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 A B S T R A C T

This work deals with the output consensus problems for multi-agent systems over balanced digraphs. While 
passivity-based approaches are widely used for analyzing undirected consensus protocols, we show that they 
are generally not applicable to the directed linear consensus protocol. To address this limitation, we propose 
a general approach that enables a passivity-based analysis for network systems with directed couplings. Then, 
we mitigate the complexity introduced by nonlinearities and directed interconnections by reformulating the 
general output consensus problem as a convergence analysis on a submanifold. Within this framework, we 
further focus on the stabilization problem, a specific form of the output consensus problem, and establish a 
sufficient passivity-based condition for stabilizing multi-agent systems over balanced digraphs. The results are 
supported by a numerical example.
1. Introduction

Multi-agent systems (MASs) have received extensive attention in 
both industrial practice and theoretical research, ranging from smart 
grids, distributed sensing and transportation networks to control,
robotics and computer science (Bullo, 2020; Chung et al., 2018; Zhang 
et al., 2021; Zhao & Zelazo, 2015). From a control perspective, a 
fundamental challenge in this field is the consensus problem (Scardovi 
et al., 2009), which aims to coordinate agent dynamics to achieve 
agreement on a shared state or trajectory.

Consensus analysis requires understanding the fundamental inter-
play between agent dynamics, information exchange structures, and 
interaction protocols in MASs (Bürger et al., 2013; Sharf & Zelazo, 
2019). Diffusively-coupled networks provide a canonical architecture 
for studying these relationships (Mesbahi & Egerstedt, 2010). Their 
inherent structure, composed of symmetric and feedback interconnec-
tions, makes passivity theory a natural tool for its analysis (Bai et al., 
2011). Passivity theory can simplify the study of complex network 
systems, as it enables a decoupled treatment of network dynamics 
and network topology, and is inherently linked to stability and con-
vergence (Bürger et al., 2013). Arcak’s seminal work (Arcak, 2007) 
leveraged passivity to characterize network convergence behavior. This 
approach was later extended into a comprehensive passivity-based 
cooperative control framework for single-input single-output (SISO) 
systems (Bürger et al., 2013). This framework revealed a connection be-
tween the network system steady-states and dual network optimization 
problems (Rockafellar, 1998).

I This work was supported by the Israel Science Foundation, Israel grant no. 453/24 and the Gordon Center for Systems Engineering, Israel.
∗ Corresponding author.
E-mail addresses: fengyu.yue@campus.technion.ac.il (F.-Y. Yue), dzelazo@technion.ac.il (D. Zelazo).

While the passivity framework has proved very powerful, it relies 
heavily on the symmetric feedback interconnection of the incidence 
matrix in diffusively coupled networks. This symmetry requirement 
confines the framework to systems with undirected interconnections. 
Replacing one of the incidence matrices in the structure (detailed in 
Section 2) enables the representation of directed graph topologies but 
sacrifices the diffusive coupling property due to the loss of symmetry. 
Moreover, given passive edge controllers, the feedback path in the 
loop may not preserve passivity for the entire interconnection. These 
challenges hinder passivity-based analysis for MASs over digraphs, mo-
tivating a generalized approach that extends passivity theory’s benefits 
to solving the consensus problem of directed topologies.

On the other hand, since passivity theory enables a separate analysis 
of system dynamics and the underlying graphs, consensus problems 
can be categorized by the linearity of the system dynamics and the 
graph directionality. The problems can be classified, by increasing com-
plexity, as linear dynamics over undirected graphs (e.g., the standard 
linear consensus protocol), nonlinear dynamics over undirected graphs 
(e.g., Bürger et al., 2013), linear dynamics over digraphs (e.g., the lin-
ear consensus protocol for digraphs), and nonlinear dynamics over di-
graphs (e.g., Li et al., 2020, 2019). Also, consensus behaviors manifest 
in two distinct forms: average consensus, where agent states converge 
to the mean of initial conditions, and regular consensus, where states 
agree on the same value (not necessarily the average). When applying 
linear consensus protocols, systems over connected undirected graphs 
achieve average consensus, whereas systems over digraphs containing 
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a globally reachable node only achieve regular consensus. However, 
systems with balanced digraphs restore average consensus capability, 
suggesting balanced digraphs’ unique intermediate position between 
directed and undirected topologies. This motivates the investigation 
into balanced digraphs in this paper.

This paper focuses on a challenging consensus problem within the 
above taxonomy: nonlinear dynamics over digraphs. The works (Li 
et al., 2020, 2019) were related to this topic and developed a passiva-
tion approach, but they only considered the case where the controllers 
are linear static maps and did not provide a general analysis method for 
network systems with directed coupling. Montenbruck et al. (2017) re-
garded the agreement space as a submanifold and developed powerful 
analytical tools to establish connections between passivity properties 
and stabilization around a submanifold, yielding explicit controller 
synthesis methods. However, they considered all controllers as a single 
entity without examining the passivity of each individual agent or 
controller, so it did not allow for an in-depth investigation of the 
interplay among the controller dynamics, the agent dynamics, and the 
underlying digraphs within the MASs.

In this paper, we conduct a passivity analysis for MASs intercon-
nected via balanced digraphs and investigate the relationship between 
passivity, output consensus and stabilization (a specific form of output 
consensus) in such systems. Our contributions are as follows. We begin 
by discussing the difference between the diffusively coupled network 
and its variant for digraphs. Our analysis uncovers a potential loss 
of passivity in the feedback path of the variant structure for gen-
eral digraphs, even under the fundamental linear consensus protocol. 
Building on these insights, we develop a generalized approach that 
enables a passivity-based analysis for systems with directed couplings. 
By reformulating the output agreement problem as convergence to a 
submanifold, we derive passivity conditions for agents and controllers 
that stabilize network systems over balanced digraphs.

The remainder of the paper is organized as follows. Section 2 
introduces preliminaries on networked systems and submanifold sta-
bilization. Section 3 proposes a general approach for analyzing di-
rected coupling and reformulates the output agreement problem. Sec-
tion 4 presents a passivity-based analysis for stabilizing networked 
systems interconnected via balanced digraphs. Numerical examples and 
concluding remarks are given in Sections 5 and 6.
Notations. The notation 1𝑛 (0𝑛) denotes the 𝑛-dimensional vector of 
all ones (zeros), and 𝐼𝑛 represents the 𝑛 × 𝑛 identity matrix, where 
the subscript 𝑛 may be omitted when the dimension is clear from the 
context. For a set 𝐴, its cardinality is denoted by |𝐴|. We denote the 
kernel of a linear transformation 𝑇 ∶ 𝑋 → 𝑌  by ker(𝑇 ), and the 
orthogonal complement of a subspace 𝑈 by 𝑈⟂.

Fundamental notions from algebraic graph theory are also used in 
this paper. A directed graph  = (V,E) comprises of a finite vertex set 
V and an edge set E ⊂ V × V. The incidence matrix 𝐸 ∈ R|V|×|E| is 
defined as follows. [𝐸]𝑖𝑘 ∶= 1 if 𝑖 is the head of edge 𝑒𝑘, [𝐸]𝑖𝑘 ∶= −1
if 𝑖 is the tail of edge 𝑒𝑘 and [𝐸]𝑖𝑘 ∶= 0 otherwise. We decompose the 
incidence matrix into the out-incidence matrix 𝐵𝑜 and the in-incidence 
matrix 𝐵𝑖 (Restrepo et al., 2021), i.e., 𝐸 = 𝐵𝑜+𝐵𝑖, where: [𝐵𝑜]𝑖𝑘 ∶= 1 if 
𝑖 is the head of edge 𝑒𝑘 = (𝑖, 𝑘) and [𝐵𝑜]𝑖𝑘 ∶= 0 otherwise; [𝐵𝑖]𝑖𝑘 ∶= −1 if 
𝑖 is the tail of edge 𝑒𝑘 and [𝐵𝑜]𝑖𝑘 ∶= 0 otherwise. The graph Laplacian of 
undirected graphs is defined as 𝐿 = 𝐸𝐸⊤. For digraphs, we define the 
in-Laplacian matrix 𝐿𝑖 = −𝐵𝑖𝐸⊤ and out-Laplacian matrix 𝐿𝑜 = 𝐵𝑜𝐸⊤.

2. Preliminaries

This section introduces the fundamental concepts from graph theory 
that are utilized in this paper, and highlights two key structures of net-
work systems: diffusively-coupled networks and their directed variants, 
along with essential passivity concepts. We then outline the mathemat-
ical framework for reformulating output consensus as a convergence 
analysis on a submanifold.
2 
2.1. Balanced digraphs and globally reachable nodes

A digraph is called balanced if the in-degree equals the out-degree 
for every node. 

Lemma 1.  For incidence matrix 𝐸 ∈ R|V|×|E| and out-Laplacian 𝐿𝑜 ∈
R|V|×|V|, the following statements are equivalent:

(i) The digraph is balanced,
(ii) 𝐸⊤1

|V| = 0
|E|, and 𝐸1|E| = 0

|V|,
(iii) 𝐿𝑜1|V| = 0

|V| and 𝐿⊤𝑜 1|V| = 0
|V|.

Proof.  (𝑖) ⇔ (𝑖𝑖𝑖): We recommend readers to refer to Lemma 6.4 
in Bullo (2020).

(𝑖) ⇔ (𝑖𝑖): It is sufficient to show the equivalence between statement 
(𝑖) and 𝐸1

|E| = 0
|V|. The incidence matrix can be represented as 

𝐸 = 𝐵𝑜 +𝐵𝑖. For row 𝑖 (𝑖 = 1,… , |V|) of 𝐵𝑖(𝐵𝑜), the row-sum of row 𝑖 is 
the in(out)-degree of the corresponding node 𝑖. Thus, the given digraph 
is balanced if and only if 𝐸1

|E| = 𝐵𝑜1|E| + 𝐵𝑖1|E| = 0
|V|. □

In this work, we will use the notion of globally reachable nodes and 
walks. A walk in a directed graph is a sequence of nodes connected by 
directed edges that point from one node to the next in the sequence. 

Definition 1 (Bullo, 2020). A directed graph possesses a globally reach-
able node if one of its nodes can be reached from any other node by 
traversing a directed walk.

2.2. Network systems and passivity

Consider a population of agents interacting over a network  =
(V,E), where the vertices V denote the set of agents and the edges E
represent edge controllers describing the interaction between agents. 
Each agent {𝛴𝑖}𝑖∈V and controller {𝛱𝑘}𝑘∈E are described by the SISO 
nonlinear dynamical systems, 

𝛴𝑖 ∶

{

�̇�𝑖(𝑡) = 𝑓𝑖(𝑥𝑖(𝑡), 𝑢𝑖(𝑡)),
𝑦𝑖(𝑡) = ℎ𝑖(𝑥𝑖(𝑡), 𝑢𝑖(𝑡)),

(1)

𝛱𝑘 ∶

{

�̇�𝑘(𝑡) = 𝜙𝑘(𝜂𝑘(𝑡), 𝜁𝑘(𝑡))
𝜇𝑘(𝑡) = 𝜓𝑘(𝜂𝑘(𝑡), 𝜁𝑘(𝑡))

(2)

Note that agents and controllers are interconnected in parallel, respec-
tively. Define the stacked inputs of agents 𝑢(𝑡) = [𝑢1,… , 𝑢

|V|]⊤, and 
similarly for outputs of agents 𝑦(𝑡), inputs of controllers 𝜁 (𝑡) and outputs 
of controllers 𝜇(𝑡).

As shown in Fig.  1(a), a network system can be represented by agent 
dynamics 𝛴 and controller dynamics 𝛱 , and two matrices 𝑀 and 𝑁
encoding the interconnection of the system. The feedback equations 
are then completed with the algebraic relations, 𝜁 (𝑡) = 𝑀𝑦(𝑡) and 
𝑢(𝑡) = 𝑝(𝑡)−𝑁𝜇(𝑡), where 𝑝(𝑡) denotes the exogenous input. In this paper, 
we only consider the case where 𝑝(𝑡) = 0.

The matrices 𝑀 and 𝑁 can be selected to represent different infor-
mation exchange topologies. A network system described by Fig.  1(a) 
is called diffusively coupled if 𝑀 = 𝑁⊤ and the matrix 𝑁 is set to the 
incidence matrix 𝐸. In this configuration, the topology of the system 
is characterized by the undirected counterpart of , where the edges 
between the agents represent bidirectional communication links.

When matrices 𝑁 and 𝑀 are set to the out-incidence matrix 𝐵𝑜 and 
the transpose of the incidence matrix 𝐸⊤, respectively, the resulting 
structure represents the networked system interconnected by digraphs. 
In this case, the system can no longer be considered diffusively coupled, 
as the inherent symmetry of the underlying graph is broken. We adopt 
the notation (𝛴,𝛱,)𝐸 for diffusively-coupled networks and denote the 
directed case by (𝛴,𝛱,)𝐵𝑜 .

Now, let us take the system (1) as an example to introduce the 
definition of passivity (Khalil, 2002). 
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Fig. 1. (a) Block-diagram of networked systems where matrices 𝑀 and 𝑁 represent the inter-agent interconnection. For (𝛴,𝛱,)𝐸 we set 𝑀 = 𝑁⊤ and the matrix 𝑁 = 𝐸; for 
(𝛴,𝛱,)𝐵𝑜  we set 𝑁 = 𝐵𝑜 and 𝑀 = 𝐸⊤. (b) A loop decomposition for the system (𝛴,𝛱,)𝐵𝑜 . We denote this structure by (𝛴,𝛱,, 𝑤).
Definition 2.  For the SISO system (1), if there exists a positive 
semi-definite storage function 𝑉𝑖(𝑥𝑖) and scalers 𝜀𝑖 and 𝛿𝑖 such that, 
�̇�𝑖(𝑥𝑖) ≤ 𝑢𝑖𝑦𝑖 − 𝜀𝑖𝑦2𝑖 − 𝛿𝑖𝑢

2
𝑖 , ∀𝑥𝑖, 𝑢𝑖, 𝑦𝑖, (3)

then, the system (1) is said to be
1. passive if 𝜀𝑖 = 0 and 𝛿𝑖 = 0,
2. output strictly passive (OP-𝜀𝑖) if 𝜀𝑖 > 0 and 𝛿𝑖 ≥ 0,
3. input strictly passive (IP-𝛿𝑖) if 𝜀𝑖 ≥ 0 and 𝛿𝑖 > 0.

The maximal 𝛿𝑖 and 𝜀𝑖 are the passivity indices of the system.
Given passive edge controllers, the feedback path of (𝛴,𝛱,)𝐸

preserves the passivity while that of (𝛴,𝛱,)𝐵𝑜  may lose passivity. We 
will discuss the differences between the two structures from a passivity 
perspective in Section 3.

2.3. Tools for analyzing convergence to a submanifold

This paper performs a passivity-based analysis for the output con-
sensus problems of network systems governed by balanced digraphs. 
Let 𝑆, 𝑆⟂, and the vector 𝑦(𝑡) denote the agreement space span(1),
disagreement space, and the output of a system at time 𝑡, respectively. 
The system is said to achieve asymptotic output agreement if the output 
satisfies,

lim
𝑡→∞

𝑦(𝑡) = 𝑐1 ∈ 𝑆,

where 𝑐 ∈ R is called the agreement value. On the other hand, 𝑆 is 
a submanifold, so the above definition implies that 𝑦(𝑡) asymptotically 
converges to the agreement submanifold 𝑆. This allows for converting 
the output agreement problem into a study of the convergence on the 
agreement submanifold.

In this paper, we will consider signals in ℒ 2 space, as defined by, 
ℒ 2 =

{

𝑓 ∶ R → R𝑛 | 𝑓  measurable, ‖𝑓‖2
ℒ 2 < ∞

}

, (4)

where

‖𝑓‖ℒ 2 =
(

∫R
‖𝑓 (𝑡)‖2d𝑡

)1∕2

denotes the ℒ 2 norm of signal 𝑓 , ‘‘measurable’’ means Lebesgue mea-
surable, and d𝑡 is short for d𝜆(𝑡), with 𝜆 being the Lebesgue measure on 
R (Montenbruck et al., 2017). It is important to highlight that, with the 
inner product 

⟨⋅, ⋅⟩ ∶ ℒ 2 ×ℒ 2 → R, ⟨𝑥, 𝑦⟩ ↦ ∫

∞

−∞
𝑥⊤(𝑡)𝑦(𝑡)d𝑡, (5)

(

ℒ 2, ⟨⋅, ⋅⟩
) is a Hilbert space, where we can define passivity.

As noted in Khalil (2002, Chapter 5), mappings from ℒ 2 to ℒ 2 are 
insufficient for describing unstable systems. To overcome this limita-
tion, we introduce its extended space, ℒ̄ 2: 
ℒ̄ 2 =

{

𝑓 | 𝑓 𝜏 ∈ ℒ 2, ∀𝜏 ∈ [0,∞]
}

, (6)

where 𝑓 𝜏 (𝑡) = 𝑓 (𝑡) if 0 ≤ 𝑡 ≤ 𝜏 and 𝑓 𝜏 (𝑡) = 0 if 𝑡 > 𝜏.
3 
On the other hand, to analyze the convergence to the agreement 
submanifold, it is necessary to define a new space with respect to 
it. Montenbruck et al. (2017) introduced a suitable space ℒ 𝑝

𝑀  and its 
extended space ℒ̄ 𝑝

𝑀 , which can be effectively employed in our analysis. 
For the output agreement problem, set 𝑀 = 𝑆 and 𝑝 = 2. Since 𝑆 is a 
smoothly embedded submanifold, it has a tubular neighborhood 𝑈 by 
the tubular neighborhood theorem (Lee, 2003, Chapter 10). Then, we can 
define the space,

ℒ 2
𝑆 =

{

𝑓 ∶ R → 𝑈 |𝑓 measurable,∫R
𝑑(𝑓 (𝑡), 𝑆)2d𝑡 < ∞

}

,

where 𝑑(𝑓 (𝑡), 𝑆) denotes the infimal Euclidean distance from all the 
points in 𝑆 to 𝑓 (𝑡). Similarly, define the truncation and extended space 
ℒ̄ 2
𝑆 . The truncation should map any signal to the desired submanifold 

𝑀 , so it can be chosen as the orthogonal projection onto 𝑆,
𝑟 ∶ R𝑛 → 𝑆, 𝑥↦ Proj𝑆 (𝑥) =

1
𝑛1𝑛1

⊤
𝑛 (𝑥).

Then, the extended space ℒ̄ 2
𝑆 is defined by 

ℒ̄ 2
𝑆 =

{

𝑓 |𝑓 𝜏𝑆 ∈ ℒ 2
𝑆 , ∀𝜏 ∈ [0,∞]

}

, (7)

where 

𝑓 𝜏𝑆 (𝑡) =

{

𝑓 (𝑡), if 0 ≤ 𝑡 ≤ 𝜏,
𝑟(𝑓 (𝑡)), otherwise.

(8)

When applying the extended space ℒ̄ 2
𝑆 , we encounter a limitation. 

While we can define a mapping ‖ ⋅‖ℒ 2
𝑆
∶ ℒ 2

𝑆 → R, 𝑓 ↦ ∫R 𝑑(𝑓 (𝑡), 𝑆)
2d𝑡, 

this fails to satisfy the triangle inequality and thus is not a norm. To 
address this, we introduce a mapping 𝛩𝑆 , 
𝛩𝑆 ∶ ℒ̄ 2

𝑆 → ℒ̄ 2, 𝑓 (𝑡) ↦ Proj𝑆⟂ (𝑓 (𝑡)), (9)

where Proj𝑆⟂ (𝑓 (𝑡)) =
(

𝐼𝑛 −
1
𝑛1𝑛1

⊤
𝑛

)

(𝑓 (𝑡)) denotes the projection of 𝑓 (𝑡)
onto the disagreement submanifold 𝑆⟂. This allows us to represent ℒ̄ 2

𝑆
in ℒ̄ 2 and enables us to treat 

(

ℒ 2
𝑆 , ‖ ⋅ ‖ℒ 2

𝑆

)

 as if it were a Hilbert space, 
permitting the definition of passivity.

For the output agreement problem, the output is expected to con-
verge to the agreement submanifold, while the input can be any sig-
nal in ℒ̄ 2. With this understanding, we can study the passivity re-
lations (Montenbruck et al., 2017, equation (51)), i.e., the relations 
𝐻 ⊂

(

ℒ̄ 2, ℒ̄ 2
𝑆
) defined as 

𝐻 =

{

(𝑢(𝑡), 𝑦(𝑡)) ||
|

𝑢(𝑡) ∈ ℒ̄ 2, 𝑦(𝑡) ∈ ℒ̄ 2
𝑆 , ∀𝜏 ∈ [0,∞),

⟨

𝑢𝜏 (𝑡), 𝛩𝑆
(

𝑦𝜏𝑆 (𝑡)
)⟩

≥ 𝑙 ‖𝑢𝜏 (𝑡)‖2
ℒ 2 + 𝑒 ‖‖

‖

𝛩𝑆
(

𝑦𝜏𝑆 (𝑡)
)

‖

‖

‖

2

ℒ2

}

.

(10)

where 𝑢𝜏 (𝑡) and 𝑦𝜏𝑆 (𝑡) are as defined in (8). The relation (10) is said to 
be passive when 𝑙 = 𝑒 = 0. In general, 𝑙 and 𝑒 can be any real numbers. 
Then, applying (9) and the properties of 𝛩𝑀  (see Montenbruck et al. 
(2017, Lemma 1)), we can write down the point-wise form of the 
passivity inequality, 
𝑢(𝑡)⊤ Proj (𝑦(𝑡)) ≥ 𝑙‖𝑢(𝑡)‖2 + 𝑒‖Proj (𝑦(𝑡))‖2, (11)
𝑆⟂ 𝑆⟂
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where Proj𝑆⟂ (𝑦(𝑡)) appears explicitly. This connects the passivity theory 
to the output consensus problem.

Given these notions, demonstrating convergence to the submanifold 
𝑆 is equivalent to proving that Proj𝑆⟂ (𝑦(𝑡)) approaches zero as 𝑡 →

∞. This equivalence arises from the geometric interpretation of the 
projection operator: as Proj𝑆⟂ (𝑦(𝑡)) tends to zero, the distance between 
the signal 𝑦(𝑡) and its projection onto the submanifold 𝑆 diminishes, 
implying convergence to 𝑆. The following definition connects output 
consensus and convergence to a submanifold. 

Definition 3.  Consider a network system consisting of a group of 
agents and edge controllers interconnected as in Fig.  1(a). Let 𝑦(𝑡) be the 
output of the system. We say that output 𝑦(𝑡) asymptotically converges to 
the agreement submanifold 𝑆, if lim𝑡→∞ Proj𝑆⟂ (𝑦(𝑡)) = 0.

For conciseness, in the following discussion, we adopt the notation 
Proj𝑆⟂ (𝑦) in place of Proj𝑆⟂ (𝑦(𝑡)).

3. A passivity analysis for directed coupling

This section begins with a passivity-based analysis of (𝛴,𝛱,)𝐸 and 
(𝛴,𝛱,)𝐵𝑜  under the linear consensus protocol, revealing a potential 
loss of passivity in the feedback path of (𝛴,𝛱,)𝐵𝑜 . To address this is-
sue, we propose a general approach for analyzing directed information 
exchange topologies.

3.1. Passivity analysis for the linear consensus protocol

The system (𝛴,𝛱,)𝐵𝑜  in Fig.  1(a) might be the most straightfor-
ward candidate to analyze directed coupling. However, when applying 
the basic linear consensus protocol for digraphs to this structure, the 
passivity of the feedback path (from 𝑦 to 𝑔) cannot be guaranteed even 
though the edge controllers are output-strictly passive.

Consider the linear consensus protocol for digraphs. Here, we take 
the agent dynamics 𝛴𝑙 to be the integrators, and the controller dynam-
ics 𝛱 𝑙 to be the linear static map, 

𝛴𝑙 ∶

{

�̇�(𝑡) = 𝑢(𝑡),
𝑦(𝑡) = 𝑥(𝑡),

and 𝛱 𝑙 ∶ 𝜇(𝑡) = 𝜁 (𝑡). (12)

Note that the integrator dynamics are passive (Khalil, 2002), and edge 
controllers are output strictly passive. The closed-loop dynamics then 
yield �̇�(𝑡) = −𝐿𝑜()𝑥(𝑡), and the generated trajectories converge to the 
agreement space, 𝑆 = span(1) if and only if the underlying digraph 
contains a globally reachable node.

To leverage the benefits of passivity theory for analyzing the
diffusively-coupled structure, both the forward and feedback paths 
should be passive (Khalil, 2002). Consider the system (𝛴𝑙 ,𝛱 𝑙 ,)𝐵𝑜 , 
where 𝛴𝑙 and 𝛱 𝑙 are known to be passive. Our objective is to investi-
gate whether the feedback path (from 𝑦 to 𝑔) in Fig.  1(a) is passive. The 
controllers in this protocol are memoryless functions. Consequently, 
with input 𝑦 and output 𝑔, the feedback path is passive if 𝑦⊤𝑔 ≥ 0
for all 𝑦 and 𝑔 (Khalil, 2002). Using the relation 𝑢 = −𝐵𝑜𝜇 and 𝜇 = 𝜁 , 
it is equivalent to the spectral analysis of the symmetric part of 𝐿𝑜, 
denoted by (𝐿𝑜+𝐿⊤𝑜 )

2 = sym(𝐿𝑜) (Horn & Johnson, 2012). Indeed, if 
𝑦⊤𝑔 = 𝑦⊤(−𝐵𝑜)𝐸⊤𝑦 = 𝑦⊤𝐿𝑜𝑦 = 𝑦⊤ 𝐿𝑜+𝐿

⊤
𝑜

2 𝑦 = 𝑦⊤sym(𝐿𝑜)𝑦 ≥ 0 for all 
𝑦 ∈ R𝑛, the feedback path is passive.

Our first result shows that for digraphs with globally reachable 
nodes, the smallest eigenvalue of sym(𝐿𝑜) is non-positive. 

Proposition 1.  If  contains a globally reachable node, then the smallest 
eigenvalue of the symmetric part sym(𝐿𝑜) is non-positive.

Proof.  Let 𝑠1,… , 𝑠𝑛 be the singular values of 𝐿𝑜 and 𝜆1,… , 𝜆𝑛 be 
the eigenvalues of sym(𝐿𝑜), both arranged in nonincreasing order. The 
digraph  containing a globally reachable node implies that the rank 
4 
of 𝐿𝑜 is 𝑛 − 1 (Bullo, 2020). It follows that 𝑠𝑛−1 > 𝑠𝑛 = 0. To establish 
the relationship between 𝑠𝑗 and 𝜆𝑗 , we apply the Fan–Hoffman (Bhatia, 
1997, Proposition III.5.1). This proposition implies that 𝜆𝑗 ≤ 𝑠𝑗 for all 
𝑗 ∈ [1, 𝑛]. By setting 𝑗 = 𝑛, we can deduce that the smallest eigenvalue 
of sym(𝐿𝑜) is non-positive. □

The following proposition provides a sufficient and necessary con-
dition for sym(𝐿𝑜) having a zero eigenvalue. 

Proposition 2.  Let  contains a globally reachable node. Then 𝐿𝑜 and 𝐿⊤𝑜
have the same kernel space if and only if sym(𝐿𝑜) has a zero eigenvalue.

Proof.  We first show the sufficiency. Let 𝑞 ≠ 0 be a vector in 𝑆. 
Then we have 12𝐿𝑜𝑞 +

1
2𝐿

⊤
𝑜 𝑞 = 0 = 1

2 (𝐿𝑜 + 𝐿
⊤
𝑜 )𝑞 = sym(𝐿𝑜)𝑞 and (𝑞, 0)

is an eigenpair of sym(𝐿𝑜). To prove the necessity, let 𝑣 ≠ 0 be the 
eigenvector w.r.t. the 0 eigenvalue, i.e., sym(𝐿𝑜)𝑣 = 0. It follows that 
𝑣⊤sym(𝐿𝑜)𝑣 = 1

2𝑣
⊤(𝐿𝑜 + 𝐿⊤𝑜 )𝑣 = 0. Since 𝑣⊤𝐿𝑜𝑣 = 𝑣⊤𝐿⊤𝑜 𝑣, we have 

𝑣⊤sym(𝐿𝑜)𝑣 = 𝑣⊤𝐿𝑜𝑣 = 𝑣⊤𝐿⊤𝑜 𝑣 = 0. 𝑣 ≠ 0, so the above equalities 
are satisfied only when 𝑣 ∈ ker(𝐿𝑜) and 𝑣 ∈ ker(𝐿⊤𝑜 ). The existence of a 
globally reachable node implies that the dimensions of the kernel space 
of 𝐿𝑜 and 𝐿⊤𝑜  are 1, so ker(𝐿⊤𝑜 ) = ker(𝐿𝑜) = 𝑆. □

This proposition suggests that for a general digraph where 𝐿𝑜 and 
𝐿⊤𝑜  do not have the same kernel space, the smallest eigenvalue of 
sym(𝐿𝑜) is negative. Thus, the feedback path may lose passivity, even 
though the edge controllers are output strictly passive. The following 
proposition establishes the equivalence between 𝐿𝑜 and 𝐿⊤𝑜  having the 
same kernel space and the digraphs being balanced. 

Proposition 3.  Let  contain a globally reachable node. Then, 𝐿𝑜 and 𝐿⊤𝑜
have the same kernel space if and only if  is balanced.

Proof.  Recall Lemma  1 that a digraph is balanced if and only if 𝐿𝑜1 =
𝐿⊤𝑜 1 = 0. Now, suppose that 𝐿𝑜 and 𝐿⊤𝑜  have the same kernel space. 
According to Bullo (2020, Lemma 6.2) and Bullo (2020, Theorem 6.6), 
the kernel space of 𝐿⊤𝑜  is given by 𝑆 = span(1), implying 1 ∈ ker(𝐿𝑜)
and 1 ∈ ker(𝐿⊤𝑜 ).

Conversely, suppose that  is balanced. The given conditions imply 
that both 𝐿𝑜 and 𝐿⊤𝑜  have one-dimensional kernel spaces, with 1 in 
both ker(𝐿𝑜) and ker(𝐿⊤𝑜 ). Consequently, we conclude that ker(𝐿𝑜) =
ker(𝐿⊤𝑜 ) = 𝑆. □

The above results demonstrate that under linear consensus protocol, 
only the systems on some specified digraphs can preserve passivity. 
Moreover, the above passivity analysis only considers the case where 
the edge controllers follow the simplest dynamics. The passivity anal-
ysis may be more tricky if the edge controllers are modeled by more 
complex dynamics. This suggests we need a more general approach for 
analyzing MASs on digraphs.

Note that the feedback path of (𝛴𝑙 ,𝛱 𝑙 ,)𝐸 preserves the passiv-
ity of the controllers, mirroring the behavior observed for balanced 
digraphs. This serves as another example showing the intermediate po-
sition of balanced digraphs between undirected graphs and unbalanced 
digraphs.

3.2. A general approach for directed coupling

Recall that the passivity of a system is preserved after being post-
multiplied by a matrix and pre-multiplied by its transpose (Arcak, 
2007). Also, the incidence matrix can be represented as 𝐸 = 𝐵𝑖 +
𝐵𝑜. Equivalently, the incidence matrix for a directed graph can be 
expressed as 𝐵𝑜 = 𝐸 − 𝐵𝑖. Inspired by these, we use the decomposition 
idea to design a structure capable of conducting passivity analysis for 
MASs over digraphs, as illustrated in Fig.  1(b).

To derive the structure depicted in Fig.  1(b), let us begin by ex-
amining (𝛴,𝛱,)𝐵𝑜 . By viewing Fig.  1(a) from a different perspective, 
where 𝑢 = −𝐵 𝜇 = −(𝐸−𝐵 )𝜇, we can decompose its feedback loop into 
𝑜 𝑖
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two distinct branches. The first branch transmits the signals for 𝑦 to 𝑧, 
and the second branch transmits the signals for 𝑦 to 𝑤. The first branch 
and the forward path form a feedback connection, as highlighted in 
the gray box in Fig.  1(b). This sub-structure is the diffusively-coupled 
network (𝛴,𝛱,)𝐸 , and the feedback connection is passive, provided 
that the agents and edge controllers are passive. Indeed, the first branch 
preserves the passivity of the edge controllers, and the inner product 
𝑧⊤𝑦 satisfies
𝑧⊤𝑦 = 𝜇⊤𝐸⊤𝑦 = 𝜇⊤𝜁 ≥ �̇� ,

where 𝑉  denotes a continuously differentiable positive semidefinite 
function known as the storage function. Consequently, by Theorem 6.1 
in Khalil (2002), the feedback connection is passive for all input–output 
pairs.

With this understanding, we can treat 𝑤 as an external input 
that carries directed information to the inner-feedback loop (outlined 
in gray in Fig.  1(b)). Although the passivity of the overall system 
(𝛴,𝛱,)𝐵𝑜  cannot be guaranteed, we can still exploit the passivity 
properties preserved in the inner-feedback loop and perform analysis 
on the feedback interconnection with the input–output pair (𝑤, 𝑦).

To differentiate between the structures represented in Figs.  1(a)
and 1(b), we introduce the notation (𝛴,𝛱,, 𝑤) to denote the system 
depicted in Fig.  1(b). Now, we can define new interconnection relations 
for (𝛴,𝛱,, 𝑤). Let 𝑤(𝑡) = 𝐵𝑖𝜇(𝑡) and 𝑧(𝑡) = 𝐸𝜇(𝑡). It follows that,

𝑢(𝑡) = 𝑤(𝑡) − 𝑧(𝑡) = −𝐵𝑜𝜇(𝑡) (13)

𝜁 (𝑡) = 𝐸⊤𝑦(𝑡), (14)

where the structure reduces to (𝛴,𝛱,)𝐸 when 𝑤(𝑡) = 0. This decom-
position serves as a general approach to handling directed coupling and 
allows us to analyze the system’s behavior using passivity theory.

Recall that the output consensus problem can be transformed to 
an equivalent problem of analyzing convergence to a submanifold. To 
apply the idea of passivity relations (10), define two relations, i.e., the 
agent relation 𝐻𝑎,

(𝑢(𝑡), 𝑦(𝑡)) ∈ 𝐻𝑎 ⊂ (ℒ̄ 2, ℒ̄ 2
𝑆 ),

and the controller relation 𝐻𝑐 ,

(𝑦(𝑡), 𝑧(𝑡)) ∈ 𝐻𝑐 ⊂ (ℒ̄ 2
𝑆 , ℒ̄

2).

We can now define the problem that we will consider. 

Problem 1.  Consider the network system (𝛴,𝛱,, 𝑤). Under what 
passivity conditions on 𝐻𝑎 and 𝐻𝑐 does the output of the system 
converge to the agreement submanifold?

4. Stabilization of network systems over balanced digraphs

This section focuses on a particular type of digraph, denoted by 
𝑏, which is characterized by being balanced and having a globally 
reachable node. We consider the stabilization problem, which is a 
specific form of Problem  1, where the objective is to ensure that the 
outputs of all agents converge to zero, i.e., lim𝑡→∞ 𝑦(𝑡) = 0 ∈ span(1). 
Addressing this problem provides a foundation for solving the more 
general output consensus problem for networked systems over general 
digraphs (i.e., Problem  1).

Assume that for 𝑖 ∈ V, the agents follow the dynamics, 

𝛴𝑜
𝑖 ∶

{

�̇�𝑖(𝑡) = 𝑓𝑖(𝑥𝑖(𝑡), 𝑢𝑖(𝑡)),
𝑦𝑖(𝑡) = ℎ𝑖(𝑥𝑖(𝑡)),

(15)

where 𝑓𝑖 and ℎ𝑖 are continuously differentiable functions. For the 
system (15), we say 𝑥0 is asymptotically reachable from {0} if there exists 
an input 𝑢𝑥0 ∶ (−∞, 0] → R|V| such that, when applying 𝑢𝑥0  to the state 
equation of (15) for 𝑡 ∈ (−∞, 0], we have 𝑥(0) = 𝑥0 and 𝑥(𝑡) → 0 as 
𝑡 → −∞. 
5 
Consider the stablization problem of a network system
(𝛴𝑜,𝛱,𝑏, 𝑤). We first establish the passivity-like inequalities of 𝐻𝑎
and 𝐻𝑐 by exploiting the inherent passivity properties of the individ-
ual agents and controllers. Then, we derive a sufficient condition to 
guarantee stablization of the system.

The following result provides a passivity-like inequality for the 
agent relation 𝐻𝑎. 

Proposition 4.  Consider a group of |V| SISO agents (15) interconnected 
over a digraph 𝑏. Assume that each agent 𝛴𝑜

𝑖 , for 𝑖 ∈ {1,… , |V|}, is OP-𝜀𝑖
and with initial conditions that are asymptotically reachable from {0}. Let 
𝜀 = min𝑖(𝜀𝑖). Then, it follows that 

𝑢⊤ Proj𝑆⟂ (𝑦) ≥
|V|
∑

𝑖=1
�̇�𝑖(𝑥𝑖) − ‖𝑢‖2‖𝑦‖2 + 𝜀‖Proj𝑆⟂ (𝑦)‖22, (16)

and the passivity relation satisfies, 

⟨𝑢𝜏 ,Proj𝑆⟂ (𝑦𝜏 )⟩≥−max(𝐷𝑜)
𝜀 ‖𝜇𝜏‖2ℒ2

+ 𝜀‖Proj𝑆⟂ (𝑦𝜏 )‖2ℒ2
, (17)

where 𝑄𝑖(𝑥𝑖) is the storage function, and max(𝐷𝑜) denotes the maximal 
out-degree of 𝑏, respectively.

Proof.  We start by summing up the passivity inequalities of all the 
agents, i.e., 

𝑢⊤𝑦 ≥
|V|
∑

𝑖=1
�̇�𝑖 +

|V|
∑

𝑖=1
𝜀𝑖𝑦

2
𝑖 ≥

|V|
∑

𝑖=1
�̇�𝑖 + 𝜀‖𝑦‖22. (18)

Then, consider 𝑢⊤ Proj𝑆⟂ (𝑦), 
𝑢⊤ Proj𝑆⟂ (𝑦) = 𝑢⊤𝑦 − 1

|V| 𝑢
⊤11⊤𝑦

≥
|V|
∑

𝑖=1
�̇�𝑖 + 𝜀‖𝑦‖22 −

1
|V| 𝑢

⊤11⊤𝑦.
(19)

For − 1
|V| 𝑢

⊤11⊤𝑦, by the Cauchy–Schwarz inequality,

| − 1
|V| 𝑢

⊤11⊤𝑦| = 1
|V| |𝑢

⊤11⊤𝑦| = 1
|V| |𝑢

⊤1||1⊤𝑦|

≤ 1
|V|‖𝑢‖2‖1‖2‖𝑦‖2‖1‖2 = ‖𝑢‖2‖𝑦‖2.

So, we arrive at 

− 1
|V| 𝑢

⊤11⊤𝑦 ≥ −‖𝑢‖2‖𝑦‖2. (20)

Before considering ‖Proj𝑆⟂ (𝑦)‖22, recall that 𝐼 − 1
|V|11

⊤ is a projec-
tion matrix with eigenvalues {0, 1(|V|−1)}. Using the properties of the 
Rayleigh quotient (Horn & Johnson, 2012, Theorem 4.2.2), we get 

‖Proj𝑆⟂ (𝑦)‖22 = 𝑦⊤(𝐼 − 1
|V|11

⊤)𝑦 ≤ 𝑦⊤𝑦. (21)

Plugging (21) and (20) into (19), we obtain (16).
To show (17), we first rearrange (18),

|V|
∑

𝑖=𝑖
�̇�𝑖 ≤ 𝑢⊤𝑦 − 𝜀𝑦⊤𝑦 = − 1

2𝜀 (𝑢 − 𝜀𝑦)
⊤(𝑢 − 𝜀𝑦)

+ 1
2𝜀 𝑢

⊤𝑢 − 𝜀
2 𝑦

⊤𝑦 ≤ 1
2𝜀 𝑢

𝑇 𝑢 − 𝜀
2 𝑦

⊤𝑦.

Integrating both sides over (−∞, 𝜏] yields,

∫

𝜏

−∞
𝑦⊤(𝑡)𝑦(𝑡)d𝑡 ≤ 1

𝜀2 ∫

𝜏

−∞
𝑢⊤(𝑡)𝑢(𝑡)d𝑡 − 2

𝜀

|V|
∑

𝑖=𝑖
𝑄𝑖(𝑥(𝜏))

+ 2
𝜀 lim
𝑡→∞

|V|
∑

𝑖=𝑖
𝑄𝑖(𝑥(−𝑡)).

Employing lim𝑡→∞
∑

|V|
𝑖=𝑖 𝑄𝑖(𝑥(−𝑡)) = 0 (i.e., the asymptotical reachability 

of initial conditions) and the non-negative nature of 𝑄(𝑥), it follows 
that, 

‖𝑦𝜏‖ ≤ 1
‖𝑢𝜏‖ . (22)
ℒ2 𝜀 ℒ2
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Now, by integrating −‖𝑢‖2‖𝑦‖2 over (−∞, 𝜏] and using Cauchy–
Schwarz, we have that 
|

|

|

|

−∫

𝜏

−∞
‖𝑢(𝑡)‖2‖𝑦(𝑡)‖2d𝑡

|

|

|

|

≤ ‖𝑢𝜏‖ℒ2
‖𝑦𝜏‖ℒ2

. (23)

With inequalities (22) and (23), we obtain that 

− ∫

𝜏

−∞
‖𝑢(𝑡)‖2‖𝑦(𝑡)‖2d𝑡 ≥ −‖𝑢𝜏‖ℒ2

‖𝑦𝜏‖ℒ2
≥ − 1

𝜀‖𝑢
𝜏
‖

2
ℒ2
. (24)

Next, we establish the relationship between 𝑢 and 𝜇. Since 𝑢 = −𝐵𝑜𝜇
(see (13)), the following relation holds, 

− ‖𝑢𝜏‖2ℒ2
= −∫

𝜏

−∞
𝜇⊤(𝑡)𝐵⊤𝑜 𝐵𝑜𝜇(𝑡)d𝑡 ≥ −max(𝐷𝑜)‖𝜇𝜏‖2ℒ2

, (25)

where the last inequality is by the properties of the Geršgorin Disks 
Theorem (Bullo, 2020, Theorem 2.8) and Rayleigh quotient (Horn & 
Johnson, 2012, Theorem 4.2.2). Indeed, observe that the entries of 
𝐵⊤𝑜 𝐵𝑜 are either 0 or 1, with diagonal elements equal to 1. Furthermore, 
the largest row sum of this matrix is given by max(𝐷𝑜). This implies that 
the maximal eigenvalue of 𝐵⊤𝑜 𝐵𝑜 is less than or equal to max(𝐷𝑜).

Now, integrate both sides of (16) over (−∞, 𝜏] for 𝜏 ∈ [0,∞), 

⟨𝑢𝜏 ,Proj𝑆⟂ (𝑦𝜏 )⟩ ≥
|V|
∑

𝑖=1
𝑄𝑖(𝑥𝑖(𝜏)) − lim

𝑡→−∞

|V|
∑

𝑖=1
𝑄𝑖(𝑥𝑖(𝑡))

− ∫

𝜏

−∞
‖𝑢‖2‖𝑦‖2d𝑡 + 𝜀‖Proj𝑆⟂ (𝑦𝜏 )‖2ℒ2

.

(26)

Recall that lim𝑡→−∞
∑

|V|
𝑖=1𝑄𝑖(𝑥𝑖(𝑡)) = 0 and 𝑄𝑖(𝑥𝑖(𝑡)) are non-negative. 

Plugging (24) and (25) into (26), we get Eq. (17). □

The following proposition is for the controller relation 𝐻𝑐 . 

Proposition 5.  Consider a group of |E| SISO edge controllers (2). Assume 
that for all 𝑘 ∈ {1,… , |E|}, the controllers 𝛱𝑘 are OP-𝛼𝑖. Then, it follows 
that, 

𝑧⊤ Proj𝑆⟂ (𝑦) ≥
|E|
∑

𝑘=1
�̇�𝑘(𝜂𝑘) + 𝛼‖𝜇‖22, (27)

and the passivity relation satisfies, 

⟨𝑧𝜏 ,Proj𝑆⟂ (𝑦𝜏 )⟩ ≥ − lim
𝑡→−∞

|E|
∑

𝑘=1
𝑊𝑘(𝜂𝑘(𝑡)) + 𝛼‖𝜇𝜏‖2ℒ2

, (28)

where 𝑊𝑘(𝜂𝑘) are the storage functions and 𝛼 = min𝑘(𝛼𝑘).

Proof.  Recall that for the incidence matrix of a balanced digraph, the 
relation 𝐸⊤1𝑛 = 0𝑚 and 𝐸1𝑚 = 0𝑛 hold. Thus,
𝐸⊤𝑦 = (𝐼𝑚 − 1

𝑛1𝑚1
⊤
𝑚)(𝐸

⊤𝑦) = Proj𝑆⟂ (𝐸⊤𝑦)

= 𝐸⊤(𝐼𝑛 −
1
𝑛1𝑛1

⊤
𝑛 )𝑦 = 𝐸⊤ Proj𝑆⟂ (𝑦).

With this relation, summing up the passivity inequalities of all the 
controllers yields, 
𝜇⊤𝜁 = 𝜇⊤𝐸⊤𝑦 = 𝑧⊤ Proj𝑆⟂ (𝑦)

≥
|E|
∑

𝑘=1
�̇�𝑘 +

|E|
∑

𝑘=1
𝛼𝑘𝜇

2
𝑘 ≥

|E|
∑

𝑘=1
�̇�𝑘 + 𝛼‖𝜇‖22.

(29)

This demonstrates (27). Now, integrate both sides of (27) over (−∞, 𝜏]
for 𝜏 ∈ [0,∞), and we obtain (28). □

Recall that achieving output agreement suggests lim𝑡→∞ Proj𝑆⟂ (𝑦(𝑡)) =
0. Now, we are ready to present the main result of this section. 

Theorem 1.  Consider a network system (𝛴𝑜,𝛱,𝑏, 𝑤). Suppose the 
conditions of Propositions  4 and 5 are met. If 𝛼 ≥ max(𝐷𝑜)

𝜀  where max(𝐷𝑜)
denotes the maximal out-degree of 𝑏, then the system is stabilized.

Proof.  We start by showing that the trajectories of (𝛴𝑜,𝛱,𝑏, 𝑤) are 
bounded. From Propositions  4 and 5, both the forward path (from 𝑢
6 
to 𝑦) and the feedback path (from 𝑦 to 𝑧) of Fig.  1(b) are passive. 
Consequently, it satisfies a global dissipation inequality, where the rate 
of change of the storage function is bounded by the supply rate. Since 
the storage function can be chosen to be radially unbounded (i.e., a 
quadratic storage function), the trajectories must be bounded.

Recall that 𝑤 = 𝑧 + 𝑢. Sum up (17) and (28), 

𝜀‖Proj𝑆⟂ (𝑦𝜏 )‖2ℒ2
≤ ⟨𝑤𝜏 ,Proj𝑆⟂ (𝑦𝜏 )⟩ + lim

𝑡→−∞

|V|
∑

𝑖=1
𝑄(𝑥𝑖(𝑡)), (30)

and the pointwise form yields,

𝑤⊤ Proj𝑆⟂ (𝑦) ≥
|E|
∑

𝑘=1
�̇�𝑘 + 𝜀‖Proj𝑆⟂ (𝑦)‖22.

Then, following an approach analogous to the proof of Lemma 6.5 
in Khalil (2002), it can be shown that Proj𝑆⟂ (𝑦) is bounded for bounded 
𝑤, as described by, 

‖Proj𝑆⟂ (𝑦𝜏 )‖ℒ 2 ≤ 1
𝜀‖𝑤

𝜏
‖ℒ2

+

√

√

√

√ 2
𝜀 lim
𝑡→−∞

|E|
∑

𝑘=1
𝑊 (𝜂𝑘(𝑡)) (31)

Now, let 𝑠(𝑡) = Proj⊤𝑆⟂ (𝑦(𝑡)) Proj𝑆⟂ (𝑦(𝑡)). From (30), due to the 
boundedness of trajectories and (31), we obtain that lim𝜏→∞ ∫ 𝜏0 𝑠(𝑡)d𝑡
exists and is finite.

Next, we demonstrate that 𝑠(𝑡) is uniformly continuous. Given 
the dynamics of 𝛴𝑜

𝑖 , the derivative of 𝑦𝑖 can be expressed as �̇�𝑖 =
𝜕ℎ𝑖
𝜕𝑥𝑖
𝑓𝑖(𝑥𝑖, 𝑢𝑖). Since the trajectories are bounded, 𝜕ℎ𝑖𝜕𝑥𝑖

 and 𝑓𝑖(𝑥𝑖, 𝑢𝑖) are 
also bounded, implying the boundedness of �̇�𝑖 for all 𝑖 ∈ [1, |V|]. 
Consequently, d

d𝑦 𝑠(𝑡) = 2𝑦⊤(𝐼 − 1
|V|11

⊤)�̇� is bounded. Thus, 𝑠(𝑡) is 
uniformly continuous.

Now, having satisfied the conditions for applying Barbalat’s
Lemma (Khalil, 2002, Lemma 8.2) to 𝑠(𝑡), we conclude that Proj𝑆⟂ (𝑦(𝑡))
→ 0 as 𝑡 → ∞, which implies asymptotic output agreement. Conse-
quently, 𝐸⊤𝑦(𝑡) = 𝜁 (𝑡) = 0. Since both the agents and controllers are 
output strictly passive, their input–output trajectories pass through the 
origin, yielding 𝜁 (𝑡) = 𝜇(𝑡) = 𝑢(𝑡) = 𝑦(𝑡) = 0. Thus, the network system 
is stabilized. □

Theorem  1 presents a passivity-based analysis of network systems 
with balanced digraphs, establishing a sufficient condition for output 
consensus (stabilization) in terms of the passivity index of the edge con-
troller dynamics. The theorem provides a lower bound on the passivity 
index, which has an insightful physical interpretation: it is the ratio 
between the maximal out-degree of the underlying digraph and the 
minimal passivity index of the agents. This result guarantees that the 
system is stabilized, but does not necessarily ensure average consensus. 
Theorem  1 also has some limitations that should be acknowledged. 
First, the provided condition is only sufficient for stabilization, and 
a tighter lower bound on the passivity index may exist. Second, the 
theorem is applicable only to balanced digraphs that contain a globally 
reachable node, and it requires the agents to be output strictly passive 
with their outputs determined solely by their states.

5. Case study: Neural network

In this section, we consider a continuous neural network on 𝑛
neurons (Scardovi et al., 2009; Sharf & Zelazo, 2018), 
�̇�𝑖 = −𝑎𝑖𝑥𝑖 + 𝑏

∑

𝑗∼𝑖
(tanh(𝑥𝑗 ) − tanh(𝑥𝑖)) + w𝑖, (32)

where 𝑥𝑖 and 1
𝑎𝑖
> 0 denote the voltage on the 𝑖th neuron and the self-

correlation time of the neuron, respectively, 𝑏 is the coupling coefficient 
and w𝑖 is the exogenous input of the neuron. Note that the agents can 
be modeled by �̇�𝑖 = −𝑎𝑖𝑥𝑖 + 𝑢𝑖; 𝑦𝑖 = tanh(𝑥𝑖) and the edge controllers 
follow the linear consensus protocol, i.e., 𝜇𝑘 = 𝑏𝜁𝑘. The agents are OP-𝑎𝑖
and the controllers are OP-𝑏.
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Fig. 2. The underlying graph and trajectories for the outputs. (a) A balanced digraph. (b) Outputs for the system with edge controllers 𝜇𝑘 = 4
3
𝜁𝑘. (c) Outputs for systems with 

nonlinear edge controllers 𝜇𝑘 = 4
3
max(𝜁𝑘 , 0).
We run the system with 5 neurons. The underlying graph of the 
system, as shown in Fig.  2(a), is balanced and contains a globally 
reachable node. The maximum out-degree of the graph is 2. In this 
example, the value w𝑖 = 0 and values 𝑎𝑖, are chosen randomly, 𝑎 =
[1.66, 3.22, 4.62, 1.5, 2.56]. The initial conditions are set to 𝑥(0) = [−2;
−3; 6; 10; 1]. According to Theorem  1, if 𝑏 ≥ max(𝐷𝑜)

min(𝑎𝑖)
= 4

3 , the system 
is stabilized. This is verified by the simulation result, as shown in Fig. 
2(b).

Furthermore, the models of the edge controllers can be chosen to be 
other nonlinear OP- 43  systems, for example, 𝜇𝑘 =

4
3 max(𝜁𝑘, 0). Fig.  2(c) 

shows the outputs of the system, and the system is stabilized. In both 
cases, the system states converge to regular consensus.

6. Concluding remarks

In this work, we first propose a general approach capable of con-
ducting passivity analysis for network systems with directed couplings. 
Then, we transform the consensus problem into a convergence analysis 
on a submanifold. Finally, we provide a passivity-based analysis for 
network systems over balanced digraphs, which serves as a sufficient 
condition for stabilization (a specific instance of output consensus). 
In future work, we will explore the more general output consensus 
problem for networked systems over general digraphs.
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