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Abstract— This work provides a general framework for the
analysis and synthesis of a class of relative sensing networks
(RSN) in the context of its H∞ performance. In an RSN, the
underlying connection topology couples each agent at their
outputs. A distinction is made between RSN with homogeneous
agent dynamics and RSN with heterogeneous dynamics. In
both cases, explicit graph theoretic expressions and bounds
for the H∞ performance are derived. The H∞ performance
is structure dependent and related to the spectral radius of the
graph Laplacian. The analysis results are then used to develop
synthesis methods for RSNs. Using results from robust semi-
definite programming, a synthesis procedure for the design of
a robust sensing topology is derived.

I. INTRODUCTION

Many applications in multi-agent systems rely on relative

sensing to achieve their team objectives. For example, space

applications relying on relative sensing include spacecraft

constellations for studying the structure of the heliopause,

stereographic imaging and tomography for space physics,

and space borne optical interferometry for probing the origins

of the cosmos and identifying Earth-like planets (e.g., TPF,

MAXIM) [6], [9], [15], [21]. Distributed sensor networks

also rely on relative sensing and include applications ranging

from environmental surveillance, modeling, localization, and

collaborative information processing [1], [2], [3], [17].

Fundamental to all these systems is the implicit presence

of a “network.” The exchange of information between each

agent in a relative sensing network describes an underlying

connection topology, which can have profound implications

on the performance and design of decentralized schemes

for estimation and control. As a result, it is becoming

more important to examine notions of systems performance

from the perspective of the underlying connection topology

describing the interactions of each agent. Recent examples

of such graph-centric analysis include relating closed-loop

stability properties of multi-agent systems to the spectral

properties of the graph Laplacian [8], relating controllability

in consensus seeking systems to graph symmetry [19], graph-

theoretic analysis and performance bounds for consensus

systems [5], [23], and graph-centric observability properties

of relative sensing networks [22], [20].

In this work we focus on systems that rely on relative

sensing to achieve their mission objectives. We refer to this

class of systems as Relative Sensing Networks (RSN). In
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RSNs, the underlying connection topology couples the agents

at their outputs. Such systems are prevalent in formation

flying applications where relative sensing is employed to

measure inter-agent distances [16], [12]. More fundamen-

tally, these types of networks are relevant for applications

involving distributed sensing for purposes of estimation and

control.

Th paper is an extension of the work in [24], which

examined the H2 performance of RSNs and described a

topology synthesis procedure based on results from combina-

torial optimization. In this work, we consider a graph-centric

characterization of the system H∞ performance of RSNs for

both analysis and synthesis purposes. A distinction is made

between RSNs with homogeneous agent dynamics and RSNs

with heterogeneous agent dynamics. Although homogeneous

RSNs can be considered a subset of heterogeneous RSNs, it

is more illuminating to consider these cases separately due

to the algebraic simplicity of the former case. Understanding

how properties of the interconnection graph leads to im-

provements in system performance can give insight into the

design of sensing topologies. In particular, we consider how

characterization of the H∞ performance leads to a robust

topology design formulation.

The paper is organized as follows. Section §I-A provides

our notational conventions and a brief overview of notions

from algebraic graph theory. In section §II, general models

for homogeneous and heterogeneous RSNs are developed.

Section §III derives expressions for the H∞ norms of homo-

geneous and heterogeneous RSNs, with an emphasis given

to the role of the underlying topology. Section §IV presents

a synthesis formulation for the robust topology design of

RSNs. Finally, section §V offers some concluding remarks

on this work.

A. Preliminaries and Notations

We provide some mathematical preliminaries and nota-

tions here. Matrices are denoted by capital letters (e.g., A),

and vectors by lower case letters (e.g., x). Diagonal matrices

will be written as D = diag{d1, . . . , dn}; this notation will

also be employed for block-diagonal matrices and linear

operators. A matrix and/or a vector that consists of all zero

entries will be denoted by 0; whereas, ’0’ will simply denote

the scalar zero. Similarly, the vector 1 denotes the vector

of all ones, and J = 11T . The n × n identity matrix is

denoted as In; we also append a subscript to J, 1, and 0

to denote its dimension when it is not clear. The set of real

numbers will be denoted as R, and ‖ . ‖ denotes the standard

2-norm for vectors and matrices; on the other hand, for m-

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

ThC16.3

978-1-4244-7427-1/10/$26.00 ©2010 AACC 4474
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:11:08 UTC from IEEE Xplore.  Restrictions apply. 



dimensional finite energy signals, that is signals in the space

Lm
2 , the norm is induced by the inner-product and denoted as

‖u(jω)‖2
L2

= 〈u(jω), u(jω)〉 =
∫ ∞

−∞ u(jω)∗u(jω)dω. The

H2 and H∞ norms for linear operators will be denoted as

‖ . ‖2 and ‖ . ‖∞. The adjoint of a linear operator f is denoted

by f∗. The Kronecker product of two matrices A and B is

written as A ⊗ B [13].

Graphs and the matrices associated with them will be

widely used in this work. The reader is referred to [10] for

a detailed treatment of the subject and we present here only

a minimal summary of relevant constructs and results. An

undirected (simple) graph G is specified by a vertex set V
and an edge set E whose elements characterize the incidence

relation between distinct pairs of V . Two vertices i and j are

called adjacent (or neighbors) when {i, j} ∈ E ; we denote

this by writing i ∼ j. The cardinalities of the vertex and

edge sets of G will be denoted by |V| and |E|, respectively.

An orientation of an undirected graph G is the assignment

of directions to its edges, i.e., an edge ek is an ordered pair

(i, j) such that i and j are, respectively, the initial and the

terminal nodes of ek.

In this work we make extensive use of the |V| × |E|
incidence matrix, E(G), for a graph with arbitrary orien-

tation. The incidence matrix is a {0,±1}-matrix with rows

and columns indexed by the vertices and edges of G such

that [E(G)]ik has the value ‘+1’ if node i is the initial

node of edge ek, ‘-1’ if it is the terminal node, and ‘0’

otherwise. The degree of vertex i, di, is the cardinality of

the set of vertices adjacent to it; we define the degree matrix

as ∆(G) = diag{d1, . . . , d|V|}. The adjacency matrix of a

graph, A(G), is the symmetric |V| × |V| matrix such that

[A(G)]ij takes the value ‘+1’ if node i is connected to node

j, and ‘0’ otherwise.

The (graph) Laplacian of G,

L(G) := E(G)E(G)T = ∆(G) − A(G), (1)

is a rank deficient positive semi-definite matrix. The eigen-

values of the graph Laplacian are real and will be ordered

and denoted as 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λ|V|(G).
In order to apply the framework developed in this paper to

specific graphs, we will work with the complete graph and

its generalization in terms of k-regular graphs, which are

defined as follows. The complete graph on n nodes, Kn, is

the graph where all possible pairs of vertices are adjacent, or

equivalently, if the degree of all vertices is | V | − 1. Figure

1(a) depicts K10, the complete graph on 10 nodes. When

every node in a graph with n nodes has the same degree

k ≤ n− 1, it is called a k-regular graph. Figure 1(b) shows

a 4-regular graph.

II. RELATIVE SENSING NETWORK MODEL

In this section we derive a general plant model for

relative sensing networks. An RSN, in its most general

setting, is comprised of individual sensing agents which,

for this work, are assumed to contain linear and time-

invariant dynamics. The agents are coupled to other agents

through their sensed outputs; the output coupling is defined
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Fig. 1. Example of regular graphs.

by the connection topology describing their interactions. We

identify two classes of RSNs in this paper: 1) homogeneous

RSNs and 2) heterogeneous RSNs. For both cases, we will

work with a group of n dynamic systems (the “agents”), with

state-space representation

Σi :







ẋi(t) = Aixi(t) + Biui(t) + Γiwi(t)
zi(t) = Cz

i xi(t) + Dzu
i ui(t) + Dzw

i wi(t)
yi(t) = Cy

i xi(t) + Dyw
i wi(t),

(2)

where each agent is indexed by the sub-script i. Here, xi(t)
represents the state, ui(t) the control, wi(t) an exogenous

input (e.g., disturbances and noises), zi(t) the controlled

variable, and yi(t) the locally measured output.

We denote the transfer-function representation of Σi as

Σ̂i,
[

Zi(s)
Yi(s)

]

=

[

Hzu
i (s) Hzw

i (s)
Hyu

i (s) Hyw
i (s)

] [

Ui(s)
Wi(s)

]

= Σ̂i

[

Ui(s)
Wi(s)

]

, (3)

with
Hzu

i (s) = Cz
i (sI − Ai)

−1Bi + Dzu
i ,

Hzw
i (s) = Cz

i (sI − Ai)
−1Γi + Dzw

i ,
Hyu

i (s) = Cy
i (sI − Ai)

−1Bi,
Hyw

i (s) = Cy
i (sI − Ai)

−1Γi + Dyw
i .

In the homogeneous case, it is assumed that each dynamic

agent in the RSN is described by the same set of linear state-

space dynamics (e.g., Σi = Σj for all i, j). When working

with homogeneous RSN, we drop the sub-script for all

state-space and operator representations of the system. We

will also assume no feedforward terms of the control to

the measured output. Additionally, we assume a minimal

realization for each agent with compatible outputs for all

agents, e.g., system outputs will correspond to the same

physical quantity. It should be noted that in a heterogeneous

system, the dimension of each agent need not be the same;

however, using a “padding argument,” it can be assumed that

all agents have identical dimensions for their respective state

space.

The parallel interconnection of all the agents has a state-

space description

ẋ(t) = Ax(t) + Bu(t) + Γw(t)

z(t) = Czx(t) + Dzuu(t) + Dzww(t) (4)

y(t) = Cyx(t) + Dyww(t),

with x(t), u(t), w(t), z(t), and y(t) denoting respectively,

the concatenated state vector, control vector, exogenous input
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∫

Gout
yG(t)w(t) A Γ

C
y

D
yw

Fig. 2. Global RSN layer block diagram; the feedback connection
represents an upper fractional transformation [7].

vector, controlled vector, and output vector of all the agents

in the RSN. The bold faced matrices represent the block

diagonal aggregation of each agent’s state-space matrices,

e.g., A = diag{A1, . . . , An}.

The global RSN layer we examine in this paper is moti-

vated by the relative sensing problem. The sensed output

of the RSN is the vector yG(t) containing relative state

information of each agent and its neighbors. The incidence

matrix of a graph naturally captures state differences and will

be the algebraic construct used to define the relative outputs

of RSNs. For example, the output sensed between agent i
and agent j would be of the form yi(t)− yj(t). This can be

compactly written using the incidence matrix for the entire

RSN as

yG(t) = (E(G)T ⊗ I)y(t). (5)

Here, G is the graph that describes the connection topology

of the RSN; the node set is given as V = {1, . . . , n}. The

global layer can be visualized as in the block diagram shown

in Figure 2.

When considering the analysis of the global layer, we are

interested in studying the map from the agent’s exogenous

inputs to the RSN sensed output. Using the above notations

we can express the heterogeneous RSN in a compact form,

Σhet(G) :















ẋ(t) = Ax(t) + Bu(t) + Γw(t)
z(t) = Czx(t) + Dzuu(t) + Dzww(t)
y(t) = Cyx(t) + Dyww(t)
yG(t) = (E(G)T ⊗ I)Cyx(t)

.(6)

The homogeneous RSN, Σhom(G), can be expressed using

the Kronecker product. For example, A = I ⊗ A and

(E(G)T ⊗ I)Cy = E(G)T ⊗ Cy .

Similarly, the transfer function representation is written as

Σ̂het =





Hzu(s) Hzw(s)
Hyu(s) Hyw(s)

(E(G)T ⊗ I)Hyu(s) (E(G)T ⊗ I)Hyw(s)



 ,

(7)

where, as in the state space model, bold faced trans-

fer functions denotes the block diagonal aggregation

of each agent’s corresponding transfer function, e.g.,

Hzu(s) = diag{Hzu
1 (s), . . . , Hzu

n (s)}. The homogeneous

system, Σ̂hom, can also be written using the Kronecker

product in a similar manner as described above.

For notational simplicity, we denote T w 7→G
hom and T w 7→G

het as

the map from the exogenous inputs to the RSN sensed output

for homogeneous and heterogeneous systems respectively,

e.g., T w 7→G
hom = E(G)T ⊗Hyw(s). We also use transfer func-

tion and state-space representations interchangeably noting

the appropriate realization can be inferred by context. For

example, Hyw
i will be used to represent both the state-space

and transfer function representation of the open-loop map

from the exogenous inputs to the measurement of agent i.

III. GRAPH THEORETIC BOUNDS ON H∞

PERFORMANCE

In this section we explore a graph-theoretic characteriza-

tion of the H∞ performance of the RSN model presented in

§II. The main goal is to highlight the role of the underlying

connection topology on the system norms mapping the

exogenous inputs w(t) to the relative sensed output yG(t),
T w 7→G. We assume that the observation matrix for the sensed

output is the same as for the local measurement; that is

C = Cy and HGw = Hyw, as in (6) and (7). Addition-

ally, we assume throughout this section that the underlying

connection graph G is connected and V = {1, . . . , n}.

For analysis, we finally assume that each agent has stable

dynamics.

We first recall that the H∞ norm for a dynamic system

captures how a measurable signal with finite energy, i.e.,

a signal in L2, is amplified at the monitored output of the

system. Moreover, this norm has implications for robustness,

disturbance rejection, and uncertainty management for dy-

namic systems. Specifically, the H∞ norm of a linear system

with transfer-function representation H(s) is characterized as

‖H(jω)‖∞ = sup
ω

{σ [H(jω)]}

= sup
‖U(jω)‖2=1

‖H(jω)U(jω)‖L2
, (8)

where σ[A] denotes the largest singular value of the matrix

A. The induced-norm description allows us to state the sub-

multiplicative property of the H∞ norm for two operators as

‖H(jω)P (jω)‖∞ ≤ ‖H(jω)‖∞‖P (jω)‖∞.

In the context of RSNs, therefore, the H∞ system norm

can be used to capture how disturbances and finite energy

exogenous signals, including reference signals, result in the

asymptotic deviation of the sensed output of the network.

This section aims to explicitly characterize the effect of the

network on the H∞ norm of the system. We separate our

analysis into the homogeneous and heterogeneous cases.

A. Homogeneous RSN H∞ Performance

Given the transfer function representation of the homoge-

neous RSN in (7), we can write the map from the distur-

bances to the networked output as

YG(s) =
(

E(G)T ⊗ Hyw
)

U(s). (9)

Theorem 3.1: The H∞ norm of the homogeneous RSN

(6) is given as
∥

∥T w 7→G
hom

∥

∥

∞
= ‖E(G)‖ ‖Hyw‖∞. (10)

Proof: The norm expression follows directly from the

definition in (8) and the Kronecker product property [?]

‖A ⊗ B‖ = ‖A‖‖B‖. (11)
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The expression (10) states that the overall L2 gain of the

system is proportional to the matrix 2-norm of the incidence

matrix. In fact, since ‖E(G)‖ =
√

‖L(G)‖ = λ
1/2
n , the

behavior of the largest eigenvalue of the graph Laplacian

is of particular interest. Moreover, an important observation

is that certain graph structures will naturally lead to a smaller

H∞ norm. If we restrict our topology to spanning trees we

can state stronger a set of results.

Corollary 3.2: When the underlying topology is a span-

ning tree, the path graph is the topology resulting in the

smallest H∞ norm for the homogeneous RSN (6). Moreover,

the star graph is the topology resulting in the largest H∞

norm for the homogeneous (6) among all spanning trees.

Proof: In [18] it was shown that the path graph has

the smallest spectral norm for the graph Laplacian among

all spanning trees. In [11] it was shown that the star graph

has the largest spectral norm for the graph Laplacian among

all spanning trees.

B. Bounds on the Heterogeneous RSN H∞ Performance

We follow a similar procedure for the heterogeneous case.

Using the transfer function representation of the heteroge-

neous RSN in (7) we can write the map from the disturbances

to the networked output as

YG(s) =
(

E(G)T ⊗ I
)

Hyw(s)U(s). (12)

Calculating the H∞ norm involves finding the singular

values of the transfer function

T w 7→G
het =

(

E(G)T ⊗ I
)

Hyw(s). (13)

In general, an analytic expression for the singular values

of the system in (13) is difficult to obtain. However, it is

possible to generate bounds on the system-norm, leading to

the following result.

Theorem 3.3: The H∞ norm of the homogeneous RSN

(6) is bounded as

‖T w 7→G
het ‖∞ ≤ ‖E(G)T Q‖ ≤

∥

∥E(G)T
∥

∥ max
i

‖Hyw
i ‖∞,

(14)

where Q = diag{‖Hyw
1 ‖∞, . . . , ‖Hyw

n ‖∞}.
Proof: The upper-bound immediately arises from

the sub-multiplicative property of the matrix 2-norm as
‖E(G)T Q‖ ≤ ‖E(G)T ‖‖Q‖. Since Q is a diagonal matrix
we conclude that ‖Q‖ = maxi ‖H

yw
i ‖∞. To show the lower-

bound we follow the following chain of inequalities as

‖T w 7→G
het ‖2

∞ = sup
‖U(jω)‖L2

=1

‖(E(G)T ⊗ I)Hyw(jω)U(jω)‖2
L2

= sup
‖U‖L2

=1

Z ∞

−∞

U
∗(Hyw)∗ (L(G) ⊗ I)Hyw

Udω

= sup
‖U‖L2

=1

Z ∞

−∞

Tr[UU
∗(Hyw)∗ (L(G) ⊗ I)Hyw]dω

≤ sup
‖U‖L2

=1

Z ∞

−∞

Tr(U∗]Tr[(Hyw)∗ (L(G) ⊗ I)Hyw]dω

≤ ‖QE(G)‖, (15)

∫

Gout
yG(t)w(t) A Γ

C
p

0

Fig. 3. Topology design; the feedback connection represents an upper
fractional transformation [7].

where the second to last inequality follows from the prop-

erty that for Hermitian matrices, M and N , Tr[MN ] ≤
Tr[M ]Tr[N ], and the last identity follows from the prop-

erty that the positive-definite ordering Hyw(jω)∗(L(G) ⊗
I)Hyw(jω) ≤ (Q⊗ I)(L(G)⊗ I)(Q⊗ I) holds for all ω.

Corollary 3.4: When each agent in (6) is a single-input

single-output (SISO) system, the norm bound in (14) is tight.

An interesting implication of the norm bounds developed

in the proof relates the L2 gain of a heterogeneous RSN to

that of a homogeneous RSN. Consider an ordering of each

agent in a heterogeneous RSN by the value of the H∞ norm

of each agent,

‖Hyw
k(1)‖∞ ≤ · · · ≤ ‖Hyw

k(n)‖∞, (16)

where k : {1, . . . , n} 7→ {1, . . . , n} maps the old index set to

the norm-ordered one. The H∞ norm of the heterogeneous

system T w 7→G
het can be bounded from above and below by

homogeneous systems as

‖E(G)‖‖Hyw
k(1)‖∞ ≤ ‖T w 7→G

het ‖∞ ≤ ‖E(G)‖‖Hyw
k(n)‖∞.

This inequality suggests that in addition to the structure

of the underlying topology, one can consider the dynamic

differences between agents as an important factor in the

performance of the overall system.

IV. ROBUST SYNTHESIS OF RSN

We now consider the synthesis of the underlying connec-

tion topology, as shown in Figure 3. As we are only con-

sidering the topology, we use the following heterogeneous

state-space model for the RSN,

T w 7→G
het :

{

ẋ(t) = Ax(t) + Γw(t)
yG(t) =

(

E(G)T ⊗ Cp

)

x(t)
. (17)

We would like to find topologies that minimize the effect of

disturbances entering each agent on the relative sensed output

of the entire system, that is minimizing the performance

objective ‖T w 7→G
het ‖∞. This can be considered a problem in

combinatorial optimization [14], as the decision to include

an edge in the graph is binary. The general synthesis problem

can be written as

min
G

‖T w 7→G
het ‖∞ (18)

s.t. G is connected.

The challenge, therefore, is to find numerically tractable

algorithms to solve (18). In what follows, we solve a

variation of (18) that minimizes the robust performance of

a weighted version of (17) with uncertainty on the edge

weights.
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∑
T

w !→G
het

∆

Wo

yG(t)w(t)

Fig. 4. Multiplicative uncertainty for NDS

Motivated by the results of §III, we find that (18) reduces

to the minimization of the spectral norm of the weighted

incidence matrix, ‖QE(G)‖, where Q was defined in Theo-

rem 3.3. Minimization of this objective can be formulated as

a mixed-integer semi-definite program. For reasonably sized

problem instances this can be solved using, for example,

branch-and-bound algorithms [14].

While topology design is an important application, the H∞

framework allows us to consider the robustness of certain

topologies. In this direction, we consider a variation of (18)

that aims to minimize the robust performance of the RSN

in (17). For such an analysis, we adjust the RSN model to

allow for uncertainty in the sensing protocol. Specifically,

we introduce the notion of a weighted edge for the sensed

output. This model might be used to capture the fidelity of

a relative measurement.

T w 7→G
het (Wo) :

{

ẋ(t) = Ax(t) + Γw(t)
yG(t) =

(

WoE(G)T ⊗ Cp

)

x(t).
(19)

In (19), each diagonal entry of Wo = diag{w1, . . . , w|E|}
represents the nominal weights on each edge in the graph.

A weight of zero corresponds to the absence of an edge. We

will also assume all the weights are non-negative. The model

(19) relates to (17) through the output as T w 7→G
het (Wo) =

(Wo ⊗ I)T w 7→G
het .

Using (19), we can introduce a structured uncertainty on

each edge weight. The uncertainty set is defined as

∆ = {diag{δ1, . . . , δ|E|} : δi ∈ R, |δi| ≤ 1}. (20)

The true edge weight can thus be written as W = Wo+∆, for

∆ ∈ ∆w. This can be considered as an output-multiplicative

uncertainty, as shown in Figure 4.

The problem (18) can now be restated as the robust

optimization problem [4],

min
Wo

max‖∆‖≤1 ‖QE(G) (Wo + ∆) ‖ (21)

s.t. G is connected in the presence

of edge weight uncertainty.

This problem can be solved as a semi-definite program, the

procedure of which is outlined in [4]. To apply these results,

we must express the objective and constraints of (21) as a

perturbed LMI in the form,

F (x, δ) = F0(x) +

l
∑

i=1

δiFi(x), (22)

where each Fi(x) is a symmetric matrix and affine in the

variable x.

First, we scalarize the objective function by introducing

a new variable γ and noting that ‖QE(G) (Wo + ∆) ‖ ≤ γ
can be written (via the Schur complement) as the LMI

[

γI QE(G)(Wo + ∆)
(Wo + ∆)E(GT Q I

]

≥ 0. (23)

Defining the matrices Si ∈ R
|E|×|E| and V (γ) as

[Si]kl =

{

1 k = l = i
0 otherwise

, V (γ) =

[

γI 0

0 I

]

, (24)

we can express (23) in the form (22) as

F1(w, δ) = V (γ) +

|E|
∑

i=1

(wi + δi)

[

0 QE(G)Si

SiE(G)T Q 0

]

≥ 0. (25)

Similarly, the robust connectivity constraint can also be

expressed in the form (22). Recall that for a connected graph,

λ2(G) > 0, and the eigenvector associated with λ1(G) = 0
is the vector of all ones, 1. Defining the matrix P such that

IM{P} = span{1⊥}, we obtain

F2(w, δ) =

|E|
∑

i=1

(wi + δi)P
T (eie

T
i )P > 0. (26)

Using (25) and (26) we define

F 1
0 (w) =

[

γI QE(G)Wo

WoE(G)T Q I

]

, (27)

F 2
0 (w) = PT E(G)WoE(G)T P, (28)

F 1
i =

[

0 QE(G)Si

SiE(G)T Q 0

]

, F 2
i = PT eie

T
i P.

(29)

The expressions in (27) and (29) can now be applied to

the results in [?] to obtain the following SDP,

min
w,Si,Ti

γ (30)

s.t.











Si F i
1 · · · F i

|E|

F i
1 Ti

...
. . .

F i
|E| Ti











≥ 0 , i = 1, 2

Si + Ti ≤ 2F i
0 , i = 1, 2 ,

∑

i

wi = α,

0 ≤ wi ≤ wmax , i = 1, . . . , |E|

where the last constraints constrain the aggregate edge

weight sum and edge weight range.

To illustrate this procedure, we consider an RSN with n =
10 heterogeneous and SISO systems (generated randomly

in MATLAB). The input graph is the complete graph, Kn,

allowing the program in (30) to select the optimal weights on

every possible edge combination. For α = n−1 and wmax =
2, (30) was solved using SeDuMi in Matlab. The resulting

topology is shown in Figure 5. Note that every edge has a
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Fig. 5. Optimal topology

positive weight, however, only edges with wi > 0.1 were

drawn. The thickness of the line indicates a larger weight.

Remark 4.1: While the problem formulation presented

above is concerned with static edge weight uncertainty, the

principle can be extended to include dynamic edge weights.

For example, each relative sensor may be characterized by a

frequency dependent weight, wi(s), and the corresponding

uncertainty can be considered as an unstructured norm-

bounded uncertainty.

Remark 4.2: The SDP (30) presents an analytic frame-

work for solving the robust topology design problem. How-

ever, it should be noted that due to the auxiliary variables

defined, the size of this problem can grow very large with the

number of nodes (for the complete graph on n nodes, there

are n(n − 1)/2 edges). While interior-point methods offer

polynomial-time algorithms, for excessively large problem

instances (30) might lead to numerical problems. This points

to the need to consider specialized solution methods or

alternative problem formulations.

V. CONCLUSIONS

This paper focused on the development of graph theoretic

performance bounds and synthesis techniques for distinct

classes of relative sensing networks (RSN). The results of

this paper highlight an important connection between certain

graph-theoretic concepts and systems-theoretic properties. In

particular, the H∞ performance depends on the spectral

norm of a node-weighted incidence matrix, which is strongly

dependent on the actual structure of the graph.

Synthesis methods for RSNs were also presented. Using

methods from robust semidefinite programming, a synthesis

procedure was then developed that aims to minimize the

H∞ performance of an RSN with uncertainty on the edge

weights. This work also suggests that the relationship be-

tween systems-theoretic properties and graph properties in

RSNs can be examined further in the systems and control

community. In fact, we believe that developing efficient

solution methods for the synthesis of such systems will

involve further interpreting results from graph theory and

combinatorial optimization in a system-theoretic context.
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