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Abstract

This paper studies the prescribed-time relative motion control problem of spacecraft formation flying under input saturation. Using
prescribed-time theory, a prescribed-time sliding mode is designed such that the states on the sliding mode converge to the equilibrium in
the prescribed time. Based on the prescribed-time sliding mode, a prescribed-time relative motion tracking controller is developed, which
guarantees fast formation maneuvers with feasible fuel consumption and strong robustness under input saturation. Furthermore, a sim-
ulation example is carried out to verify the effectiveness of the proposed controller.
� 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar
technologies.

Keywords: Spacecraft formation flying; Distributed control; Prescribed-time control; Input saturation
1. Introduction

Spacecraft formation flying (SFF) has attracted much
attention for its diverse applications in many space mis-
sions, such as, synthetic aperture radar interferometry
(Rosen et al., 2000) and terrestrial planet finding
(Lawson, 2001). Compared with a monolithic spacecraft,
SFF has the advantages of added robustness, lower cost,
and higher feasibility (Hu and Shi, 2020). In general, rela-
tive motion control methods for SFF can be classified into
two main types: impulsive control and continuous control.
The impulsive control methods use chemical thrusters and
generate control commands to match the instantaneous
orbital elements to the desired orbital elements (Schaub
et al., 2000; Pini Gurfil, 2007). In the past decades, the
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impulsive control methods are mainly based on the Carte-
sian relative spacecraft position components (Gurfil, 2005)
or hybrid classical elements-relative position feedback
(Schaub and Alfriend, 2002). Chernick and D’Amico
(2021) proposed an optimal impulsive control method to
achieve spacecraft relative orbit reconfiguration by using
reachable set theory. Continuous control methods rely on
low-thrust electric propulsion and can maintain small
steady-state errors under orbital perturbations. In light of
this, numerous results using continuous control of SFF
have appeared in recent years (Zhang and Song, 2012;
Lee et al., 2015; Hu et al., 2015; Sun et al., 2018; Di
Mauro et al., 2019; Huang and Jia, 2019; Hu and Shi,
2020). Sun et al. (2018) proposed a neural-network-based
spacecraft formation control law using aerodynamics
forces.

However, the above-mentioned results can only ensure
asymptotic stability of SFF system. To achieve faster
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convergence rates and better robustness, finite-time control
methods (FTCM) and fixed-time control methods
(DTCM) have been developed. FTCM guarantees that sys-
tem states converge to the equilibrium in a finite time
dependent on the initial system states, while DTCM guar-
antees that system states converge to the equilibrium in a
finite time independent on the initial system states. Thus,
DTCM can be regarded as an extension of FTCM. Wang
et al. in (Wang et al., 2012) proposed a finite-time con-
troller for SFF by using dual-quaternion. Hu et al. in
(Hu and Zhang, 2015) studied finite-time attitude coordi-
nated control for SFF subjected to input saturation. Ran
et al. in (Ran et al., 2017) proposed two finite-time conver-
gent coordinated formation controllers for SFF under
directed communication topology. In (Zhuang et al.,
2021a), a fixed-time coordinated tracking control was
employed for SFF to avoid collision.

It should be pointed out that the upper-bound of con-
vergence time of DTCM is calculated by control parame-
ters. It is not easy to choose these parameters when the
upper-bound for the convergence time is given. Further-
more, the upper-bound time is very conservative and not
the least upper-bound for the convergence time. To deal
with these problems, the prescribed-time control method
(PTCM) is developed, where the upper-bound of conver-
gence time is designed by users and the user-designed time
is the least upper-bound of convergence time. In light of
this, some results in the field of multi-agent systems
(Anguiano-Gijón et al., 2019; Wang et al., 2018; Chen
et al., 2020; Ma et al., 2023), attitude control for spacecraft
(Xiao et al., 2021; Xie et al., 2022) and attitude consensus
control for SSF (Xu et al., 2021b; Xu et al., 2021a) have
been presented. The results in (Xu et al., 2021b; Xu
et al., 2021a) deal with the attitude consensus problem,
but do not solve the relative motion control problem. In
attitude consensus, the spacecraft collaborate with each
other to align only their attitude, while the relative motion
control problem aims to control the positions of the space-
craft relative to each other. In this regard, attitude consen-
sus and relative motion control require different control
strategies. The attitude consensus strategies can not be
directly applied to relative motion control problem. To
the best of our knowledge, there are few works about the
prescribed-time stability for the relative motion control
problem of SFF. Furthermore, low-thrust electric propul-
sion has been used in many space missions (such as deep
space exploration and station-keeping for constellations)
due to its high specific impulse and high maneuverability.
However, low-thrust electric propulsion used in continuous
control of SFF can only provide limited control force.
Thus, it is necessary to take the control input saturation
into consideration.

Motivated by the above discussion, we study the
prescribed-time relative motion control problem of SFF
under input saturation. Under the mild assumption that
the relative sensor topology contains a directed spanning
tree, we develop a novel prescribed-time sliding mode con-
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trol. Compared with linear sliding mode or terminal sliding
mode, the proposed sliding mode enables the states on the
sliding mode to converge to the equilibrium in a user-
specified finite-time. Then, based on the prescribed-time
sliding mode, a distributed prescribed-time relative motion
controller is proposed to enable relative motion coordi-
nated tracking in a user-specified finite-time. In contrast
to fixed-time spacecraft formation control method in
Zhuang et al. (2021a), the proposed controller is dis-
tributed and uses the inter-spacecraft relative measure-
ments to achieve the formation control such that only a
subset of spacecraft in the formation need to measure the
relative position and velocity with respect to (w.r.t.) the ref-
erence spacecraft. Furthermore, the upper-bound of con-
vergence time is designed by users and more accurate in
the proposed control scheme. The proposed controller also
takes the control input saturation into consideration, and a
rigorous proof is presented to verify that the tracking
errors of the system states converge to a bounded region
in a prescribed time under the saturation controller.
Finally, we carry out a simulation to verify the effectiveness
of the proposed controller.

Notions: ar = semimajor axis of reference spacecraft, er
= eccentricity of reference spacecraft, ir = inclination of
reference spacecraft, xr = argument of periapsis of refer-
ence spacecraft, Xr = longitude of the ascending node of
reference spacecraft, hr = true anomaly of reference space-
craft, F c = local-vertical local horizon (LVLH) frame, F I =
Earth centered inertial (ECI) frame, ri = position of space-
craft i in ECI frame, rr = position of reference spacecraft in
ECI frame, qi = position of spacecraft i in LVLH frame,
qI
i = desired position of spacecraft i in LVLH frame, ~qi=

qi � qI
i , qij= qi � qj, qI

ij= qI
i � qI

j , ~qij= qij � qI
ij , nr=

mean angular velocity of reference spacecraft, l= gravita-
tional constant of Earth, mi= mass of spacecraft i, Rþ= set
of positive real number, ð�Þr = value for reference space-
craft, ð�Þi = value for spacecraft i, ð�Þij = value for space-

craft i with respect to spacecraft j.
2. Preliminaries

In this section, we provide some basic preliminaries
from coordinate frames, spacecraft relative motion dynam-
ical systems and graph theory that will be needed for this
work.
2.1. Coordinate frames

As shown in Fig. 1, two frames, namely the local-vertical
local horizon (LVLH) frame F c ¼ fxc; yc; zcg and the Earth
Centered Inertial (ECI) frame F I ¼ fxI ; yI ; zIg , are intro-
duced to describe the motion of spacecraft in this paper.
The origins of ECI and LVLH frames are set on the Earth
center and a reference (leader) spacecraft, respectively. In
the LVLH frames, the xc axis points radially outward,
the zc axis points to the positive normal direction of the ref-
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Fig. 1. Graphical description of the SFF system.
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erence spacecraft orbit, and the yc axis completes the setup
to form a Cartesian coordinate frame in the xc-yc-zc order.
2.2. Spacecraft dynamics

In this paper, the spacecraft formation consists of a ref-
erence (leader) spacecraft and n follower spacecrafts. All
follower spacecraft need to maintain their relative motion
with respect to the reference spacecraft. We define

qi ¼ ½xi; yi; zi�T as the relative position of the ith follower
spacecraft, w.r.t., the reference spacecraft in the LVLH
frame. The relative motion dynamics of the ith follower
spacecraft, w.r.t., the reference spacecraft in LVLH frame
are given by (Hu and Shi, 2020; Zhuang et al., 2021b)

mi€qi þ C i _qi þDiqi þ ni ¼ C f ið Þ þ d i; ð1Þ

C i ¼ 2mi

0 � _hr 0
_hr 0 0

0 0 0

2
64

3
75; ð2Þ

Di ¼ mi

l= rik k3 � _h2r �€hr 0

€hr l= rik k3 � _h2r 0

0 0 l= rik k3

2
64

3
75; ð3Þ

ni ¼ lmi rrk k= rik k3 � 1= rrk k2; 0; 0
h iT

; ð4Þ

where C f ið Þ ¼ sat f ið Þ is the applied control force,

f i ¼ f i;1; f i;2; f i;3

� �T 2 R3 is the command control force vec-

tor, sat f i;k

� � ¼ sign f i;k

� ��min jf i;kj; f M

� �
; k ¼ 1; 2; 3, with

f M being the maximum allowable force, and d i 2 R3 is the
external disturbance vector. The evolution of the true
anomaly hr is given by (Hu and Shi, 2020)

_hr ¼ nr 1þ er cos hrð Þð Þ
1� e2r
� �3=2 ; ð5Þ

€hr ¼ �2n2rer 1þ er cos hrð Þð Þ3 sin hrð Þ
1� e2r
� �3 ; ð6Þ
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where nr ¼
ffiffiffiffiffiffiffiffiffiffi
l=a3r

p
is the mean angular velocity of the ref-

erence spacecraft. Define qI
i as the desired relative position

of the spacecraft i. Then, the relative position tracking
error is defined as

~qi ¼ qi � qI
i : ð7Þ

As is shown in Fig. 1, the relative position between space-
craft i and spacecraft j is defined as qij ¼ qi � qj. The cor-

responding desired relative position of qij is defined as

qI
ij ¼ qI

i � qI
j . Then, the relative position tracking error

is defined as

~qij ¼ qij � qI
ij : ð8Þ

The position tracking error dynamics is defined as follows
(Zhuang et al., 2021b).

mi
€~qi þ gi þ mi€q

I
i ¼ f i þ d i; ð9Þ

where gi ¼ C i
_~qi þDi~qi þ C i _qI

i þDiq
I
i þ ni.

2.3. Graph theory

A digraph G ¼ V ;E;Af g is utilized to describe the sen-
sor network among follower spacecraft in this paper, where
V ¼ 1; 2; . . . ; nf g is the set of follower spacecraft,

E# V � V denotes the set of edges, and A ¼ aij
� � 2 Rn�n

represents the weighted adjacency matrix. The weighted
parameter aij > 0 if the spacecraft i can measure the rela-
tive position qij and relative velocity _qij, otherwise,

aij ¼ 0. The set Ni þ
D fj 2 V : ði; jÞ 2 Eg denotes the set of

neighbors of the spacecraft i. The Laplacian matrix

L ¼ lij
� �

n�n
of the digraph G is defined as lij ¼

Pn
j¼1;j–iaij

if i ¼ j and lij ¼ �aij if i– j.
Denote the reference spacecraft as the spacecraft 0. The

weighted matrix A0 ¼ diagfai0g 2 Rn�n is a matrix with
ai0 > 0 if the spacecraft i can measure the relative position
qi and relative velocity _qi, and ai0 ¼ 0 otherwise. The
digraph �G ¼ �V ; �Ef g is defined to describe the sensor net-
work among the reference and follower spacecraft, where
�V ¼ 0; 1; . . . ; nf g and �E# �V � �V .

Lemma 1 ((Shang and Ye, 2017)). If the digraph �G has a
directed spanning tree with the reference spacecraft being
the root, then the matrix H ¼ Lþ A0 is a non-singular
matrix.
2.4. Finite-time and prescribed-time stability

In this section, some definitions and lemmas related to
finite-time stability theory are introduced to facilitate the
design of the control scheme. Consider the system

_xðtÞ ¼ F xðtÞð Þ; xðtÞ 2 Rn; ð10Þ
where F : Rn ! Rn is a nonlinear map and F 0ð Þ ¼ 0. The
time variable t is defined on the interval ½0;1Þ.



Fig. 2. Control structure of the spacecraft i.
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Definition 1 (Finite-Time Stable (Ni et al., 2017)). The
equilibrium of the system (10) is said to be globally finite-

time stable if any solution xðtÞ of (10) reaches the
equilibrium in some finite time, i.e.,
xðtÞ ¼ 0; 8t P T x 0ð Þð Þ, where T : Rn ! Rþ is called
settling-time function.

Definition 2 (Prescribed-Time Stable (PTS) (Xu et al.,

2021b; Sánchez-Torres et al., 2018)). The equilibrium of
the system (10) is said to be globally prescribed-time stable
if it is finite-time stable and the settling-time function
T x 0ð Þð Þ is bounded by a prescribed time T c for any
x 0ð Þ 2 Rn, that is, T x 0ð Þð Þ 6 T c; 8x 0ð Þ 2 Rn.

Lemma 2 ((Anguiano-Gijón et al., 2019; Xu et al., 2021b)).
If there is a Lyapunov function V : Rn ! Rþ [ 0f g that
satisfies

_V xð Þ 6 � p
vT

V 1�v
2 xð Þ þ V 1þv

2 xð Þ� � ð11Þ

where T is a prescribed time and 0 < v < 1, then the origin
of system (10) is globally prescribed-time stable with the
least upper-bound of settling time being T .

Lemma 3 ((Sui et al., 2019; Zou and Fan, 2020)). Let
xi 2 R; i ¼ 1; . . . ; n. Then

Xn
i¼1

jxij
 !a

6
Xn
i¼1

jxija 6 n1�a
Xn
i¼1

jxij
 !a

; if a 2 ð0; 1�; ð12Þ

and

Xn
i¼1

jxij
 !a

P
Xn
i¼1

jxija P n1�a
Xn
i¼1

jxij
 !a

; if a 2 ð1;1Þ:

ð13Þ
Fig. 3. Inter-spacecraft relative sensor network of the SFF System.
3. Main results

In this section, a prescribed-time sliding-mode is first
designed such that the position tracking error ~qiand the

velocity tracking error _~qi can converge to the origin in
a prescribed time on the sliding-mode. Then, based on
the prescribed-time sliding-mode, we propose a dis-
tributed prescribed-time formation control law and ana-
lyze the prescribed-time stability of the system. The
control structure is shown in Fig. 2.

Fig. 3 shows the inter-spacecraft relative sensor network
of SFF system. The spacecraft in the formation use the
onboard measurement equipments, such as, Lidar and
optical image sensors, to measure the relative positions
and velocities. Compared with the decentralized spacecraft
formation control schemes in (Hu and Shi, 2020; Zhuang
et al., 2021b), it is not necessary for each spacecraft to mea-
sure the relative position and velocity, w.r.t., the reference
spacecraft, i.e., qi and _qi, in the proposed control scheme.
Only one or several spacecraft need to measure these.
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The control problem we aim to solve in this section is
stated as follows:

Problem 1. Design control inputs f i for the input-
saturation spacecraft formation system described by (1)
using the directed inter-spacecraft sensor network such that

qi and _qi converge to the desired positions qIi and velocities

_qIi , respectively, in a prescribed time T, that is,

lim
t!T

qi ¼ qI
i andlimt!T

_qi ¼ _qI
i ; i ¼ 1; . . . ; n:

To address Problem 1, the following assumptions are
needed.

Assumption 1. The second derivatives of the reference

relative positions €qIi are bounded by k€qIi k 6 cdq, where
cdq > 0 is a known constant.
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The spacecraft in the formation need to track the refer-
ence relative position qI

i and reference relative velocity _qI
i .

If €qI
i is very large or even infinity, it is hard to design a

bounded control input to track the reference relative veloc-
ity _qI

i . Thus, Assumption 1 is reasonable and necessary.

Assumption 2. The disturbances d i are bounded by
kd ik 6 cd , where cd > 0 is a known constant.

In practice, the spacecraft in Earth orbit suffers from
many types of disturbances, such as, atmospheric drag,
third body interaction and the non-spherical shape of the
earth perturbations. These disturbances are actually
bounded.

Assumption 3. The digraph �G has a directed spanning tree
with the reference spacecraft being the root.

In Assumption 3, it is not necessary for all spacecraft to
have access to the reference spacecraft. The desired forma-
tion can be tracked when one or several spacecraft can
measure the relative positions w.r.t., the reference space-
craft. Furthermore, Assumption 3 is used in the Lemma
1. Without this assumption, it is hard to guarantee all
spacecraft to track the desired formation just by measuring
the relative positions w.r.t., their neighboring spacecraft.

3.1. Prescribed-time sliding-mode design

In this section, we design a prescribed-time sliding-mode
and prove that the states on the sliding mode converge to
equilibrium point in prescribed time. To facilitate the con-
troller design, we define a composed position tracking error
vi including the relative position tracking errors with
respect to all its neighbors as

vi ¼ ai0~qi þ
X
j2Ni

aij qij � qI
ij

	 

¼ ai0~qi þ

X
j2Ni

aij ~qi � ~qj

� �
:

ð14Þ

The composed velocity tracking error _vi is defined as

_vi ¼ ai0 _~qi þ
X
j2Ni

aij _qij � _qI
ij

	 


¼ ai0 _~qi þ
X
j2Ni

aij _~qi � _~qj

	 

:

ð15Þ

Define

v ¼ vT1 ; . . . ; v
T
n

� �T
; _v ¼ _vT1 ; . . . ; _v

T
n

� �T
; ~q ¼ ~qT

1 ; . . . ; ~q
T
n

� �T
and

_~q ¼ _~qT
1 ; . . . ;

_~qT
n

h iT
. Then, we have

v ¼ H � I3ð Þ~q ¼ �H~q; ð16Þ
and

_v ¼ H � I3ð Þ _~q ¼ �H _~q; ð17Þ
where �H ¼ H � I 3.

A prescribed-time sliding-mode is designed as follows.
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si ¼ _vi þ ksvi þ
p

2vsT s
V �vs=2

vi
þ V vs=2

vi

	 

vi; ð18Þ

where ks > 0 and 0 < vs < 1 are some constants,
V vi ¼ vTi vi=2, and T s is the prescribed time.

Theorem 1. If the sliding mode si satisfies ksik 6 D with D
being a positive constant, the errors vi and _vi converge to
the region

ðvi; _viÞj vik k 6 l1D; _vik k 6 Df

þksl1Dþ pffiffi
2

p
vsT s

ðl1DÞ2
2

	 
1�vs
2 þ ðl1DÞ2

2

	 
1þvs
2

� � ð19Þ

in the prescribed time T s, where l1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e 2ks � eð Þp

, and e
is a prescribed positive constant.

Proof. The candidate Lyapunov function is chosen as
V vi ¼ vTi vi=2, and its time derivative is

_V vi ¼ vTi _vi

¼ vTi si � ksvi � p
2vsT s

V �vs=2
vi

þ V vs=2
vi

	 

vi

h i
¼ vTi si � ksvTi vi � p

vsT s
V 1�vs=2

vi
þ V 1þvs=2

vi

	 

:

ð20Þ

Note that

vTi si 6 e
2
vik k2 þ 1

2e sik k2

6 e
2
vik k2 þ D2

2e ;
ð21Þ

where e > 0 is a constant. Then, substituting (21) into (20)
yields

_V vi 6 �ð2ks � eÞV vi þ D2

2e � p
vsT s

V 1�vs=2
vi

þ V 1þvs=2
vi

	 

¼ �ð2ks � eÞ V vi � D2

2eð2ks�eÞ

h i
� p

vsT s
V 1�vs=2

vi
þ V 1þvs=2

vi

	 

:

ð22Þ

If vik k P D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e 2ks � eð Þp ¼ l1D, we have

_V vi 6 � p
vsT s

V 1�vs=2
vi

þ V 1þvs=2
vi

	 

: ð23Þ

According to Lemma 2, it follows that vi converges to the
region vik k 6 l1Din the time T s. If vik k 6 l1D, the conclu-
sion also holds.

When vik k 6 l1D, it follows from (18) that

_vik k ¼ si � ksvi � p
2vsT s

V �vs=2
vi

þ V vs=2
vi

	 

vi

��� ���
6 sik k þ ks vik k þ pffiffi

2
p

vsT s
V ð1�vsÞ=2

vi
þ V ð1þvsÞ=2

vi

	 

6 Dþ ksl1D

þ pffiffi
2

p
vsT s

ðl1DÞ2
2

	 
1�vs
2 þ ðl1DÞ2

2

	 
1þvs
2

� �
:

ð24Þ

Therefore, the errors vi and _vi converge to the region (19)
in the time T s if si 6 D.

Corollary 1. On the sliding mode si ¼ 0, the errors vi and _vi
converge to the origin in the prescribed time T s.
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3.2. Prescribed-time formation controller design

In this section, based on the prescribed-time sliding
mode in the last section, we proposed a distributed coordi-
nated control law to guarantee that the state errors ~qi and
_~qi converge to a bounded region in a prescribed time.

From (18), the time derivative of si is derived as

_si ¼ €vi þ hi; ð25Þ

hi ¼ ks _vi þ p
2vsT s

V �vs=2
vi

þ V vs=2
vi

	 

_vi

þ p
4T s

V vs=2�1
vi

� V �1�vs=2
vi

	 

vTi _vi
� �

vi:
ð26Þ

A distributed coordinated control law is proposed as

f i ¼ mi ai0 þ
X
i2Ni

aij

 !�1 X
i2Ni

aij
mj

f j � gj � f aj
� � 

�hi � kc1si � pnvc=2

2vcT c
V �vc=2

si þ V vc=2
si

	 

si þ f robust;i



þf ai þ gi;

ð27Þ

where 0 < vc < 1 and kc1 > 0 are some constants, n ¼ jV j is
the number of spacecraft, V si ¼ sTi si=2, and T c is the pre-
scribed time. The term f robust;i is used to suppress the exter-
nal disturbances, which is defined as

f robust;i ¼ �kc2
si

ksik þ d
; ð28Þ

where kc2 > 0 and d > 0 are constants. The adaptive law f ai
is used to compensate the difference between the command
control force f i and applied control force C f ið Þ, which is
defined as

_f ai ¼ �ka1f ai � ka2signðf aiÞ þ Df i ð29Þ
where ka1 and ka2 are positive constants, and
Df i ¼ C f ið Þ � f i.

Remark 1. It can be observed from (29) that f ai converges
to the solution of the Eq. (29) and the solution will be
Df i=ka1 if ka2 is chosen as 0. f ai can be used to adjust the
difference between the command control force f i and
applied control force C f ið Þand makes the difference not so
significant.
Theorem 2. Consider a spacecraft formation system
described by (1). If Assumptions 1–3 hold, and the initial

states satisfy qð0Þk k þ _qð0Þk k þ ~qð0Þk k þ _~qð0Þ�� �� 6 V M

with V Mbeing a constant, the errors ~q and _~q converge to
the following region

k~qk 6 nl1csk �H�1k;
k _~qk 6 nk �H�1k cs þ ksl1csð

þ pffiffi
2

p
vsT s

ðl1csÞ2
2

	 
1�vs
2 þ ðl1csÞ2

2

	 
1þvs
2

� ��
;

8>>><
>>>:
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in the prescribed time T s þ T c under the control law in

(53)–(29), where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kc2nd

kc1�k �Hm�1k
2�1

r
and �1 is a user-designed

positive constant.

Proof. To facilitate the proof, we introduce the following
notations,

s ¼ sT1 ; . . . ; s
T
n

� �T
; h ¼ hT1 ; . . . ; h

T
n

� �T
;

g ¼ gT
1 ; . . . ; g

T
n

� �T
; f ¼ f T1 ; . . . ; f

T
n

� �T
;

Df ¼ Df T1 ; . . . ;Df
T
n

� �T
; d ¼ dT

1 ; . . . ; d
T
n

� �T
;

m ¼ diag m1I3; . . . ;mnI3½ �; €qI ¼ €qI
1

� �T
; . . . ; €qI

n

� �Th iT
;

f a ¼ f T
a;1; . . . ; f

T
a;n

h iT
; f robust ¼ f T

robust;1; . . . ; f
T
robust;n

h iT
:

ð30Þ
Eq. (53) can be rewritten as

f ¼ m A0 þ Dð Þ�1 � I 3

h i
A� I3ð Þm�1 f � g � f að Þ½

�h� kc1s� pnvc=2

2vcT c
diag V �vc=2

si þ V vc=2
si

n o
� I3

	 

s

þf robust� þ g þ f a;

ð31Þ

where D ¼ Lþ A is the in-degree matrix of the sensing
graph. It follows from (31) that

f ¼ I 3n �m A0 þ Dð Þ�1A
	 


� I3

	 

m�1

h i�1

�m A0 þ Dð Þ�1 � I3

	 

�h� kc1s½

� pnvc=2

2vcT c
diag V �vc=2

si þ V vc=2
si

n o
� I3

	 

sþ f robust

i
þg þ f a

¼ m �H�1 � pnvc=2

2vcT c
diag V �vc=2

si þ V vc=2
si

n o
� I3

	 

s

h
�h� kc1sþ f robust� þ g þ f a;

ð32Þ

where the following equality is applied.

I3n �m A0 þ Dð Þ�1A
	 


� I3

	 

m�1

¼ m A0 þ Dð Þ�1 � I3

	 

A0 þ Dð Þ � I3 � A� I3½ �m�1

¼ m A0 þ Dð Þ�1 � I3

	 

�Hm�1:

ð33Þ
Substituting (32) into the time derivative of s yields

_s ¼ �H€~qþ h

¼ �Hm�1 �g þ f þ Df þ dð Þ � �H€qI þ h

¼ �kc1s� pnvc=2

2vcT c
diag V �vc=2

si þ V vc=2
si

n o
� I3

	 

s

þf robust þ �Hm�1 f a þ Df þ dð Þ � �H€qI:

ð34Þ

The proof contains two parts: In the part I, it is proved that
f a is bounded. In the part II, it is proved that s converges to
the region Ds within the time T s þ T c.
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Part I: The candidate Lyapunov function is chosen as
V 1 ¼ 1

2
sT sþ 1

2
f T
a f a: ð35Þ

The time derivative of V 1 is

_V 1 ¼ sT _sþ f T
a
_f a

¼ �kc1ksk2 � pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

þsT f robust þ sT �Hm�1 f a þ Df þ dð Þ
�sT �H€qI � ka1f Ta f a � ka2kf ak þ f TaDf

6 � kc1 � k �Hm�1k
2�1

	 

ksk2

� pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

þ sT f robust

þksk � k �Hk km�1k � kDf þ dk þ k€qIkð Þ
� ka1 � �1k �Hm�1k

2

	 

kf ak2 � ka2kf ak þ f TaDf ;

ð36Þ

where the following inequality is applied.

sT �Hm�1f a 6 ksk � k �Hm�1k � kf ak
6 k �Hm�1k

2�1
ksk2 þ �1k �Hm�1k

2
kf ak2

ð37Þ

where �1 is a positive constant.

Note that sT f robust ¼ f Trobust;1s1; . . . ; f
T
robust;nsn

h iT
, and
f Trobust;isi ¼ �kc2
ksik2

ksik þ d
6 �kc2ksik þ kc2d: ð38Þ

According to Lemma 3, we have

sT f robust ¼
Xn
i¼1

f Trobust;isi

6 �kc2
Xn
i¼1

ksik þ kc2nd

6 �kc2ksk þ kc2nd:

ð39Þ

In this proof, we use the forward-invariant set theory
(Krastanov, 1995) to analyze the system stability. First,
we need to construct the following set.

P ¼ q; _q; ~q; _~q
� �j qk k þ _qk k þ ~qk k þ _~q

�� �� 6 V M

� �
: ð40Þ

In the set P, the control force f is bounded. This implies
that Dfk k 6 cDf , where cDf > 0 is a constant. According

to Assumptions 1 and 2, the reference states €qI
i and exter-

nal disturbance di are bounded by k€qI
i k 6 cdq and

kdik 6 cd , respectively. According to Lemma 3, it follows
that k€qIk 6 ncdq and kdk 6 ncd . From (36) and (39), we
have
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_V 1 6 � kc1 � k �Hm�1k
2�1

	 

ksk2

� pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

þ kc2nd

� kc2 � k �Hk km�1kðcDf þ ncIÞ þ ncdq
� �� �ksk

� ka1 � �1k �Hm�1k
2

	 

kf ak2 � ðka2 � cDf Þkf ak

6 � kc1 � k �Hm�1k
2�1

	 

ksk2

� pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

þ kc2nd

� ka1 � �1k �Hm�1k
2

	 

kf ak2;

ð41Þ

where kc1 � k �Hm�1k
2�1

> 0; kc2 � k �Hk km�1kðcDf þ ncdÞþ
�

ncdqÞ > 0; ka1 � �1k �Hm�1k
2

> 0 and ka2 � cDf > 0.

From (41), we have

_V 1 6 � kc1 � k �Hm�1k
2�1

	 

ksk2 � kc2nd

kc1�k �Hm�1k
2�1

 !

� pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 


� ka1 � �1k �Hm�1k
2

	 

kf ak2;

ð42Þ

or

_V 1 6 � kc1 � k �Hm�1k
2�1

	 

ksk2

� pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 


� ka1 � �1k �Hm�1k
2

	 

kf ak2 � kc2nd

ka1��1k �Hm�1k
2

� �
:

ð43Þ

If ksk P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kc2nd

kc1�k �Hm�1k
2�1

r
or kf ak P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� kc2nd

ka1��1k �Hm�1k
2

r
, cf a , it fol-

lows from (42) and (43) that

_V 1 6 � pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

: ð44Þ

According to Lemma 2, it follows from (44) that s and f a
converge to the following region.
s; f að Þ ksk 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kc2nd

kc1 � k �Hm�1k
2�1

s
; kf ak 6 cf a

������
8<
:

9=
;: ð45Þ

According to the forward-invariant set theory (Krastanov,

1995), q; _q; ~q; _~q
� � 2 P always holds if qð0Þ; _qð0Þ;ð

~qð0Þ; _~qð0Þ� 2 P. Thus, f a is bounded by kf ak 6 cf a if

qð0Þ; _qð0Þ; ~qð0Þ; _~qð0Þ� � 2 P.

Part II: The candidate Lyapunov function is chosen as

V s ¼ 1

2
sT s: ð46Þ



Table 2
Simulation parameters.

Names Values

Parameters of the
sliding mode si

ks ¼ 0:3; vs ¼ 0:1; T s ¼ 20 sec.

Parameters of the
controller f i

kc1 ¼ 0:01; kc2 ¼ 0:0002
vc ¼ 0:5; T c ¼ 500 sec; d ¼ 0:0001.

Parameters of the
adaptive law f ai

ka1 ¼ 1; ka2 ¼ 0:001; va ¼ 0:1; T a ¼ 10 sec.

Maximum allowable
force f M

fM ¼ 5 N.

Mass of spacecraft mi mi ¼ 100 kg, i ¼ 1; 2; 3; 4.

Weighted adjacency
matrix A and A0

A ¼ 0:5 0 1 0 0; 0 0 1 0; 0 0 0 1; 1 0 0 0½ �
A0 ¼ 1 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0½ �
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The time derivative of V s is

_V s ¼ �kc1ksk2 � pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

þsT f robust þ sT �Hm�1 Df þ d þ f að Þ � sT �H€qI

6 � kc1 � k �Hm�1k
2�1

	 

ksk2

� pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

þ kc2nd

� kc2 � cf a � k �Hk km�1kðcDf þ ncdÞ þ ncdq
� �� �ksk

6 � kc1 � k �Hm�1k
2�1

	 

ksk2 � kc2nd

kc1�k �Hm�1k
2�1

 !

� pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

;

ð47Þ
where kc2 � cf a � k �Hk km�1kðcDf þ ncdÞ þ ncdq

� �
> 0.

If ksk P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kc2nd

kc1�k �Hm�1k
2�1

r
¼ cs, then (47) becomes
_V s 6 � pnvc=2

vcT c

Xn
i¼1

V 1�vc=2
si þ V 1þvc=2

si

	 

6 � pnvc=2

vcT c
V 1�vc=2

s þ n�vc=2V 1þvc=2
s

� �
6 � p

vcT c
V 1�vc=2

s þ V 1þvc=2
s

� �
;

ð48Þ

where Lemma 3 is applied. According to Lemma 2, the
sliding mode s converges to the region fsjksk 6 csg in the
Fig. 4. The sensor topology of SFF.

Fig. 5. Tracking trajectories of four spacecraft in three-dimensional space
and on the x-y plane. The initial positions are marked with dots. The
desired trajectories are marked in blue dashed lines.

Table 1
Initial conditions of four spacecraft.

S/C x0(m) y0 (m) z0 (m) _x0 (m/s) _y0 (m/s) _z0(m/s)

No. 1 117.58 -868.74 69.53 �0.479 -0.26 0
No. 2 -431.76 253.62 �213.99 0.140 0.95 0
No. 3 �19.94 899.12 -69.53 0.496 0.04 0
No. 4 437.34 211.97 213.99 0.117 -0.97 0
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Fig. 6. Command control forces f i ¼ f i;x; f i;y ; f i;z

� �T
(53).

Fig. 7. Applied control forces C f ið Þ.
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Fig. 8. Position tracking errors ~qi ¼ ~xi; ~yi;~zi½ �T under the controller (53).
Fig. 9. Velocity tracking errors _~qi ¼ _~xi; _~yi; _~zi

� �T
under the controller (53).
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prescribed time T c. Invoking Theorem 1, it follows that the
state errors vi and _vi converge to the following region

ðvi; _viÞj vik k 6 l1D; _vik k 6 Df

þksl1Dþ pffiffi
2

p
vsT s

ðl1DÞ2
2

	 
1�vs
2 þ ðl1DÞ2

2

	 
1þvs
2

� �

in the prescribed time T s if ksk 6 cs. According to Lemma
1, the matrix �H is invertible when Assumption 3 holds.

Since v ¼ �H~q; _v ¼ �H _~q, and the matrix �H is invertible, we
have
Fig. 10. Performance comparison between the proposed prescribed-time
controller and a finite-time coordinated tracking controller.

Table 3
Total velocity change DV calculations.

S/C-1 S/C-2 S/C-3 S/C-4 Total

DV (m/s) 7.210 10.600 5.553 9.604 32.967

2312
k~qk 6 nl1csk �H�1k;
k _~qk 6 nk �H�1k cs þ ksl1csð

þ pffiffi
2

p
vsT s

ðl1csÞ2
2

	 
1�vs
2 þ ðl1csÞ2

2

	 
1þvs
2

� ��
;

8>>><
>>>:

ð49Þ

Therefore, the errors ~qi and _~qi converge to a bounded
region in the prescribed time T s þ T c under the control
law in (53)–(29).
4. Simulation

In this section, we carry out a simulation example to
illustrate the effectiveness of the proposed prescribed-time
controller. In the simulation example, we consider a four-
spacecraft formation, whose initial conditions in LVLH
frame and sensor topology are given in Table 1 and
Fig. 4, respectively. The reference spacecraft is a visual
Fig. 11. Performance comparison under proposed controller with 0.1 N,
1 N and 5 N maximum allowable force.



Fig. 12. Performance comparison under proposed controller with 1�3N,
1�6N and 1�8N external disturbances.
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spacecraft. Its orbit is an elliptical orbit with ar ¼ 6892:38
km, er ¼ 0:01; ir ¼ 45 deg, xr ¼ 30 deg, Xr ¼ 145 deg,
and hr ¼ 0 deg.

The desired spacecraft formation is chosen as a ring for-

mation, whose initial values qI
i ð0Þ ¼ xIi ð0Þ; yIi ð0Þ; zIi ð0Þ

� �T
(the unit is m) and _qI

i ð0Þ ¼ _xIi ð0Þ; _yIi ð0Þ; _zIi ð0Þ
� �T

(the unit

is m/s) are

xIi ð0Þ ¼ 500 cos pi
2
; _xIi ð0Þ ¼ �500nr sin pi

2
;

yIi ð0Þ ¼ 2 _xIi ð0Þ=nr; _yIi ð0Þ ¼ �2nrxIi ð0Þ;
zIi ð0Þ ¼ 0; _zIi ð0Þ ¼ 0; i ¼ 1; 2; 3; 4:

ð50Þ

The desired trajectories qI
i ¼ xIi ; y

I
i ; z

I
i

� �T
; i ¼ 1; 2; 3; 4, are

chosen as the solution of the linearized relative motion
dynamics in (Pini Gurfil, 2007), which is given by

xIi ðtÞ ¼ � 3xIi ð0Þ þ 2
nr
_yIi ð0Þ

	 

cosðnrtÞ þ _xIi ð0Þ

nr
sinðnrtÞ

þ 2
nr
_yIi ð0Þ þ 4xIi ð0Þ;

yIi ðtÞ ¼ 6 sinðnrtÞ � nrtð ÞxIi ð0Þ þ yIi ð0Þ
þ 2

nr
cosðnrtÞ � 1ð Þ _xIi ð0Þ þ 4 sinðnrtÞ � 3nrtð Þ _yIi ð0Þ

nr
;

zIi ðtÞ ¼ zIi ð0Þ cosðnrtÞ þ _zIi ð0Þ
nr

sinðnrtÞ:
ð51Þ

The corresponding desired trajectories qI
ij can be calculated

by qI
ij ¼ qI

i � qI
j ; ði; jÞ 2 E.

4.1. Simulation of the proposed prescribed-time Coordinated
controller

In this simulation, the simulation parameters are given
in Table 2. The J 2 perturbations and atmospheric drag per-
turbations are both considered. The shape of each space-
craft is different, which yields that there is a little
difference on the atmospheric drag perturbations of each
spacecraft. Thus, the atmospheric drag perturbations of

the spacecraft 1 to 4 are selected as 0:9� 10�8 N,

1� 10�8 N, 1:1� 10�8 N, and 1:2� 10�8 N, respectively.
Fig. 5 shows the tracking trajectories of four spacecraft
in three-dimensional space and on the x-y plane under
the controller (53). The initial positions of the spacecraft
and desired trajectories are marked with dots. Fig. 6 and
7 show the command control forces f i and the applied con-
trol forces C f ið Þ, respectively. The maximum allowable
force f M is chosen as 5 N. Thus, although the command
control forces f i are much larger than 5 N, the applied con-
trol forces C f ið Þ are bounded by 5 N. The position and
velocity tracking errors are shown in Fig. 8 and 9, respec-
tively. It can be observed that the position and velocity
tracking can be achieved in about 250 s, which is smaller
than the prescribed time of 500 s. These results verify the
effectiveness of the proposed controller 53.

The fuel required for the maneuver is related to the total
velocity change DV i, which is calculated by
2313
DV i ¼
Z tf

0

kC f ið Þk
mi

dt; i ¼ 1; . . . ; n: ð52Þ

where tf is the convergence time. In this simulation, the val-
ues of velocity change of the four spacecraft are given in
Table 3. The total velocity change DV of the four space-
craft is about 32.967 m/s and reasonable for practical space
mission.
4.2. Comparison simulation

A comparison simulation is conducted between the pro-
posed prescribed-time controller and a finite-time coordi-
nated tracking controller (Eq. (17) in Hu and Zhang
(2015)) in the revised manuscript. The finite-time coordi-
nated tracking controller is defined as



Fig. 13. Performance comparison under proposed controller with
T C ¼ 500; T C ¼ 1000 and TC ¼ 1500.
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f i ¼ Diqi þ ni þM i€qd þ C i _qi

�kpi
Xn
j¼1

aijsig qi � qj

� �a1 þ pisig qi � qdð Þa1
" #

�kdi
Xn
j¼1

aijsig _qi � _qj

� �a2 þ disig _qi � _qdð Þa2
" # ð53Þ

where M i ¼ miI 3, the control gains a1; a2; kpi; kdi; pi and di

are positive constants. In the comparison simulation, the
control gains in (53) are chosen as a1 ¼ 0:5; a2 ¼ 0:667,
and control gain are set as kp1 ¼ 0:01; kp2 ¼ 0:01; kp3 ¼
0:01; kp4 ¼ 0:01; kd1 ¼ 0:1; kd2 ¼ 0:1; kd3 ¼ 0:1; kd4 ¼ 0:1;
p1 ¼ 10; p2 ¼ 10; p3 ¼ 10; p4 ¼ 10; d1 ¼ 10; d2 ¼ 10; d3 ¼
10; d4 ¼ 10.

A formation-keeping error metric (FKM) and an overall
control effort metric (CEM) are used to measure the perfor-
mance of control scheme. SKM is defined as
2314
FKM ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

vik k2
s

ð54Þ

CEM is defined as

CEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

C f ið Þk k2
s

ð55Þ

Fig. 10 shows the response curves of FKM and CEM of
the two controllers. It can be found that the convergence
rates under proposed prescribed-time controller are faster
that those under the finite-time controller in (53).

We also conduct some simulation examples under the
proposed prescribed-time controller with different parame-
ters. The comparison results are shown in Fig. 11-Fig. 13.
It can be observed from Fig. 11 that the stability of the pro-
posed controller with the maximum allowable force can be
guaranteed, but the convergence speed will decrease as the
maximum allowable force decreases. As shown in Fig. 12,
the steady-state FKM and CEM will increase as the distur-
bances increase. Finally, it can be observed from Fig. 13
that the parameter T c affects deeply the convergence time
of the control system. The convergence time is positively
correlated with the parameter T c.

5. Conclusion

In this paper, we study the prescribed-time relative
motion coordinated control problem for spacecraft forma-
tion flying systems under input saturation. Based on the
prescribed-time theory, a prescribed-time relative motion
coordinated controller is proposed by using the
prescribed-time sliding mode. We theoretically prove that
the proposed controller the prescribed-time stability of
SFF system. Furthermore, a simulation is carried out to
verify the effectiveness of the proposed controller. The sim-
ulation results show that the spacecraft formation flying
systems can achieve fast formation maneuvers with feasible
fuel consumption and strong robustness under the pro-
posed controller.
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