selection for the

graph in Figure 4. A random graph on 10 nodes with an edge

probability of 0.15 was generated. The graph is connected

and contains two independent cycles, resulting in the most

general problem instance. The sensor constraints used are

P̂ = [0.001, 0.1] and σ2 = 0.501. Finally, the cost function

tuning values were chosen as β = 5 and λ = 1. It is worth

mentioning that the selection of these values is currently a

trial and error process. Ideally, they should be chosen in

such a way so that one term of the objective function does

not overly dominate the other.

Solving P2 resulted in a non-trivial selection of sensors

for each edge. The sensor covariance for each edge is labeled

in Figure 4. It is interesting to note that the highest fidelity

sensors tend to be concentrated around the node of highest

degree. Also, the edge with the lowest fidelity sensor is

furthest away from the node of highest degree. It seems rather

intuitive to place the lower fidelity sensors in “low traffic”

areas. That is, edges that are adjacent to a low number of

other edges.

V. CONCLUSIONS

This work presented an H2 performance analysis of the

consensus protocol with both process and measurement

noises present. In order to perform such an analysis, the

consensus model was transformed into an edge representa-

tion leading to a minimal realization of the system. While

the traditional consensus problem is centered around analysis

of the graph Laplacian, the edge variant relies on the Edge

Laplacian. An advantage of this transformation is the ability

to do analysis of the system orthogonal to the agreement

subspace while preserving the strong algebraic properties of

the graph via the Edge Laplacian.

The H2 performance of the consensus protocol was shown

to be dependent on the number of edges in the graph.

Consequently, this suggests that cycles play an important

role in terms of the system performance by way of noise

propagation. This is in stark contrast to traditional analysis

of consensus problems which focuses on the convergence

rate of the system. It is well understood that an increase in

the number of edges in the graph corresponds to an increase

in the second smallest eigenvalue of the graph Laplacian,

resulting in faster convergence. However, in this context, the

addition of edges produce an adverse affect in performance.

The analysis results of §III showed that certain classes of

graphs - spanning trees and k-regular graphs - result in a

graph theoretic description of the system norm. Certainly,

it seems that there should be other classes of graphs that

allow for similar simplifications, and this is currently under

investigation. The observations on the performance ratio

relating to the cycle graph suggest that some graphs scale

better than others in terms of performance and the number

of nodes.

These results were then applied to an optimization problem

aimed at selecting sensors for a fixed topology consensus

problem. Although the complete statement of the problem is

numerically challenging, the relaxation provides a reasonable

approach to this problem. This formulation can naturally be

pushed further to include, for example, topology design with

both favorable convergence rates, good H2 performance, and

low sensor costs. More subtly, it highlights a connection

between combinatorial optimization problems and synthesis

methods for networked dynamic systems. Consequently, the

development of numerically tractable algorithms for the

design of these systems is an essential component for the

maturation of this field.
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