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Abstract— This work presents a passivity-based analysis for
the nonlinear output agreement problem in network systems
over directed graphs. We reformulate the problem as a conver-
gence analysis on the agreement submanifold. First, we establish
how passivity properties of individual agents and controllers
determine the passivity of their associated system relations.
Building on this, we introduce the concept of submanifold-
constrained passivity and develop a novel compensation theo-
rem that ensures output convergence to the agreement submani-
fold. Unlike previous approaches, our approach can analyze the
network system with arbitrary digraphs and any passive agents.
We apply this framework to analyze the output agreement
problem for network systems consisting of nonlinear and
passive agents. Numerical examples support our results.

I. INTRODUCTION

Multi-agent networks (MANs) have received significant
attention in recent years due to their intriguing research chal-
lenges and extensive practical applications [1]–[3]. MANs
represent the large-scale interconnection of agents, where
the analytical complexity arises from both the (nonlinear)
dynamics of individual agents and the intricate couplings
imposed by the network topology. This work addresses the
output agreement problem, one of the fundamental chal-
lenges in this fields, where agent outputs are expected to
agree on a shared value or trajectory [4].

In output agreement analysis, it is essential to examine
the individual agent dynamics and the network topology
governing their interactions separately to mitigate the in-
herent complexity of MANs. Here, passivity theory plays a
significant role. The seminal work by [5] introduced passivity
as a key tool for characterizing group coordination behavior.
Then, in [6], [7], a comprehensive passivity-based coop-
erative control framework was developed. The framework
established a connection between consensus behaviors and
dual network optimization problems [8]. Montenbruck et
al. [9] regarded the agreement space as a submanifold and
developed powerful analytical tools to establish connections
between passivity properties of relations and submanifold
stabilization problems (including consensus problems).

However, the research mentioned shares a common im-
plicit assumption: that the underlying graphs of MANs are
undirected. This can sometimes be restrictive and may lead to
inefficiencies, so it is necessary to consider network systems
that interact over directed graphs (digraphs). In general,
analyzing these systems presents challenges, even in the
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linear case [10]. On the other hand, although passivity theory
plays a significant role in simplifying the analysis of MANs,
its application to network systems with digraphs remains
underexplored. While the work [11] introduced a passivation
approach tailored for the consensus problem of directed
networks, their scope was confined to scenarios involving
linear static controllers.

In [12], we proposed a framework enabling passivity-
based analysis for directed networks and reformulated the
output consensus problem as convergence analysis on a
submanifold. Our approach includes two steps: First, we
defined input-output relations for the forward and feedback
paths with respect to the agreement submanifold, and derived
passivity-based inequalities for these relations. Second, we
established a compensation theorem that leveraged excess
passivity in the feedback path to compensate for the shortage
in the forward path, thereby guaranteeing output convergence
to the submanifold.

Despite these contributions, the analysis in [12] was
restricted to network systems with balanced digraphs and
output-strictly passive agents and controllers, addressing only
the stabilization problem. Additionally, we will discuss in
subsection III-A that the compensation theorem in [12]
becomes inapplicable when agents exhibit only passivity
or input-strict passivity. In these scenarios, the forward
path relation exhibits a passivity shortage that cannot be
compensated by the feedback path’s excess passivity. These
unresolved limitations constitute the primary motivation for
the present work.

This paper focuses on the reformulated output agreement
problem for network systems over digraphs. We extend the
two-step approach from [12] to arbitrary directed graphs
with passive agents. Our contributions are as follows. First,
we establish how passivity properties of individual agent
and controller determine the passivity of their associated
system relations. This reveals fundamental limitations of
the existing compensation theorem in [12]. To overcome
these challenges, we introduce the notion of submanifold-
constrained passivity and propose a novel compensation
theorem that guarantees output convergence to the agree-
ment submanifold. This new approach eliminates the need
to construct a storage function for each individual agent,
requiring only a constrained storage function for the entire
forward path. Finally, we apply our framework to integrator-
like nonlinear agents and derive sufficient conditions for
directed networks to achieve output agreement.

The remainder of this paper is organized as follows.
Section II presents the necessary background on network
systems over digraphs, passivity, and the reformulated out-
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put agreement problem. Section III introduces submanifold-
constrained passivity and develops a generalized compensa-
tion theorem for output agreement. Section IV applies this
theorem to analyze output agreement in a specific class of
network systems. Numerical simulations and conclusions are
presented in Sections V and VI, respectively. Due to space
constraints, this paper presents only selected proofs. The
complete proofs can be found in [].

Notations: We denote the n-dimensional all-one vector
and identity matrix by 1n and In, respectively. For a set A,
|A| denotes its cardinality. The orthogonal complement of a
subspace U is denoted by U⊥, and ProjU (x) represents the
orthogonal projection of x ∈ Rn onto U .

A digraph D = (V, E) consists of a finite vertex set V
and edge set E ⊂ V × V , with undirected counterpart G.
A digraph contains a globally reachable node if one node
can be reached from all others via directed paths [13]. The
incidence matrix E ∈ R|V|×|E| is defined as [E]ik = 1 if
i is the head of edge ek, [E]ik = −1 if i is the tail, and
[E]ik = 0 otherwise. We decompose E = Bo +Bi into out-
incidence matrix Bo (where [Bo]ik := 1 if i is the head of
edge ek = (i, k) and [Bo]ik := 0 otherwise) and in-incidence
matrix Bi (where [Bi]ik := −1 if i is the tail of edge ek
and [Bo]ik := 0 otherwise) [14]. The graph Laplacian, in-
Laplacian and out-Laplacian matrices are defined as L(G) =
EE⊤, Li(D) = BiE

⊤, and Lo(D) = BoE
⊤, respectively.

II. PRELIMINARIES

This section presents the necessary preliminaries on net-
worked systems over directed graphs and passivity theory,
and then establishes the connection between output agree-
ment and convergence to the agreement submanifold.

A. Network systems over digraphs

Consider a population of agents interconnected over a
directed graph D = (V, E), where V represents the set
of agents and E indicates existence of dynamical coupling
between agents (the edge controllers). Each agent {Σi}i∈V
and controller {Πk}k∈E are described by SISO nonlinear
dynamical systems,

Σi : ẋi(t) = fi(xi(t), ui(t)), yi(t) = hi(xi(t), ui(t)), (1)
Πk : η̇k(t) = ϕk(ηk(t),ζk(t)),µk(t) = ψk(ηk(t),ζk(t)). (2)

In network systems over digraphs, agents and controllers
are interconnected in a parallel configuration. With a slight
abuse of notation, we denote the parallel interconnection of
agents as Σ = diag(Σ1, . . . ,Σ|V|) and that of controllers
as Π = diag(Π1, . . . ,Π|E|). Accordingly, we define u(t) =
[u1, . . . , u|V|]

⊤ as the stacked input vector of all agents, with
analogous definitions for the agent outputs y(t), controller
inputs ζ(t), and controller outputs µ(t).

Fig. 1 illustrates two block diagrams for network systems
over digraphs. These structures are equivalent. However, as
shown in [12], the structure (Σ,Π,D) in Fig. 1a, is not
ideal for passivity-based analysis due to the potential loss of
passivity in the feedback path, even with passive controllers.
To address this, we introduced the structure (Σ,Π,D, w)

depicted in Fig. 1b. In this structure, the symmetric intercon-
nection operator EΠE⊤ in the feedback path remains passive
[5], provided the controllers, Π, are passive. While the
passivity of the overall system cannot be guaranteed, we can
treat w = Biµ as an external output and perform passivity-
based analysis on the feedback interconnection with the
input-output pair (w, y).

Bo

Σ

Π

E⊤

w(t) = 0 u(t) y(t)

ζ(t)µ(t)

−

(a) (Σ,Π,D)

E

Σ

Π

E⊤

w(t) = Biµ(t) u(t) y(t)

ζ(t)µ(t)

z(t)

−

(b) (Σ,Π,D, w)

Fig. 1: Two structures of network systems over directed
graphs.

In this context, the feedback equations can be described
from an input-output perspective by defining w(t) = Biµ(t)
and z(t) = Eµ(t), which leads to

u(t) = w(t)− z(t) = −Boµ(t), and ζ(t) = E⊤y(t). (3)

In this work, we focus solely on the structure (Σ,Π,D, w).

B. Passivity

We take the system (1) as an example to introduce
passivity.

Definition 1 ( [6], [15], [16]): For the SISO system (1),
if there exists a positive semi-definite storage function
Vi(xi), and scalars εi, δi such that

V̇i(xi) ≤ uiyi − εiy
2
i − δiu

2
i , ∀xi, ui, yi, (4)

then, the system (1) is said to be
1) passive if εi = 0 and δi = 0,
2) output strictly passive (OP-εi) if εi > 0 and δi ≥ 0,
3) input strictly passive (IP-δi) if εi ≥ 0 and δi > 0.
4) input-output passive (IOP-δi, εi) if εi, δi ∈ R and

εiδi <
1
4 (see more details in [16]). ▽

C. Output agreement and convergence to the agreement
submanifold

This work analyzes the output agreement problem for
network systems interacting over directed graphs from a
passivity-based perspective. We first transform this problem
to study the convergence of outputs to a submanifold and
introduce how to conduct a passivity-based analysis for the
reformulated problem.

Definition 2: Consider the network system (Σ,Π,D, w)
defined in (1)-(3). The system is said to achieve asymptotic
output agreement if for all initial conditions,

lim
t→∞

y(t) = c1|V| ∈ span(1|V|),

where c ∈ R is the agreement value. ▽
Since span(1) forms a linear submanifold [9], we denote

it as the agreement submanifold S, with orthogonal com-
plement S⊥ termed the disagreement submanifold. Output



consensus thus corresponds to convergence to S. To deter-
mine convergence of y(t) to S, we now introduce the space
L p

S defined with respect to S as ( [9], [12]),

L p
S =

{
f : R → U |

∫
Rd(f(t), S)

pdt <∞
}
, (5)

where 1 ≤ p < ∞, d(x,M) denotes the infimal Euclidean
distance from x to all the points in an embedded submanifold
M ⊆ Rn, and U is a tubular neighborhood of S [9, Definition
1]. The existence of U is guaranteed by the fact that S
is smoothly embedded [17, Chapter 10]. To handle outputs
from unstable systems, we define the truncation operator that
is also the orthogonal projection onto S:

r : Rn → S, x 7→ ProjS(x) =
1
n1n1⊤

n x,

and introduce the extended space

L̄ p
S = {f |fτS ∈ L p

S , ∀τ ∈ [0,∞]} ,

where fτS(t) = f(t) for t ∈ [0, τ) and fτS(t) = ProjS(f(t))
otherwise. For passivity-based analysis, we set p = 2.
However, L p

S is not a normed space [9] and it is impossible
to define passivity within L p

S as we have no inner product
on this space. Thus, we introduce the mapping

ΘS : L̄ 2
S → L̄ 2, f(t) 7→ ProjS⊥(f(t)) =

(
In − 1

n
1n1⊤

n

)
f(t),

(6)
which projects signals onto S⊥.

Next, to connect output consensus to passivity, we define
input-output relations for the forward path (agent relation
Ha) and feedback path (controller relation Hc) of network
system (Σ,Π,D, w):

(u(t), y(t)) ∈ Ha ⊂ (L̄ 2 × L̄ 2
S ), (7)

(y(t), z(t)) ∈ Hc ⊂ (L̄ 2
S × L̄ 2), (8)

where u(t) + z(t) = w(t) ∈ L̄ 2.
Using these notions, the inner product between u(t) ∈ L̄ 2

and y(t) ∈ L̄ 2
S is given by

⟨uτ ,ΘS(y
τ
S)⟩ =

∫ τ

−∞u
⊤(t) ProjS⊥(y(t))dt,

which corresponds to a special case of [9, Equation 51].
This enables establishing passivity-based inequalities for
Ha and Hc in terms of u⊤ ProjS⊥(y) and z⊤ ProjS⊥(y),
respectively. Furthermore, if lim

t→∞
ProjS⊥(y(t)) = 0 for

bounded y(t), then network system (Σ,Π,D, w) achieves
output agreement.

In [12], we derived sufficient conditions for output agree-
ment in network systems over balanced digraphs with output-
strictly passive agents and edge controllers in two steps. First,
establish passivity-based inequalities for Ha and Hc (using
the passivity properties of agents and controllers):

V̇ (x) ≤ u⊤(t) ProjS⊥(y(t)) + g1(u(t), y(t)), (9)

Ẇ (η) ≤ z⊤(t) ProjS⊥(y(t)) + g2(µ(t), ζ(t)), (10)

where g1, g2 : R|V|×R|V| → R, and V (x), W (η) are positive
semi-definite storage functions. Second, apply the follow-
ing compensation theorem to analyze output agreement for
(Σ,Π,D, w).

Theorem 1 ( [12]): Consider a network system
(Σ,Π,D, w), where D is a directed and with a globally
reachable node. For agent dynamics (1), let yi(t) = hi(xi)
and assume that fi and hi are continuously differentiable.
For the agent relation Ha with (9), if there exists a controller
relation Hc with (10) and a positive constant ε, such that
the sum of (9) and (10) satisfies

w⊤ ProjS⊥(y) ≥ V̇ + Ẇ + ε∥ProjS⊥(y)∥22, (11)

then, lim
t→∞

ProjS⊥(y(t))=0, achieving output agreement. ▽
This theorem is a direct summary and extension of Propo-

sitions 4 and 5, and Theorem 1 in [12], where inequality (11)
corresponds to inequality (30) in [12].

However, deriving passivity-based inequalities for the
agent relation directly from passivity properties of agents
presents certain limitations. In Section III, we will discuss
these limitations and propose a potential solution.

For brevity, we will henceforth omit the time argument t
of signals in pointwise passivity-based inequalities. Instead,
we will use the shorthand notation u, y, ζ and µ.

III. OUTPUT AGREEMENT ON DIGRAPHS AND
SUBMANIFOLD-CONSTRAINED PASSIVITY

This section focuses on the output agreement problem for
network systems (Σo,Π,D, w) where D = (V, E) and agents
Σo

i follow the dynamics,

Σo
i : ẋi(t) = fi(xi(t), ui(t)), yi(t) = hi(xi(t)), i ∈ V

(12)
where fi : Rni×R → Rni and hi : Rni → R are continuously
differentiable functions.

We begin by examining the limitations of the existing
approach from [12] and then generalize the approach to
analyze network systems with arbitrary digraphs and any
passive agents. This extension is facilitated by the concept
of submanifold-constrained passivity for output agreement.

A. From individual passivity to characterizations of rela-
tions: The limitations

This subsection reveals fundamental limitations of directly
deriving passivity relations from individual passivity proper-
ties, as is done in the first step of the existing method.

Consider network systems over digraphs (Σo,Π,D, w). To
ensure the generality of our analysis, we assume the agents
and controllers are input-output passive (see Definition 1), as
input-output passivity encompasses all cases of passivity. The
following proposition answers how agents’ passivity affects
the passivity-based properties of agent relation Ha.

Proposition 1: Consider a group of |V| SISO agents (12).
Assume that for all i ∈ {1, . . . , |V|}, the agents Σo

i are IOP-
(δi, εi) where δiεi < 1

4 . Let δ = mini(δi) and ε = mini(εi).
Then, it follows that

u⊤ ProjS⊥(y) ≥
∑|V|

i=1
V̇i + (δ − 1

2 )∥u∥
2
2 + (ε− 1

2 )∥y∥
2
2,

(13)
where Vi(x)’s are positive semi-definite storage functions. ▽

Next, derive the characterization of the controller relation
Hc from the controllers’ passivity.



Proposition 2: Consider a group of |E| SISO edge con-
trollers (2) in system (Σo,Π,D). Let λ2 be defined as above.
Assume that for all k ∈ {1, . . . , |E|}, the controllers Πk are
IOP-(γk, αk) where γk, αk ≥ 0 and γkαk < 1

4 for all k.
Then, it follows that

z⊤ ProjS⊥(y) ≥
∑|E|

k=1
Ẇk + α∥µ∥22 + γλ2∥ProjS⊥(y)∥22,

(14)
where Wk(η)’s denote positive semi-definite storage func-
tions, α = mink(αk) and γ = mink(γk). ▽
Note that this proposition holds for all digraphs. While this
proposition is stated for non-negative αk and γk, it remains
valid for negative values if we substitute λ|V| for λ2 in (14).

Now, consider the case where δ− 1
2 < 0 and ε− 1

2 < 0 in
(13). To apply Theorem 1, (14) must compensate for these
negative terms in (13). While an appropriate α can compen-
sate for (δ − 1

2 )∥u∥
2
2 [12], compensation for (ε− 1

2 )∥y∥
2
2 is

impossible since (14) lacks a ∥y∥22 term. Consequently, the
method in [12] cannot handle passive agents (δ = ε = 0) or
input-strictly passive agents.

This limitation is particularly significant since linear
consensus protocols contains passive integrator agents and
output-strictly passive controllers [4], [15], so the existing
approach is inadequate for analyzing even basic linear con-
sensus protocols. To address this limitation, we introduce the
concept of submanifold-constrained passivity.

B. Submanifold-constrained passivity for output agreement

Before defining submanifold-constrained passivity for the
output agreement problem, we introduce the notion of a
submanifold-constrained storage function. Recall that storage
functions V (x) are continuously differentiable and positive
semi-definite with V (x) = 0 when x = 0. They are inad-
equate for submanifold analysis as they cannot distinguish
whether x lies within or outside an expected submanifold.
Inspired by [9], we present the following refined definition
to address this limitation.

Definition 3 (M -constrained storage function): Consider
a smoothly embedded submanifold M . Let x ∈ Rn and
f : Rn → Rn. A differentiable function Q : Rn → R is
called a constrained storage function with respect to M , if

1) Q(x) = 0, for all x with f(x) ∈M , and,
2) Q(x) > 0, otherwise. ▽
The submanifold-constrained passivity for the agreement

problem is now defined.
Definition 4: Consider a group of n SISO systems Σo

i

and the agreement submanifold S. Suppose the systems are
interconnected in parallel, and denote them by Σo. If there
exists an S-constrained storage function Q(x) and numbers
δ, ε ∈ R, such that for all t,

u⊤ ProjS⊥(y) ≥ ∂Q(x)
∂x ẋ+ ε∥ProjS⊥(y)∥22 + δ∥u∥22, (15)

then, the system Σo is said to be
1) S-passive if ε = δ = 0,
2) input S-passive if ε = 0 and δ ̸= 0,
3) output S-passive if ε ̸= 0 and δ = 0,
4) input-output S-passive if εδ < 1

4 . ▽

By introducing submanifold-constrained passivity for out-
put agreement, if an S-constrained storage function exists,
the passivity-based inequality (15) of agent relations Ha no
longer includes the ∥y∥22 term. This framework eliminates
the need for individual storage functions for each agent,
requiring only a single constrained storage function for the
agent relation, thereby simplifying analysis and design.

Example 1: Consider n SISO agents interconnected in
parallel with dynamics Σ : ẋ = x + u, y = x. Then Σ
is output S-passive with Q(x) = 1

2x
⊤(I − 1

n11⊤)x.
We first show that Q(x) is an S-constrained storage

function. Since (I − 1
n11⊤) is symmetric with eigenvalues

{0, 1}, the Rayleigh quotient yields 0 ≤ Q(x) ≤ x⊤x [18,
Theorem 4.2.2]. The kernel of (I− 1

n11⊤) is S = span(1n),
so, with f(x) = x, we have Q(x) = 0 if and only if
x ∈ S, and Q(x) > 0 otherwise. Then, computing ∂Q

∂x ẋ =
x⊤(I − 1

n11⊤)(x + u) = u⊤ ProjS⊥(y) + ∥ProjS⊥(y)∥22
confirms output S-passivity. ▽

Now, with the notion of submanifold-constrained passivity,
we can establish a new compensation theorem.

Theorem 2: Consider a network system (Σo,Π,D, w),
where D is a directed graph containing a globally reachable
node. Suppose an S-constrained storage function Q(x) exists
so that the agent relation Ha satisfies (15). If there exists a
controller relation Hc, characterized by (10) with a storage
function W (η), and a positive constant ε such that the sum
of (15) and (10) satisfies

w⊤ ProjS⊥(y) ≥ Q̇+ Ẇ + ε∥ProjS⊥(y)∥22, (16)

then the network system achieves output agreement. ▽
Comparing (16) with (11) in Theorem 1, the key distinc-

tion is the utilization of the S-constrained storage function
in (16). Note that this compensation theorem can be applied
to the study of network systems with arbitrary digraphs and
agents exhibiting any passive properties.

This theorem emphasizes that constructing a constrained
storage function is crucial for enabling a passivity-based
analysis of the output agreement problem. While the theorem
is somewhat abstract, we will apply it to investigate the out-
put agreement of a group of passive agents and characterize
the form of the S-constrained storage function.

IV. OUTPUT AGREEMENT OF PASSIVE AGENTS

This section analyzes the output agreement problems for
network systems composed of a special class of passive
systems, as described by,

Υi : ẋi(t) = ui(t), yi(t) = hi(xi(t)), i ∈ V, (17)

where xi(t), ui(t), yi(t) ∈ R, and hi : Rni → R are
continuously differentiable monotone passive functions. We
exclude the trivial case where hi(xi) ≡ 0. Note that this
system is integrator-like, representing a cascade connection
of an integrator and a passive memoryless function hi.

Consider now the network system (Υ,Π,D, w). Agents
Υ are passive, so the method proposed in [12] cannot be
applied to analyze the output agreement problem for these
systems, as discussed in subsection III-A. To address this,



we construct an S-constrained storage function for the agent
relation, and provide sufficient conditions under which the
systems achieve output agreement.

The following proposition provides sufficient conditions
for the existence of such constrained storage functions.

Proposition 3: Consider a group of |V| SISO agents Υi.
Let the agent relation Ha be defined as above and P =
I − 1

|V|11⊤. Assume that for all i ∈ {1, . . . , |V|} and s ∈ R,

there exists a positive constant m such that dhi(s)
ds ≤ m, then,

Ha exhibits the following passivity-based characterization,

u⊤ ProjS⊥(y) ≥ Q̇(x)− M
2 ∥u∥22 − M

2 ∥ProjS⊥(y)∥22,
(18)

with the S-constrained storage function,

Q(x) = 1
2h

⊤(x)Ph(x),

where M = max(1, |1−m|). ▽
Proof: We start by computing the derivative of Q(x)

with respect to t, i.e.,

Q̇(x) = ∂Q(x)
∂x ẋ = ∂Q(x)

∂h(x)
∂h(x)
∂x ẋ = (Ph(x))⊤ ∂h(x)

∂x u, (19)

where ∂h(x)
∂x = diag

([
∂h1(x1)

∂x1
, . . . ,

∂h|V|(x|V|)

∂x|V|

])
is the

Jacobian of h(x).
Now, considering u⊤ ProjS⊥(y)− Q̇(x), we arrive that,

u⊤ ProjS⊥(y)− Q̇(x) = u⊤(I − ∂h(x)
∂x ) ProjS⊥(y)

= u⊤ diag
([

1− ∂h1(x1)
∂x1

, 1− ∂h|V|(x|V|)

∂x|V|

])
ProjS⊥(y)

(20)
where we use Ph(x) = ProjS⊥(y).

Then, we show that the spectral norm of the diagonal
matrix I− ∂h(x)

∂x has an upper bound M = max(1, |1−m|).
Recall that the spectral norm of a diagonal matrix is the
largest absolute value of its diagonal entries. We have that
∥I − ∂h(x)

∂x ∥ = maxi |1 − ∂hi(xi)
∂xi

|. Since hi are monotone
passive functions that have bounded derivatives, the relation-
ship 0 ≤ ∂hi(xi)

∂xi
≤ m holds for all xi. Consequently, for all

i, we have 1−m ≤ 1− ∂hi(xi)
∂xi

≤ 1 and |1− ∂hi(xi)
∂xi

| ≤M .
Now, apply the Cauchy-Schwarz inequality to (20),

u⊤(I − ∂h(x)
∂x ) ProjS⊥(y) ≤ |u⊤(I − ∂h(x)

∂x ) ProjS⊥(y)|
≤ ∥I − ∂h(x)

∂x ∥2∥u∥22∥ProjS⊥(y)∥22
≤ M

2 ∥u∥22 + M
2 ∥ProjS⊥(y)∥22,

(21)
and we obtain that

u⊤ ProjS⊥(y)− Q̇(x) = u⊤(I − ∂h(x)
∂x ) ProjS⊥(y)

≥ −M
2 ∥u∥22 − M

2 ∥ProjS⊥(y)∥22.
(22)

This completes the proof.
From Proposition 2, Theorem 2 and Proposition 3, we can

derive the sufficient conditions for (Υ,Π,D, w) to achieve
output agreement.

Corollary 1: Consider a network system (Υ,Π,D, w)
where D is a digraph with a globally reachable node.
Assume that the edge controllers are input-output passive.
Let max(Do) be the maximal out-degree of graph D. For the

agent relation Ha with characterization (18), if there exists
a controller relation Hc with characterization (14) where
α ≥ max(Do)

M
2 and γλ2 >

M
2 , then, the network system

achieves output agreement. ▽
This corollary highlights the interplay between the pas-

sivity properties of controllers and the structural properties
of the graph (e.g., max(Do) and λ2) in shaping the out-
put agreement behavior of networked systems (Υ,Π,D, w).
Consequently, by carefully designing both the graph topol-
ogy and the controllers, we can guarantee that the system
achieves output agreement.

However, Proposition 3 and Corollary 1 exhibit certain
limitations that warrant attention. First, the lower bound in
(22) holds for all u⊤ ProjS⊥(y) − Q̇, but a tighter bound
on this difference remains to be determined. Additionally,
the conditions provided are merely sufficient for achieving
output consensus. Identifying a passivity-based condition that
is both sufficient and necessary is left as an open problem
for future research.

V. CASE STUDIES

In this section, we first leverage the analysis approach
introduced in the previous section to provide a submanifold-
based explanation of the consensus behaviors of linear
consensus protocols. Subsequently, we analyze the output
agreement problem for a heterogeneous network system.

A. Linear consensus protocol for directed networks

We recall that the linear consensus protocol for directed
networks [4] discusses the consensus behavior of a group of
integrators Υl

i that interact over a directed graph G with edge
controllers Πl

k, where

Υl
i : ẋi = ui, yi = xi, Πl

k : µk = ζk. (23)

In this case, assume that the graph is directed with a globally
reachable node. The protocol is denoted by (Υl,Πl,D, w),
and this system satisfies the relation given in (3).

Integrators are passive [15, Example 6.2], and satisfy the
conditions to apply Proposition 3. Thus, to establish the
S-constrained passivity, we choose the manifold-constained
storage function as Q(x) = 1

2x
⊤Px with P = (I− 1

|V|11⊤).
Then, the agent relation Ha satisfies,

u⊤ ProjS⊥(y) ≥ Q̇(x). (24)

Recall that the edge controllers Πl
k are output strictly

passive (i.e., also input-output passive). Then, the passivity-
based inequality of the controller relation Hc satisfies,

z⊤ ProjS⊥(y) = z⊤y = µ⊤E⊤y = µ⊤ζ = ∥µ∥22
= ∥ζ∥22 = y⊤Ly ≥ λ2∥ProjS⊥(y)∥22,

(25)

where λ2 > 0 because D contains a globally reachable
node [13, Theoreom 6.6, Corollart 6.8]. Then, by applying
Corollary 1, the linear consensus protocol (Υl,Πl,D, w)
achieves output agreement. This aligns with the consensus
behavior of this protocol [4].



B. A heterogeneous network system
Consider a networked system of 5 SISO agents Υi with

edge controllers Πl
k : µk = bζk. The output equations for Υi

are y1 = x1, y2 = x2, y3 = tanh(x3), y4 = tanh(x4), and
y5 = x5

(1+|x5|) . These output functions hi’s are monotonically
passive with derivatives upper-bounded by 1, yielding M = 1
in (18) by Proposition 3. The agents are interconnected over
the strongly connected digraph shown in Fig. 2a. The graph
has λ2 = 3 and maximal out-degree max(Do) = 2. Also,
the corresponding controller relation Hc satisfies,

z⊤ ProjS⊥(y) = bµ⊤ζ = ab∥ζ∥22 + 1−a
b ∥µ∥22, 0 < a < 1.

By Corollary 1, achieving output agreement requires ab ≥
1 and λ2

1−a
b > 1

2 . Fig. 2b shows illustrates the output
trajectories of each agent with b = 2, a = 1

2 , and ini-
tial conditions x(0) = [0.23,−0.2, 1,−2.4, 0]⊤. Since both
conditions are satisfied, the heterogeneous networked system
achieves output consensus with agreement value 0.1776.

1

2 3

4 5

(a) (b)

Fig. 2: The output agreement for the heterogeneous network.
(a) The underlying digraph. (b) The output of each agent.

1

2

3

4

5

(a) (b)

Fig. 3: A negative example of the output agreement for the
heterogeneous network. (a) The underlying digraph. (b) The
output of each agent.

We now present an example to demonstrate that Corollary
1 provides only sufficient conditions for output agreement.
Consider the same agents and controllers interconnected
over the digraph shown in Fig. 3a, where λ2 = 0.382 and
max(Do) = 1. For this graph, although no values of a and
b satisfy both ab ≥ 1

2 and λ2
1−a
b > 1

2 , the network still
achieves output consensus with agreement value 0.23.

VI. CONCLUDING REMARKS
In this work, we present a passivity-based analysis for the

output agreement problem of network systems over directed

graphs. First, we establish connections between passivity
properties of system relations and the passivity of individ-
ual agents (controllers), revealing fundamental limitations.
To address these limitations, we introduce submanifold-
constrained passivity and develop a compensation theorem
that guarantees output agreement. Finally, we apply the new
theorem to analyze network systems composed of passive
agents. In future work, we aim to establish passivity-based
sufficient and necessary conditions for network systems
to achieve output agreement, and extend the S-passivity
(Definition 3) to arbitrary embedded submanifold.
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APPENDIX

Proof of Proposition 1

According to [12, Proposition 5], we have
u⊤ ProjS⊥(y) ≥

∑|V|
i=1 V̇i + δ∥u∥22 + ε∥y∥22 − ∥u∥2∥y∥2.

Apply Young’s inequality (i.e., ab ≤ a2+b2

2 for nonnegative
a, b) to ∥u∥2∥y∥2, and we complete the proof.



Proof of Proposition 2

To establish the relationship between controllers’ passivity
and the characterization of the controller relation Hc, we
need the following statement.

Proposition 4: Consider a digraph D with a globally
reachable node. Let G = (V,E) be the undirected counterpart
of D and L(G) be the graph Laplacian of graph G. Then,
for any vectors y ∈ R|V|, the following inequality holds,

λ2∥ProjS⊥(y)∥22 ≤ y⊤L(G)y ≤ λ|V|∥ProjS⊥(y)∥22, (26)

where λ2 and λ|V| denote the second smallest and the largest
eigenvalues of L(G), respectively. ▽

Proof: According to the given conditions, G is a
connected graph. So, let 0 = λ1 < λ2 ≤ . . . ≤ λ|V|
be the eigenvalues of L(G) and {v1, v2, . . . , v|V|} be the
corresponding orthogonal set of eigenvectors. Note that these
eigenvectors also form an orthogonal basis of R|V| where
the vector v1 = 1√

n
1n spans the agreement subspace S :=

span{1n}, while {v2, . . . , vn} is an orthonormal basis for
the disagreement subspace S⊥. Because L(G) is symmetric,

it has the orthogonal decomposition, i.e., L(G) =
|V|∑
i=1

λiviv
⊤
i .

Any vectors y ∈ R|V|, can likewise be decomposed as
y = 1

|V|11⊤y + m, where m = ProjS⊥(y) and y⊤(I −
1
|V|11⊤)y = m⊤m. Also, since L(G)1|V| = 0|V|, it follows
that y⊤L(G)y = m⊤L(G)m. Note that the vector m can

also be represented by the eigenbasis, i.e., m =
|V|∑
i=2

bivi.

Then, we have

y⊤L(G)y = m⊤L(G)m =

 |V|∑
i=2

bivi

⊤

L(G)

 |V|∑
i=2

bivi


=

|V|∑
i=2

|V|∑
j=2

bibjv
⊤
i L(G)vj =

|V|∑
i=2

b2iλiv
⊤
i vi =

|V|∑
i=2

λib
2
i ,

where we use L(G)vj = λjvj , v⊤i vj = 0 and v⊤i vi = 1.
Apply Rayleigh quotient,

y⊤L(G)y

Proj⊤
S⊥ (y) Proj

S⊥ (y)
= m⊤L(G)m

m⊤m
=

∑|V|
i=2 λib

2
i∑|V|

i=2 b2i
,

where we arrive at our desired result.

Now, we are ready to prove Proposition 2.

Let G and L(G) be defined as above, and E be the
incidence matrix of the graph D. Sum up the passivity

inequalities of all the controllers,

z⊤ ProjS⊥(y) = µ⊤E⊤ ProjS⊥(y)

= µ⊤E⊤y − 1
|V|µ

⊤E⊤1|V|1
⊤
|V|y

= µ⊤E⊤y = µ⊤ζ ≥
|E|∑
k=1

Ẇk +

|E|∑
k=1

αkµ
2
k

+

|E|∑
k=1

γkζ
2
k ≥

|E|∑
k=1

Ẇk + α∥µ∥22 + γ∥ζ∥22

=

|E|∑
k=1

Ẇk + α∥µ∥22 + γy⊤L(G)y,

(27)
where we use the properties of incidence matrix, i.e.,
E⊤1|V| = 0|E| and EE⊤ = L(G).

Proof of Corollary 1

We start by showing that the trajectories of (Υ,Π,G, w)
are bounded. First, the forward path of Figure 1b (from u
to y) is passive because of the passive agents Υi. And the
storage function for Υ can be chosen as

∑|V|
i=1

∫ xi

0
hi(s)ds,

which is radially unbounded. Under the given assumptions,
the feedback path of Figure 1b (from y to z) is also passive.
Consequently, it satisfies a global dissipation inequality,
where the rate of change of the storage function is bounded
by the supply rate. The storage function can be chosen to
be radially unbounded, so the trajectories must be bounded.
It follows that u(t), y(t), ζ(t) and µ(t) are bounded. Thus,
the agent relation Ha and the controller relations Hc are
bounded.

For inequality (18), since u = −Boµ and −∥u∥22 ≥
−max(Do)∥µ∥22 [12], it follows that,

u⊤ ProjS⊥(y) ≥ Q̇(x)− max(Do)M
2

∥µ∥22 − M
2
∥ProjS⊥(y)∥22.

(28)
Then, the controller relation Hc with α ≥ max(Do)

M
2

and γλ2 >
M
2 compensate for the negativity terms in (28).

Now, we have established the conditions needed to apply
Theorem 2. This completes our proof.


