
Agreement via the Edge Laplacian

Daniel Zelazo, Amirreza Rahmani, and Mehran Mesbahi†

Abstract— This work explores the properties of the edge
variant of the graph Laplacian in the context of the edge
agreement problem. We show that the edge Laplacian, and its
corresponding agreement protocol, provide a useful perspective
on the well-known node agreement, or the consensus problem.
Specifically, the dynamics induced by the edge Laplacian
facilitates a better understanding of the role played by certain
subgraphs, e.g., cycles and spanning trees, in the original agree-
ment problem. We also point out a reduced order modeling of
the edge agreement as parameterized by the spanning trees of
the underlying graph.

I. INTRODUCTION

Distributed dynamic systems are collections of dynamical

units that interact over an information exchange network.

Such systems are ubiquitous in diverse areas of science and

engineering. Examples include physiological systems and

gene networks [1], large scale energy systems, and multiple

space, air, and land vehicles [2], [3], [4], [5], [6]. There is an

active research effort underway in the control and dynamical

systems community to formalize these systems and lay out a

foundation for their analysis and synthesis [7], [8], [9]. As a

result of this effort, a distinct area of research that lies at the

intersection of systems theory and graph theory has emerged.

A basic yet fundamental class of problems that lies at this

intersection relates to the Laplacian dynamics, also known

as the agreement or consensus protocol [10], [11], [12], [13].

The Laplacian dynamics is the process via which a

group of first order units, through local interactions, reach

a common value of interest. In this paper we explore the

properties of the edge variant of this well-known protocol

and refer to it as the edge agreement problem. We show

that the edge Laplacian, and its corresponding edge agree-

ment protocol, provide a new perspective on the Laplacian

dynamics. Specifically, edge agreement facilitates a better

understanding of the role played by certain subgraphs, e.g.,

cycles and spanning trees, in the node agreement problem.

We also point out a reduced order modeling for the edge

agreement in terms of the spanning trees of the original

graph.

II. PRELIMINARIES AND NOTATIONS

We first provide a few notions that will be employed

throughout the paper for studying node and edge agreement

problems.
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Fig. 1. Incidence matrices for two simple graphs

A. Graphs and Their Algebraic Representation

An undirected (simple) graph G is specified by a vertex

set V and an edge set E whose elements characterize the

incidence relation between distinct pairs of V . Two vertices

i and j are called adjacent (or neighbors) when {i, j} ∈ E ;

we denote this by writing i ∼ j. The cardinalities of the

vertex and edge sets of G will be denoted by |G| and ‖G‖,

respectively. A subgraph of a graph G is a graph whose

vertex and edge sets are subsets of those of G. An orientation

of an undirected graph G is the assignment of directions to

its edges, i.e., an edge ek is an ordered pair (i, j) such that

i and j are, respectively, the initial and the terminal nodes

of ek.

Graphs admit a set of convenient matrix representations.

For example, the |G| × ‖G‖ incidence matrix E(G) for an

oriented graph G is a {0,±1}-matrix with rows and columns

indexed by vertices and edges of G, respectively, such that

[E(G)]ik =






+1 if i is the initial node of edge ek

−1 if i is the terminal node of edge ek

0 otherwise

Figure 1 depicts an example of two oriented graphs and their

respective incidence matrices. From the definition of the in-

cidence matrix it follows that the null space of its transpose,

N (E(G)T ), contains span {1}, where 1 is the vector with all

entries equal to one with appropriate dimensions. The rank

of the incidence matrix depends only on |G| and the number

of its connected components [14].

Theorem 2.1: Let G = (V, E) be a graph with c connected

components. Then rank E(G) = |G| − c.

The degree of a vertex is the cardinality of the set of

vertices adjacent to it. A graph is complete if all possible

pairs of vertices are adjacent, or equivalently, if the degree

of all vertices is | G | − 1. A sequence of r + 1 distinct and

consecutively adjacent vertices, starting from vertex i and

ending at vertex j, is called a path of length r (form i to

j); when i = j, we call this path a cycle. We call a graph

connected if there exists a path between any pair of vertices.
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A connected graph without cycles is referred to as a tree.

Equivalently, a tree is a connected graph on | G | vertices

with | G |−1 edges. Figure 1(a) shows an example of a tree,

while Figure 1(b) is a connected graph containing cycles.

The Laplacian of G, L(G) := E(G)E(G)T , is a rank

deficient positive semi-definite matrix. The real spectrum of

the Laplacian can thereby be ordered as

0 = λ1(L(G)) ≤ λ2(L(G)) ≤ . . . ≤ λ|G|(L(G)).

A direct consequence of Theorem 2.1 is that the multiplicity

of the zero eigenvalue of the graph Laplacian is equal to the

number of connected components of the graph [14]. More-

over, the second smallest eigenvalue of L(G), λ2(L(G)), also

known as algebraic connectivity, turns out to be a judicious

measure of graph connectivity [17].

Since the dependency of the subsequent derivations on the

underlying graph is implicit, we will not include “G” in the

notation used for matrices associated with the graph.

B. Agreement Dynamics

The agreement protocol is one of the basic yet fundamental

problems in multi-agent coordination. It is built upon a

general setup consisting of a group of N dynamic units, each

connected to a fixed number of other units in the ensemble.

Labeling these units as 1 through N , the interconnection

between the dynamic units can be represented by a graph

G(V, E) with V = {1, . . . , N} and E denoting the set of

pairwise inter-unit couplings. Each unit is assumed to have

a simple first order dynamics of the form

ẋi(t) = zi(t), i = 1, . . . , N. (1)

The interaction or coupling between units’ dynamics is

realized through the control input zi(t) in (1), assumed to

be the sum of the differences between states of the unit and

its neighbors, i.e.,

zi(t) =
∑

i∼j

(xj(t) − xi(t)). (2)

Expressing the dynamic evolution of the resulting system in

a compact matrix form with xn(t) = [x1(t), . . . , xN (t) ]T ,

one has

ẋn(t) = −Ln xn(t), (3)

where xn denotes the collection of node states1 and Ln =
L(G).

The agreement set A ⊆ R
N is the subspace span {1}.

Let us define δn(t) as the projection of states xn(t) onto

the subspace orthogonal to the agreement subspace. This

subspace is denoted by 1⊥; in [13] it is referred to as the

disagreement subspace. Thus

δn(t) = xn(t) − α 1,

where α = (1/N)
∑

i(xn)i.

Proposition 1 ([13]): The Laplacian dynamics (3) con-

verges to the agreement subspace from an arbitrary initial

condition if and only if the underlying graph is connected.

1The subscript n signifies that the graph Laplacian is the system matrix
for the “node” agreement.

III. EDGE LAPLACIAN AND ITS PROPERTIES

In this section we introduce an edge variant of the graph

Laplacian for a group of interconnected units. Furthermore,

we explore some of the connections between the edge Lapla-

cian and the well-studied graph Laplacian. The dynamic

relevance of edge Laplacian in the edge agreement will be

considered in §IV.

The edge Laplacian of an arbitrary oriented graph G is

defined as

Le := ET E. (4)

The edge Laplacian is a real ‖G‖ × ‖G‖ symmetric matrix.

Two immediate linear algebraic properties of Le are given

below:

• the non-zero eigenvalues of Le are equal to the non-zero

eigenvalues of Ln, and

• The non-zero eigenvalues of Le and Ln are equal to the

square of the non-zero singular values of E(G).

From these properties and Theorem 2.1 it follows that the

rank of the edge Laplacian is also related to the number of

connected components in the graph. The edge Laplacian can

be permuted into a block diagonal matrix where each block

represents a connected component.

Lemma 3.1: Consider the graph G with p connected com-

ponents, Gi, and associated incidence matrices, Ei, and let

E =
[

E1 . . . Ep

]
. Then the edge Laplacian for G has

the block diagonal form

Le =




ET

1 E1

. . .

ET
p Ep



 . (5)

Proof: Denote each column (corresponding to an edge)

of the incidence matrix by the vector ei. Then

eT
i ej =






±1 if ei and ej share a single node

2 if i = j
0 if ei and ej share no nodes

By definition two connected components of a graph do not

share a node; hence the corresponding entry in the edge

Laplacian is zero.

Proposition 2: Adding an edge to the graph G increases

the sum of the eigenvalues of the corresponding graph and

edge Laplacians by 2.

Proof: One way to prove this proposition is via the

graph Laplacian. The sum of eigenvalues of the Laplacian

is the sum of its diagonal entries- that in turn- is twice the

number of edges of G. Adding an edge to G therefore adds 2

to this sum. Yet another way to reach the same conclusion is

via the edge Laplacian. Adding an edge to G adds a column

to the incidence matrix of G, i.e., E(Ĝ) = [E(G) e ] and

will augment row and column borders to the original edge

Laplacian as,

Le(Ĝ) =

[
Le(G) ET e
eT E 2

]
. (6)
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As a result,

trace Le(Ĝ) =
∑

i

λi(Le(Ĝ))

= trace Le(G) + 2

Recall that the graph Laplacian is always rank-deficient.

In the edge case, we find that the rank of the edge Laplacian

depends only on the number of connected components, as

shown in Theorem 2.1. Furthermore, the null space of the

edge Laplacian depends on the number of cycles in the graph.

Let us elaborate on this last statement by presenting a few

definitions and theorems.

Definition 3.1: Given an incidence matrix E for a directed

graph, a signed path vector is a vector z ∈ R
‖G‖ correspond-

ing to a path such that

zi =






1 if edge i is traversed positively

−1 if edge i is traversed negatively

0 if edge i is not used in the path

Lemma 3.2: Given a path with distinct initial and terminal

nodes described by a signed path vector z in a graph G, the

vector y = Ez has the following structure:

yi =






1 if node i is the initial node of path z
−1 if node i is the final node of path z
0 otherwise

Proof: We can rewrite Ez as E diag(z) 1. The ij-th

entry of the matrix E diag(z) will be −1 if edge j is used

by the path to leave node i, +1 if edge j is used by the path to

enter node i, and zero otherwise. If node i is an intermediate

node in the path (neither the initial nor the terminal node),

then the path must enter and leave the node an equal number

of times, resulting in the i-th row-sum of E diag(z) to be

zero. On the other hand, if node i is the initial node, the path

must eventually leave the node without ever returning to it,

resulting in the i-th row-sum to be equal to 1. Similarly, if i
is the terminal node, the path must eventually enter the node

without ever leaving it, resulting in the i-th row-sum to be

equal to −1.

Theorem 3.3: Given a connected directed graph G with

incidence matrix E, the null space of E is spanned by all

the linearly independent signed path vectors corresponding

to the cycles in E.

Proof: For any node used in a cycle path, the path must

enter and exit that node an equal number of times. Using the

same argument as in the proof of Lemma 3.2, it follows that

Ez = 0 when z is the signed path vector for a cycle.

Theorem 3.3 is an example of the intricate relationship

between the graphical and algebraic properties of a graph.

Theorem 3.4: Let Le and E be, respectively, the edge

Laplacian and the incidence matrix of an oriented graph.

Then

N (Le) = N (E). (7)

Proof: Let x ∈ N (E); then Lex = ET Ex = 0 and

it follows that N (E) ⊆ N (Le). On the other hand when

x ∈ N (Le), ET Ex = 0 and xT ET Ex = ‖Ex‖2 = 0. Thus

x ∈ N (E).

IV. THE EDGE AGREEMENT PROBLEM

The agreement problem has been studied extensively from

the perspective of the node states in the systems and control

literature. In many applications node agreement is the natural

venue to study the dynamic states of a group of intercon-

nected first order agents. This problem has a natural edge

interpretation that we will explore in this section.

We consider the system states to be on the edges rather

than on the nodes. The node-interpretation can be used to

gain insight on the edge version by noting that the edge state

represents the difference between the two nodes incident to

an edge. In this avenue, let

xe(t) = ET
xn(t) (8)

where xe(t) ∈ R
‖G‖ represents the relative, or edge state.

Differentiating (8) and substituting in (3) leads to

ẋe(t) = ET ẋn(t)

= −Lexe(t). (9)

We now examine the agreement protocol in the edge

setting (9). If we use the node-to-edge transformation above,

we see that agreement is equivalent to having xe(t) = 0.

As a result, in the edge setting the disagreement, denoted by

δe(t), rather than being the distance to a subspace as in the

node case- is the distance to the origin, i.e.,

‖δe(t)‖2 = ‖xe(t)‖2 ≤ ‖E‖2‖δn(t)‖2 (10)

From Proposition 1, the node dynamics converges to the

agreement subspace, which implies that the edge dynamics

converges to the origin. Hence, we can view the agreement

protocol as driving the edge states to the origin. Analogous

to the node agreement, in the edge agreement setting, the

evolution of an edge state depends on its current state and

the states of its adjacent edges, i.e., those that share a node

with it.

A. Role of Cycles in Edge Agreement

Cycles of the graph play an important role in both the node

and edge version of the corresponding Laplacian dynamics.

Recall that the null space of the edge Laplacian characterizes

the cycle space of the graph. In the meantime, in the Lapla-

cian dynamics, agreement is reached when the underlying

state trajectory converges to the null-space of Ln. The same

observation is valid in the dynamics dictated by the edge

Laplacian, that is, when xe(t) ∈ N (Le), agreement has been

reached.

To simplify our presentation we will assume that all

graphs under consideration are connected and hence contain

a spanning tree. The edges that are not in the given spanning
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Fig. 2. A graph can be represented (not necessarily in a unique way) as
a tree and edges that complete its cycles

tree must complete the cycles in the graph. Using an appro-

priate permutation of the edge ordering, we can express the

incidence matrix as

E =
[

Et Ec

]
(11)

where Et represents a given spanning tree and Ec represents

the remaining edges not in the tree (the cycle edges). Note

that in general, Ec does not represent a connected graph.

It is useful to express the node and edge Laplacians in

terms of the block representation of the incidence matrix as

Ln =
[

Et Ec

] [
Et Ec

]T

= EtE
T
t + EcE

T
c (12)

and

Le =
[

Et Ec

]T [
Et Ec

]

=

[
ET

t Et ET
t Ec

ET
c Et ET

c Ec

]
. (13)

Our first observation is that the node agreement has two com-

ponents: one corresponding to the “tree dynamics,” and the

other to the “cycle dynamics.” This is represented graphically

in Figure 2.

An important property of both the node and edge agree-

ment is the rate at which the system converges to the

agreement subspace. As the smallest non-zero eigenvalue

of the graph Laplacian, i.e, λ2(Ln), dictates this rate, it

becomes of interest to determine efficient means of designing

or modifying a network to increase λ2(Ln). The form of (12)

suggests a transparent way by which the cycles of the graph

contribute to the overall convergence rate of the system.

Theorem 4.1: Consider the respective ordered eigenvalues

of the graph Laplacian Ln, as defined in (12), and the

corresponding tree Laplacian Et ET
t . Then for i = 1, . . . , N ,

one has

λi(Ln) ≥ λi(Et ET
t ).

Proof: By construction, Ln, Et ET
t , and Ec ET

c are

positive semi-definite matrices. From (12) one can see that

the matrix difference Ln − Et ET
t is positive semi-definite.

The proof now follows from Corollary 7.7.4c of [15]. More

specifically, we note that

λ2(Ln) ≥ λ2(Et ET
t ).

This result points to the importance of cycles as they

pertain to rapidity of convergence to the agreement subspace.

It also suggests that convergence to the steady-state value

can be studied using a simpler graph (i.e., a graph with

less edges) if the rate of convergence is not of prime

concern. This observation has implications for computational

complexity and controller/estimator designs, which will be

explored in our future work.

The edge Laplacian also provides a matrix representation

for substantiating on Theorem 4.1 by using the interlacing

eigenvalues theorem for bordered matrices [15].

Theorem 4.2: Let G = (V, E) be a tree represented by the

edge Laplacian Le with an ordered spectrum λ1 ≤ · · · ≤ λG .

Adding an edge from the complement of E to the tree leads

to a new graph Ĝ with edge Laplacian L̂e and an ordered

spectrum λ̂1 ≤ · · · ≤ λ̂|G|+1, satisfying the following

inequalities:

0 = λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ · · · ≤ λ|G| ≤ λ̂|G|+1. (14)

Proof: First, recall from Theorem 3.3 that cycles in a

graph correspond to the null space of the edge Laplacian.

Adding an edge from the complement of E to the graph

(which is assumed to be a tree) must therefore create a cycle.

The remainder of the proof follows from the application

of the Courant-Fischer Theorem [15] in the context of the

interlacing property of the eigenvalues of Le and L̂e.

Theorems 4.1 and 4.2 provide insights as to when it may

be beneficial to add an edge for the purpose of improving

the convergence rate of the node agreement. One immediate

observation is that under certain circumstances, adding an

edge does not improve the convergence rate.

Proposition 3: Given a graph G with incidence matrix E
and edge Laplacian Le, if the smallest non-zero eigenvalue

has multiplicity m > 1, then adding up to m new edges will

not increase the smallest non-zero eigenvalue of the new

graph.

Proof: Let us consider the case of m = 2, as the

proof for general m is analogous. Assume, without loss of

generality, that G is a tree. By assumption, we have that

λ1(Le) = λ2(Le) 6= 0. Using the results of Theorem 4.2,

we have that

0 = λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2

where λ̂i’s are the corresponding edge Laplacian eigenvalues

of the augmented graph. However, since λ1 = λ2, we must

have

λ1 = λ̂2 = λ2.

As a simple example, consider the graph in Figure 1(a).

The smallest eigenvalue for the edge Laplacian of this graph

is one with multiplicity two. Hence adding a single edge to

this graph will not improve the smallest eigenvalue of its

edge Laplacian. This observation also suggests that certain

spanning trees will naturally lead to faster convergence rates.

As an example, a star graph (shown in Figure 1(a)) will have

a greater smallest eigenvalue than a path graph.
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B. Reduced Order Edge Agreement

In the previous section we showed a connection between

the cycles of a graph and the algebraic structure of its

corresponding edge Laplacian. These results can be used to

derive a reduced order representation of the edge agreement

over a graph in terms of the corresponding dynamics on its

spanning tree subgraph. We define the edge state vector to

be

xe(t) =
[

x
T
t (t) x

T
c (t)

]T
,

where xt(t) is the edge state of the tree subgraph Et and

xc(t) are the remaining edge states (the cycle states). Note

that xt(t) ∈ R
|G|−1 and xc(t) ∈ R

‖G‖−|G|+1. Reaching

agreement corresponds to having xt(t) = 0|G|−1 and xc(t) =
0‖G‖−|G|+1.

Theorem 4.3: Consider a graph G with cycles, and a tree

subgraph Gt, with corresponding edge Laplacians Le(G) =[
Et Ec

]T [
Et Ec

]
and Le(Gt) = ET

t Et, respec-

tively. Then there exists a matrix R such that

Le(G) = RT Le(Gt)R. (15)

Proof: The graph G has cycles which implies that the

columns of Ec are linearly dependent on the columns of Et.

This dependency can be expressed in terms of the existence

of a matrix T such that

EtT = Ec. (16)

Since Et has full column rank, its pseudo-inverse exists and

we have

T = (ET
t Et)

−1ET
t Ec. (17)

Therefore, the incidence matrix for G can be written as

E =
[

Et EtT
]
. (18)

We can calculate the edge Laplacian for G in terms of the

matrices Et and T as

Le(G) =

[
ET

t Et ET
t EtT

TT ET
t Et TT ET

t EtT

]

=

[
I‖Gt‖

TT

]
Le(Gt)

[
I‖Gt‖ T

]
.

The matrix R can now be defined as

R =
[

I‖Gt‖ T
]
. (19)

Theorem 4.3 makes it transparent that cycles are not nec-

essary for convergence in the edge Laplacian dynamics. In

fact, all cycle states can be reconstructed from the tree states

through the linear relationship derived in (17). This leads us

to the following result.

Theorem 4.4: Consider a graph G with incidence matrix

E =
[

Et Ec

]
where Et is the incidence matrix for a

tree subgraph Gt and Ec represents the incidence matrix for

the cycle edges. Partition the edge state vector as xe(t) =[
x

T
t (t) x

T
c (t)

]T
. Then the system described by

ẋe(t) = −Le(G)xe(t) (20)

is equivalent to the system described by

RT
ẋt(t) = −RT Le(Gt)RRT

xt(t) (21)

where R is as defined in (19).

Furthermore, the reduced order system described by

ẋt(t) = −Le(Gt)RRT
xt(t) (22)

captures the behavior of the system described in (20). In

fact the cycle edge states can be reconstructed by using the

matrix T as defined in (17) via

xc(t) = TT
xt(t). (23)

Proof: Using (12) and (18), the Laplacian dynamics

can be written as

ẋn(t) = −(EtE
T
t + EtTTT ET

t )xn(t). (24)

The edge dynamics can then be derived by recalling that

xe(t) = ET
xn(t)

=

[
ET

t

TT ET
t

]
xn(t)

= RT ET
t xn(t).

Left-multiplying (24) by RT ET
t leads to

RT
ẋt(t) = −RT (ET

t Et + ET
t EtTTT )xt(t)

which is the desired result (21). The reduced order repre-

sentation follows directly from the structure of the matrix

R.

V. SIMULATIONS

In this section we show a set of simulation results for

some of the properties discussed in previous sections. To

explore the role of cycles and adding extra edges to a tree, we

simulated the edge agreement problem for the graphs shown

in Figure 3. The graph of Figure 3(a) is a tree. It can be

easily verified that adding an edge, as in Figure 3(b), creates

a cycle in the graph but the smallest non-zero eigenvalue of

the Laplacian remains unchanged. If a second edge is added,

as in Figure 3(c), then the smallest eigenvalue increases.

Figure 4 depicts the trajectories of the edge states for

graphs shown in Figure 3. We note that the slowest mode

of convergence for graphs in Figure 3(a) and Figure 3(b)

are the same, while the graph with two extra edges reaches

agreement much faster. This shows that in certain network

configurations (here the tree was a star graph), adding only

Fig. 3. (a) a tree star graph, (b) tree with an extra edge, and (c) tree with
two extra edges
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Fig. 4. Edge agreement for graphs shown in Figure 3
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Fig. 5. Edge agreement for the graph of Fig. 2: (a) Simulated edge states
for the full order system, (b) Simulated spanning tree edge states, (c) Cycle
edge states constructed from the spanning tree edge states

one edge (and consequently a cycle) does not enhance the

rate of convergence of the slowest mode.

As discussed in §IV-A, the edge agreement behavior of the

entire network can be captured by examining a reduced order

system characterized by a spanning tree of the graph. The

states of the cycle edges can be reconstructed from the states

of the tree edges. To further explore this observation, we first

simulated the edge agreement using (20) for the full order

graph of Figure 2 as shown in Figure 5(a). We also simulated

the reduced order tree edge agreement described in equation

(22), and reconstructed the cycle states using the relation

presented in (23). Figure 5(b)-(c) depicts the trajectories of

the tree edge states and the reconstructed cycle edge states.

We note that the combined trajectories in Figure 5(b)-(c) are

the same as those shown in Figure 5(a).

VI. CONCLUSIONS

In this paper we defined and explored the interpretation

of an edge variant of the graph Laplacian in the context

of the edge agreement problem. The results presented in

this work point to intriguing connections between the well-

studied node agreement problem and its edge version. In this

direction, we also pointed out strong connections between

algebraic and graph-theoretic properties, and their system-

theoretic ramifications in the node and edge agreement.

An emerging theme in this paper is the apparent trade-off

between the convergence rate of the agreement dynamics, as

defined by the smallest non-zero eigenvalue, and the number

of edges in the network. We showed how adding cycles to a

network can potentially increase the convergence rate to the

agreement among the nodes. Furthermore, we showed that

one can always represent the edge Laplacian over a graph by

a lower dimensional system over its spanning tree subgraph.
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