
IFAC PapersOnLine 50-1 (2017) 10136–10141

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.1759

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2017.08.1759 2405-8963

Planar Bearing-only Cyclic Pursuit for
Target Capture

Minh Hoang Trinh ∗, Dwaipayan Mukherjee ∗∗,
Daniel Zelazo ∗∗, Hyo-Sung Ahn ∗

∗ Gwangju Institute of Science and Technology, Gwangju, Republic of
Korea (emails:{trinhhoangminh,hyosung}@gist.ac.kr),

∗∗ Aerospace Engineering, Technion - Israel Institute of Technology,
Haifa, Israel (e-mails: dwaipayan.mukherjee2@gmail.com,

dzelazo@technion.ac.il)

Abstract: This paper investigates the stability of formations around a target using bearing-
only measurements for agents in cyclic pursuit. A control law is proposed for every agent that
uses bearing information of its leader and the target. It is shown that this control law is locally
asymptotically stable with respect to a desired arbitrary formation around the target. A detailed
analysis of the equilibrium formations is also provided. Simulations support the theoretical
results.

Keywords: cyclic pursuit, bearing-only formation, co-operative target tracking

1. INTRODUCTION

Cyclic pursuit is a well known strategy for multi-agent
systems where every agent, indexed i, receives information
about its leader, agent i + 1 (modulo n), and chooses
its control law based on this information. From a graph
theoretic perspective, this means that cyclic pursuit is rep-
resented by a directed cycle graph, whose vertices/nodes
represent the agents and the directed edges depict the
information flow. This is illustrated in Fig. 1. A lot of
work related to the consensus problem, for agents in cyclic
pursuit, such as by Behroozi and Gagnon (1979); Marshall
et al. (2004); Sinha and Ghose (2006); Mukherjee and
Ghose (2015) have been reported. This has further led
to several applications of cyclic pursuit, such as target
capture (Hara et al., 2008; Ma and Hovakimyan, 2013;
Mukherjee and Ghose, 2016), boundary tracking (Mukher-
jee et al., 2014) and vehicular formations (Marshall et al.,
2004) emerging, with encouraging results. This paper
broadly looks at one such problem: co-operative capture of
a target by multi-agent systems. This problem is generally
tackled by having a desired formation of vehicles around
the target (Tanner, 2007; Mukherjee et al., 2017). Thus,
it is imperative to develop strategies that ensure stable
desired formations around the target point. This naturally
leads to the problem of formation control.

Formation control has been a widely investigated subject
in the domain of multi-agent systems such as by Lin et al.
(2005); Oh et al. (2015); Sun et al. (2016) and the refer-
ences therein. The present paper considers a bearing-only
formation control around a target, while the agents are
in cyclic pursuit. Of late, bearing-only formation control
has received significant attention from researchers (Bishop
et al., 2015; Zhao and Zelazo, 2015b,c) since it can be
realized from vision-based techniques (Montijano et al.,
2016). However, most of them consider undirected commu-
nication topology, while using bearing-only information.
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Fig. 1. Information flow in cyclic pursuit.

The formations with directed leader-follower graphs were
studied in (Trinh et al., 2014, 2016). In (Zhao and Zelazo,
2015a) a directed graph was considered for exchanging
bearing information and sufficient conditions for the sta-
bility of formations were derived. However, information
about relative distances were also used therein. Another
approach is based on bearing rigidity in SO(2) and SO(3)
with requirements on inter-agent communication, see (Ze-
lazo et al., 2015; Schiano et al., 2016; Michieletto et al.,
2016). Thus, study of stable bearing-only formation con-
trol over agents communicating via general digraphs is still
an open problem. Towards that end, this paper considers
bearing-only formation control over a specific directed
topology, the cycle digraph. Inspired by the works such as
by (Kim and Sugie, 2007; Hara et al., 2008), the present
paper also casts the problem of target capture as one
of achieving a desired formation around the target using
bearing-only measurements from the target and a leader.

The possibility of achieving any desired formation around
a target, under the cyclic pursuit paradigm, is the main
focus in this work. Thus, the present paper proceeds with
a two-fold objective. On the one hand, a specific directed
information exchange topology (directed cycle) is used to
study the stability of desired formations in R2 and on the
other hand, the cyclic pursuit problem is cast with bearing-
only measurements and tailored for target capture. It
should be noted that formations of bearing-only planar
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Fig. 2. A group consisting of six agents and a stationary
target X.

cyclic pursuit have been recently studied by Trinh et al.
(2017), but no target was considered there.

The rest of the paper is organized in the following manner.
In Section 2, some preliminary results on bearing-only for-
mation are described and the main problem is formulated.
Section 3 presents the main stability results pertaining to
target capture using bearing-only formation control for
agents in planar cyclic pursuit. Simulations in Section 4
vindicate the theoretical developments. Finally, Section 5
concludes the paper.

2. PROBLEM FORMULATION

Consider a group of n-autonomous agents modeled by
single integrator dynamics, as follows:

ṗi = ui. (1)

Here, pi ∈ R2 and ui ∈ R2 are the position and the control
input of agent i, i = 1, . . . , n, respectively. Throughout
this paper the agent indices are in modulo n. Suppose that
there is a stationary targetX, such that ṗX = 0 (see Fig. 2
for an example).

Let p = [pT
1 , . . . ,p

T
n ]

T ∈ R2n denote the vector containing
the co-ordinates of the agents in R2. Further, we define the
displacement vectors zi = pi+1 − pi and ziX = pX − pi,
i = 1, . . . , n. We denote di = ‖zi‖ (diX = ‖ziX‖) as the
distance between agent i and agent i + 1 (the target X,
respectively). Similarly, for j �= i + 1, i − 1, denote the
distance between agents i and j as dij .

The bearing vector gi is defined as the unit vector pointing
from agent i to agent i+ 1, given by:

gi =
pi+1 − pi

‖pi+1 − pi‖
=

zi
‖zi‖

. (2)

Suppose the system of n−agents and the target satisfies
the following assumptions:

Assumption 1. All agents have access to a global reference
frame in R2. The positions of the agents, pi ∈ R2, are
initially non-collocated, i.e., pi(0) �= pj(0), for all 1 ≤ i �=
j ≤ n.

Assumption 2. Each agent i can sense the bearing vectors
with respect to agent i+ 1 and the target X. The sensing
topology of the agents is thus a directed cycle graph with n
nodes and an additional node whose information is sensed
by all other nodes.

Assumption 2 means that the overall graph may be given
as G = (V, E), in which V = {v1, . . . , vn, vX}, |V| = n+ 1,
E = {(vi, vi+1), (vi, vX)|i ∈ V} and |E| = 2n. We define a
feasible formation based on the above assumptions.

Definition 1. The set Bn = {g∗
i ,g

∗
iX}i=1,...,n is called a

feasible bearing vector set if and only if the following
conditions hold for each i = 1, . . . , n:

(1) g∗
i �= ±g∗

i+1, g
∗
i �= ±g∗

iX , g∗
i−1 �= ±g∗

iX , and there
exist d∗i > 0 such that

∑n
i=1 d

∗
i g

∗
i = 0, and

(2) There are d∗iX > 0 such that d∗i g
∗
i − d∗iXg∗

1X +
d∗i+1,Xg∗

i+1,X = 0.

The constraint
∑n

i=1 d
∗
i g

∗
i = 0 ensures that the desired

formation is a closed polygon, since d∗i g
∗
i is the edge

of the desired polygon joining agent i with agent i +
1. Similarly, the desired formation does not include the
possibility of having any three successive agents i − 1
through i + 1 collinear. Neither do we consider desired
formations such that any two successive agents i and i+1
are collinear with the target X. Thus, g∗

i+1,X �= ±g∗
iX .

The second part of Definition 1 implies that every agent
i, its leader i + 1 and the target X form a triangle. For
brevity, we stack all bearing vectors in a column vector
as g = [gT

1 , . . . ,g
T
n ,g

T
1X , . . . , gT

nX ]T ∈ R4n. Similarly, we
stack all the desired bearing vectors in a column vector as
g∗ = [g∗T

1 , . . . ,g∗T
n ,g∗T

1x , . . . ,g
∗T
nx ]

T .

Next, we will restate the definitions of bearing equivalence
and bearing congruency as stated by Zhao and Zelazo
(2015b) because these will aid us in establishing the re-
lationship between bearing congruency and bearing equiv-
alence for our problem. However, to understand these defi-
nitions, we first need to take a closer look at the orthogonal

projection matrix Pv = I2 − vvT

vTv
∈ R2×2, corresponding

to a nonzero vector v ∈ R2. The projection matrix Pv is
symmetric, positive semidefinite, and idempotent, that is,
P2

v = Pv. Moreover, we have Pvv = 0. Thus, the right
null space of Pv is spanned by v.

Definition 2. (Zhao and Zelazo (2015b)). (Bearing Equiv-
alency) Frameworks G(p) and G(p′) are bearing equivalent
if P(pi−pj)(p

′
i − p′

j) = 0 for all (i, j) ∈ E .
Definition 3. (Zhao and Zelazo (2015b)). (Bearing Cong-
ruency) Frameworks G(p) and G(p′) are bearing congruent
if P(pi−pj)(p

′
i − p′

j) = 0 for all i, j ∈ V.
Lemma 1. Given two formations G(p) and G(p′) with the
sensing graph satisfying Assumption 2, if G(p) and G(p′)
are bearing equivalent, they are also bearing congruent.
Moreover, dij/d

′
ij = ζ > 0, for all i, j ∈ V, i �= j.

Proof. Suppose G(p) and G(p′) are bearing equivalent.
We have g∗

i = g′∗
i and g∗

iX = g′∗
iX for all i = 1, . . . , n.

Observe that

dig
∗
i − diXg∗

iX + di+1,Xg∗
i+1,X = 0, (3)

d′ig
′∗
i − d′iXg′∗

iX + d′i+1,Xg′∗
i+1,X = 0. (4)

Moreover, since g∗
i = g′∗

i , g
∗
iX = g′∗

iX , g∗
i+1,X = g′∗

i+1,X

and g∗
i �= g∗

iX , g∗
i �= g∗

i+1,X , it follows that:

d′i
di

=
d′iX
diX

=
d′i+1,X

di+1,X
= ζ, ∀i = 1, . . . , n. (5)

This is because any two vectors out of g∗
i , g

∗
i+1 and g∗

iX

form a linearly independent set in R2 (and thus a basis).
So the representation of the third in terms of the other two
is unique. For any bearing unit vector gij , j �= i+1, i− 1,
pointing from agent i to agent j, we may write
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1. INTRODUCTION

Cyclic pursuit is a well known strategy for multi-agent
systems where every agent, indexed i, receives information
about its leader, agent i + 1 (modulo n), and chooses
its control law based on this information. From a graph
theoretic perspective, this means that cyclic pursuit is rep-
resented by a directed cycle graph, whose vertices/nodes
represent the agents and the directed edges depict the
information flow. This is illustrated in Fig. 1. A lot of
work related to the consensus problem, for agents in cyclic
pursuit, such as by Behroozi and Gagnon (1979); Marshall
et al. (2004); Sinha and Ghose (2006); Mukherjee and
Ghose (2015) have been reported. This has further led
to several applications of cyclic pursuit, such as target
capture (Hara et al., 2008; Ma and Hovakimyan, 2013;
Mukherjee and Ghose, 2016), boundary tracking (Mukher-
jee et al., 2014) and vehicular formations (Marshall et al.,
2004) emerging, with encouraging results. This paper
broadly looks at one such problem: co-operative capture of
a target by multi-agent systems. This problem is generally
tackled by having a desired formation of vehicles around
the target (Tanner, 2007; Mukherjee et al., 2017). Thus,
it is imperative to develop strategies that ensure stable
desired formations around the target point. This naturally
leads to the problem of formation control.

Formation control has been a widely investigated subject
in the domain of multi-agent systems such as by Lin et al.
(2005); Oh et al. (2015); Sun et al. (2016) and the refer-
ences therein. The present paper considers a bearing-only
formation control around a target, while the agents are
in cyclic pursuit. Of late, bearing-only formation control
has received significant attention from researchers (Bishop
et al., 2015; Zhao and Zelazo, 2015b,c) since it can be
realized from vision-based techniques (Montijano et al.,
2016). However, most of them consider undirected commu-
nication topology, while using bearing-only information.
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The formations with directed leader-follower graphs were
studied in (Trinh et al., 2014, 2016). In (Zhao and Zelazo,
2015a) a directed graph was considered for exchanging
bearing information and sufficient conditions for the sta-
bility of formations were derived. However, information
about relative distances were also used therein. Another
approach is based on bearing rigidity in SO(2) and SO(3)
with requirements on inter-agent communication, see (Ze-
lazo et al., 2015; Schiano et al., 2016; Michieletto et al.,
2016). Thus, study of stable bearing-only formation con-
trol over agents communicating via general digraphs is still
an open problem. Towards that end, this paper considers
bearing-only formation control over a specific directed
topology, the cycle digraph. Inspired by the works such as
by (Kim and Sugie, 2007; Hara et al., 2008), the present
paper also casts the problem of target capture as one
of achieving a desired formation around the target using
bearing-only measurements from the target and a leader.

The possibility of achieving any desired formation around
a target, under the cyclic pursuit paradigm, is the main
focus in this work. Thus, the present paper proceeds with
a two-fold objective. On the one hand, a specific directed
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study the stability of desired formations in R2 and on the
other hand, the cyclic pursuit problem is cast with bearing-
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2015a) a directed graph was considered for exchanging
bearing information and sufficient conditions for the sta-
bility of formations were derived. However, information
about relative distances were also used therein. Another
approach is based on bearing rigidity in SO(2) and SO(3)
with requirements on inter-agent communication, see (Ze-
lazo et al., 2015; Schiano et al., 2016; Michieletto et al.,
2016). Thus, study of stable bearing-only formation con-
trol over agents communicating via general digraphs is still
an open problem. Towards that end, this paper considers
bearing-only formation control over a specific directed
topology, the cycle digraph. Inspired by the works such as
by (Kim and Sugie, 2007; Hara et al., 2008), the present
paper also casts the problem of target capture as one
of achieving a desired formation around the target using
bearing-only measurements from the target and a leader.

The possibility of achieving any desired formation around
a target, under the cyclic pursuit paradigm, is the main
focus in this work. Thus, the present paper proceeds with
a two-fold objective. On the one hand, a specific directed
information exchange topology (directed cycle) is used to
study the stability of desired formations in R2 and on the
other hand, the cyclic pursuit problem is cast with bearing-
only measurements and tailored for target capture. It
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The formations with directed leader-follower graphs were
studied in (Trinh et al., 2014, 2016). In (Zhao and Zelazo,
2015a) a directed graph was considered for exchanging
bearing information and sufficient conditions for the sta-
bility of formations were derived. However, information
about relative distances were also used therein. Another
approach is based on bearing rigidity in SO(2) and SO(3)
with requirements on inter-agent communication, see (Ze-
lazo et al., 2015; Schiano et al., 2016; Michieletto et al.,
2016). Thus, study of stable bearing-only formation con-
trol over agents communicating via general digraphs is still
an open problem. Towards that end, this paper considers
bearing-only formation control over a specific directed
topology, the cycle digraph. Inspired by the works such as
by (Kim and Sugie, 2007; Hara et al., 2008), the present
paper also casts the problem of target capture as one
of achieving a desired formation around the target using
bearing-only measurements from the target and a leader.

The possibility of achieving any desired formation around
a target, under the cyclic pursuit paradigm, is the main
focus in this work. Thus, the present paper proceeds with
a two-fold objective. On the one hand, a specific directed
information exchange topology (directed cycle) is used to
study the stability of desired formations in R2 and on the
other hand, the cyclic pursuit problem is cast with bearing-
only measurements and tailored for target capture. It
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Fig. 2. A group consisting of six agents and a stationary
target X.

cyclic pursuit have been recently studied by Trinh et al.
(2017), but no target was considered there.

The rest of the paper is organized in the following manner.
In Section 2, some preliminary results on bearing-only for-
mation are described and the main problem is formulated.
Section 3 presents the main stability results pertaining to
target capture using bearing-only formation control for
agents in planar cyclic pursuit. Simulations in Section 4
vindicate the theoretical developments. Finally, Section 5
concludes the paper.

2. PROBLEM FORMULATION

Consider a group of n-autonomous agents modeled by
single integrator dynamics, as follows:

ṗi = ui. (1)

Here, pi ∈ R2 and ui ∈ R2 are the position and the control
input of agent i, i = 1, . . . , n, respectively. Throughout
this paper the agent indices are in modulo n. Suppose that
there is a stationary targetX, such that ṗX = 0 (see Fig. 2
for an example).

Let p = [pT
1 , . . . ,p

T
n ]

T ∈ R2n denote the vector containing
the co-ordinates of the agents in R2. Further, we define the
displacement vectors zi = pi+1 − pi and ziX = pX − pi,
i = 1, . . . , n. We denote di = ‖zi‖ (diX = ‖ziX‖) as the
distance between agent i and agent i + 1 (the target X,
respectively). Similarly, for j �= i + 1, i − 1, denote the
distance between agents i and j as dij .

The bearing vector gi is defined as the unit vector pointing
from agent i to agent i+ 1, given by:

gi =
pi+1 − pi

‖pi+1 − pi‖
=

zi
‖zi‖

. (2)

Suppose the system of n−agents and the target satisfies
the following assumptions:

Assumption 1. All agents have access to a global reference
frame in R2. The positions of the agents, pi ∈ R2, are
initially non-collocated, i.e., pi(0) �= pj(0), for all 1 ≤ i �=
j ≤ n.

Assumption 2. Each agent i can sense the bearing vectors
with respect to agent i+ 1 and the target X. The sensing
topology of the agents is thus a directed cycle graph with n
nodes and an additional node whose information is sensed
by all other nodes.

Assumption 2 means that the overall graph may be given
as G = (V, E), in which V = {v1, . . . , vn, vX}, |V| = n+ 1,
E = {(vi, vi+1), (vi, vX)|i ∈ V} and |E| = 2n. We define a
feasible formation based on the above assumptions.

Definition 1. The set Bn = {g∗
i ,g

∗
iX}i=1,...,n is called a

feasible bearing vector set if and only if the following
conditions hold for each i = 1, . . . , n:

(1) g∗
i �= ±g∗

i+1, g
∗
i �= ±g∗

iX , g∗
i−1 �= ±g∗

iX , and there
exist d∗i > 0 such that

∑n
i=1 d

∗
i g

∗
i = 0, and

(2) There are d∗iX > 0 such that d∗i g
∗
i − d∗iXg∗

1X +
d∗i+1,Xg∗

i+1,X = 0.

The constraint
∑n

i=1 d
∗
i g

∗
i = 0 ensures that the desired

formation is a closed polygon, since d∗i g
∗
i is the edge

of the desired polygon joining agent i with agent i +
1. Similarly, the desired formation does not include the
possibility of having any three successive agents i − 1
through i + 1 collinear. Neither do we consider desired
formations such that any two successive agents i and i+1
are collinear with the target X. Thus, g∗

i+1,X �= ±g∗
iX .

The second part of Definition 1 implies that every agent
i, its leader i + 1 and the target X form a triangle. For
brevity, we stack all bearing vectors in a column vector
as g = [gT

1 , . . . ,g
T
n ,g

T
1X , . . . , gT

nX ]T ∈ R4n. Similarly, we
stack all the desired bearing vectors in a column vector as
g∗ = [g∗T

1 , . . . ,g∗T
n ,g∗T

1x , . . . ,g
∗T
nx ]

T .

Next, we will restate the definitions of bearing equivalence
and bearing congruency as stated by Zhao and Zelazo
(2015b) because these will aid us in establishing the re-
lationship between bearing congruency and bearing equiv-
alence for our problem. However, to understand these defi-
nitions, we first need to take a closer look at the orthogonal

projection matrix Pv = I2 − vvT

vTv
∈ R2×2, corresponding

to a nonzero vector v ∈ R2. The projection matrix Pv is
symmetric, positive semidefinite, and idempotent, that is,
P2

v = Pv. Moreover, we have Pvv = 0. Thus, the right
null space of Pv is spanned by v.

Definition 2. (Zhao and Zelazo (2015b)). (Bearing Equiv-
alency) Frameworks G(p) and G(p′) are bearing equivalent
if P(pi−pj)(p

′
i − p′

j) = 0 for all (i, j) ∈ E .
Definition 3. (Zhao and Zelazo (2015b)). (Bearing Cong-
ruency) Frameworks G(p) and G(p′) are bearing congruent
if P(pi−pj)(p

′
i − p′

j) = 0 for all i, j ∈ V.
Lemma 1. Given two formations G(p) and G(p′) with the
sensing graph satisfying Assumption 2, if G(p) and G(p′)
are bearing equivalent, they are also bearing congruent.
Moreover, dij/d

′
ij = ζ > 0, for all i, j ∈ V, i �= j.

Proof. Suppose G(p) and G(p′) are bearing equivalent.
We have g∗

i = g′∗
i and g∗

iX = g′∗
iX for all i = 1, . . . , n.

Observe that

dig
∗
i − diXg∗

iX + di+1,Xg∗
i+1,X = 0, (3)

d′ig
′∗
i − d′iXg′∗

iX + d′i+1,Xg′∗
i+1,X = 0. (4)

Moreover, since g∗
i = g′∗

i , g
∗
iX = g′∗

iX , g∗
i+1,X = g′∗

i+1,X

and g∗
i �= g∗

iX , g∗
i �= g∗

i+1,X , it follows that:

d′i
di

=
d′iX
diX

=
d′i+1,X

di+1,X
= ζ, ∀i = 1, . . . , n. (5)

This is because any two vectors out of g∗
i , g

∗
i+1 and g∗

iX

form a linearly independent set in R2 (and thus a basis).
So the representation of the third in terms of the other two
is unique. For any bearing unit vector gij , j �= i+1, i− 1,
pointing from agent i to agent j, we may write
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g∗
ij =

1

dij
(diXg∗

iX − djXg∗
jX), (6)

g′∗
ij =

1

d′ij
(d′iXg′∗

iX − d′jXg′∗
jX). (7)

Since g∗
iX = g′∗

iX , d′iX = ζdiX , from (7) we may arrive at

g′∗
ij =

1

d′ij
(ζdiXg∗

iX − ζdjXg∗
jX) = ζ

dij
d′ij

g∗
ij . (8)

It follows g∗
ij = g′∗

ij and d′ij = ζdij . Thus, the two
frameworks G(p) and G(p′) are bearing equivalent and
their shapes are different by a scale factor ζ.

We are now equipped to state the main problem.

Problem. Given a group of n-agents in cyclic pursuit
and a target, satisfying Assumptions 1-2, design bearing-
only control laws for the agents such that the agents
asymptotically attain a desired formation shape, described
by a feasible bearing vector set as in Definition 1, around
the target.

3. MAIN RESULTS

3.1 Proposed control law

The proposed bearing-only control law for each agent i
(1 ≤ i ≤ n), in cyclic pursuit, is

ui = −Pgi
g∗
i −PgiX

g∗
iX , (9)

where Pgi = I2−gig
T
i , PgiX

= I2−giXgT
iX are orthogonal

projection matrices as described earlier. In R2, we also

have Pgi = g⊥
i (g

⊥
i )

T , where g⊥
i = Jgi =

[
0 −1
1 0

]
gi is

a unit vector, perpendicular to gi. Let zi = pi+1 − pi,
ziX = pX − pi, di = ‖zi‖, diX = ‖ziX‖, for i = 1, . . . , n.

The following lemma is concerning the equilibrium of the
cyclic pursuit system driven by (9).

Lemma 2. The system under control law (9) has two
types of equilibria which are symmetric about the target’s
position: the desired equilibrium p∗ corresponding to g =
g∗ and the undesired equilibrium p′ corresponding to
g = −g∗.

Proof. From Definition 1, there exist positive scalars
d∗i , d

∗
i,X and d∗i+1,X such that

d∗i g
∗
i − d∗i,Xg∗

i,X + d∗i+1,Xg∗
i+1,X = 0, i = 1, . . . , n. (10)

The equilibria of (9) satisfy

−Pgig
∗
i −PgiX

g∗
iX = 0, i = 1, . . . , n. (11)

Premultiplying by gT
i on both side of Eq. (11) we get

gT
i PgiX

g∗
iX = 0. (12)

Equation (12) is satisfied if and only if:

either gi = ±giX , (13)

or giX = ±g∗
iX , (14)

for all i = 1, . . . , n. We consider the following cases:

Case 1: Suppose some agents satisfy (13) while others
satisfy (14). Then there exists some i ∈ {1, . . . , n} such
that condition (13) holds for agent i while condition (14)
holds for agent i+ 1, i.e., gi = ±giX and
gi+1,X = ±g∗

i+1,X .

Fig. 3. Illustration of the proof for Case 2.

The condition gi = ±giX implies that agent i, agent
i + 1 and the target X are collinear. Thus, Pgi

= PgiX
.

Substituting this in (11), we have

Pgi(g
∗
i + g∗

iX) = 0, (15)

which happens if and only if g∗
iX +g∗

i = kgi since the null
space of Pgi

is spanned by gi. Equivalently, we may write

g∗
iX = kgi − g∗

i (16)

where k is a nonzero constant. Moreover, since agent i,
agent i+ 1 and the target are collinear, we have

gi = ±gi+1,X = ±g∗
i+1,X . (17)

Substituting (16) and (17) into (10), we obtain

d∗i g
∗
i − d∗iX(kgi − g∗

i )± d∗i+1,Xgi = 0,

or equivalently,

(d∗i + d∗iX)g∗
i + (−kd∗iX ± d∗i+1,X)gi = 0. (18)

From (18) and (16) it follows that g∗
i = ±gi and they

are both aligned with g∗
iX . But according to Definition 1,

g∗
i �= ±g∗

iX . Hence, the contradiction.

Case 2: Suppose for all i = 1, . . . , n, the condition
gi = ±giX holds. Thus, all agents and the target are
collinear and we have

g1 = . . . = ±gn = ±g1X = . . . = ±gn,X . (19)

It follows that

Pg1
= . . . = Pgn

= Pg1X
= . . . = PgnX

. (20)

Substituting this in (11), we get

g∗
iX + g∗

i = kigi, i = 1, . . . , n, (21)

or equivalently, upon combining this with (19),

g1 = . . . = ±gn =
g∗
1X + g∗

1

k1
= . . . =

g∗
nX + g∗

n

kn
. (22)

where ki are scalars. Let g⊥
1 = Jg1 be the unit vector

perpendicular to g1. From (10) and (22), we have

d∗i g
∗
i + d∗iXg∗

i = d∗iXg∗
iX − d∗i+1,Xg∗

i+1,X + d∗iXg∗
i

(d∗i + d∗iX)g∗
i = d∗iX(g∗

iX + g∗
i )− d∗i+1,X(ki+1g1 − g∗

i+1)

(d∗i + d∗iX)g∗
i = (kid

∗
iX − ki+1d

∗
i+1,X)g1 + d∗i+1,Xg∗

i+1

(23)

Premultiplying both sides of (23) with (g⊥
1 )

T and using
the fact that (g⊥

1 )
Tg1 = 0 yields

(d∗i + d∗iX)(g⊥
1 )

Tg∗
i = d∗i+1,X(g⊥

1 )
Tg∗

i+1, (24)

which further implies that

sgn((g⊥
1 )

Tg∗
i ) = sgn((g⊥

1 )
Tg∗

i+1). (25)

Due to the assumption that g∗
i �= ±g∗

i+1, we may conclude

that (g⊥
1 )

Tg∗
i �= 0 ∀i. Hence, by applying the principle of

mathematical induction on (25), we may infer that

sgn((g⊥
1 )

Tg∗
1) = . . . = sgn((g⊥

n )
Tg∗

n) �= 0. (26)
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Now, we know that
∑n

i=1 z
∗
i = 0. Hence, we obtain the

following:

0 = (g⊥
1 )

T
n∑

i=1

z∗i =

n∑
i=1

d∗i (g
⊥
1 )

Tg∗
i . (27)

Equation (26) implies that either (g⊥
1 )

Tg∗
i > 0 or

(g⊥
1 )

Tg∗
i < 0 holds for all i. Since in both cases, the right

hand side of (27) cannot be zero, we have a contradiction.
This contradiction implies that Case 2 is also unfeasible.

Case 3: Suppose some agents satisfy the condition
giX = g∗

iX while others satisfy giX = −g∗
iX . Again, we

may conclude that for some j, gjX = g∗
jX and

gj+1,X = −g∗
j+,1X . But, clearly we have a positive

solution (in terms of the distances) for

g∗
j =

d∗jX
d∗j

g∗
jX −

d∗j+1,X

d∗j
g∗
j+1,X (28)

up to a scaling factor (due to feasibility of formation shape)
and djgj − djXgjX + dj+1,Xgj+1,X = 0 always holds.
Plugging in the values at the equilibrium, it turns out that
we need positive solutions for the equation

g∗
j = ±

[
d′∗jX
d′∗j

g∗
jX +

d′∗j+1,X

d′∗j
g∗
j+1,X

]
. (29)

But, in R2 the representation of every vector in terms of
two basis vectors (g∗

jX and g∗
j+1,X form the basis set as

they are linearly independent due to Def. 1) is unique.
Thus, we have a contradiction as in (28) the coefficients of
g∗
jX and g∗

j+1,X in the representation of g∗
j have opposite

signs whereas in (29) they are of the same sign.

Using the relation (11), the system satisfies gi = g∗
i or

gi = −g∗
i , ∀i = 1, . . . , n, respectively, at these equilibria.

From Definition 1, the existence of a desired formation p∗

where g = g∗ is guaranteed. This formation is a desired
equilibrium of (9). Moreover, there exists a formation
p′ which is symmetric with p∗ about the target. The
formation p′ is an undesired formation where the bearing
vectors satisfy g = −g∗. This completes the proof.

3.2 Stability analysis

To analyze the stability of the desired formation we define
the following sets

Q := {p ∈ R2n|gi = ±g∗
i and giX = ±g∗

iX , i = 1, . . . , n},
D := {p ∈ R2n|gi = g∗

i and giX = g∗
iX , i = 1, . . . , n},

U := {p ∈ R2n|gi = −g∗
i and giX = −g∗

iX , i = 1, . . . , n}.
Q is the set of all equilibria of the system driven by the
control law (9). Clearly, Q can be partitioned into D− the
set of desired equilibria, and U− the set of undesired equi-
libria as implied by Lemma 2. This equilibrium partition
is inspired from work in distance-based formation control
(Cao et al., 2011).

Consider a directed cycle formation in R2. Let αi be
the magnitude of the angle between gi and g∗

i such that
0 ≤ αi ≤ π. Further, let us similarly define βi, φi and γi
as the magnitudes of the angles between giX and g∗

iX , gi

and giX , and gi and gi+1, respectively, as shown in Fig. 4.
Since we will be investigating local stability, we shall be
primarily concerned with the behaviour of the system in

the vicinity of the equilibrium. Each equilibrium p∗ ∈ D
corresponds to αi = βi = 0, i = 1, 2, . . . , n.

As described earlier, we denote di = ‖pi+1 − pi‖ and
diX = ‖piX − pi‖. We are now in a position to derive
the dynamics of the agents in terms of the angles defined
above. We have,

Fig. 4. Illustration for proof of local stability

cosβi = (g∗
iX)TgiX , (30)

and thus, upon differentiating both sides with respect to
time, we get

sinβiβ̇i = −(g∗
iX)T ġiX = −(g∗

iX)T
PgiX

diX
(−ṗi). (31)

We then use the relation PgiX
= g⊥

iX(g⊥
iX)T in (31) to get

diX sinβiβ̇i =− (g∗
iX)Tg⊥

iX(g⊥
iX)Tg⊥

iX(g⊥
iX)Tg∗

iX

− (g∗
iX)Tg⊥

iX(g⊥
iX)Tg⊥

i (g
⊥
i )

Tg∗
i

=− sin2 βi + (± sinβi)(cosφi)(± sinαi).

Thus, the dynamics in terms of the angle βi may be
explicitly written as

β̇i = − sinβi

diX
± sinαi cosφi

diX
. (32)

By the same token, we may obtain the following relation:

α̇i =− sinαi

di
± sinαi+1 cos γi

di

± sinβi+1 cos(γi ± φi)

di
± sinβi cosφi

di
. (33)

Note that in the control strategies, we controlled 2n
angle variables αi, βi (i = 1, . . . , n). However, these
angle dynamics are dependent on each other due to the
existence of a stationary target. In fact, only 2n − 1
independent angle variables are required to specify the
desired formation in R2. As a result, to analyze the
stability of the angle dynamics at equilibria, we consider
θ = [α1 . . . αn−1 β1 . . . βn] ∈ R2n−1. The desired equilibria
in D, correspond to θ = 02n−1 and the undesired equilibria
in U correspond to θ = π12n−1. The following theorem
deals with the local stability of the equilibria.

Theorem 3. In R2, the equilibria corresponding to D are
locally asymptotically stable, while those corresponding to
U are unstable.

Proof. By linearizing equations (32) and (33) near the
corresponding equilibrium, we find that at a desired equi-
librium, the perturbed system may be described by

∆θ̇ = M∆θ =

[
A B
C D

]
∆θ, (34)

where
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j+1,X in the representation of g∗
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Using the relation (11), the system satisfies gi = g∗
i or
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i , ∀i = 1, . . . , n, respectively, at these equilibria.

From Definition 1, the existence of a desired formation p∗

where g = g∗ is guaranteed. This formation is a desired
equilibrium of (9). Moreover, there exists a formation
p′ which is symmetric with p∗ about the target. The
formation p′ is an undesired formation where the bearing
vectors satisfy g = −g∗. This completes the proof.

3.2 Stability analysis

To analyze the stability of the desired formation we define
the following sets

Q := {p ∈ R2n|gi = ±g∗
i and giX = ±g∗

iX , i = 1, . . . , n},
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i and giX = g∗
iX , i = 1, . . . , n},

U := {p ∈ R2n|gi = −g∗
i and giX = −g∗

iX , i = 1, . . . , n}.
Q is the set of all equilibria of the system driven by the
control law (9). Clearly, Q can be partitioned into D− the
set of desired equilibria, and U− the set of undesired equi-
libria as implied by Lemma 2. This equilibrium partition
is inspired from work in distance-based formation control
(Cao et al., 2011).

Consider a directed cycle formation in R2. Let αi be
the magnitude of the angle between gi and g∗

i such that
0 ≤ αi ≤ π. Further, let us similarly define βi, φi and γi
as the magnitudes of the angles between giX and g∗

iX , gi

and giX , and gi and gi+1, respectively, as shown in Fig. 4.
Since we will be investigating local stability, we shall be
primarily concerned with the behaviour of the system in

the vicinity of the equilibrium. Each equilibrium p∗ ∈ D
corresponds to αi = βi = 0, i = 1, 2, . . . , n.

As described earlier, we denote di = ‖pi+1 − pi‖ and
diX = ‖piX − pi‖. We are now in a position to derive
the dynamics of the agents in terms of the angles defined
above. We have,

Fig. 4. Illustration for proof of local stability

cosβi = (g∗
iX)TgiX , (30)

and thus, upon differentiating both sides with respect to
time, we get

sinβiβ̇i = −(g∗
iX)T ġiX = −(g∗

iX)T
PgiX

diX
(−ṗi). (31)

We then use the relation PgiX
= g⊥

iX(g⊥
iX)T in (31) to get

diX sinβiβ̇i =− (g∗
iX)Tg⊥

iX(g⊥
iX)Tg⊥

iX(g⊥
iX)Tg∗

iX

− (g∗
iX)Tg⊥

iX(g⊥
iX)Tg⊥

i (g
⊥
i )

Tg∗
i

=− sin2 βi + (± sinβi)(cosφi)(± sinαi).

Thus, the dynamics in terms of the angle βi may be
explicitly written as

β̇i = − sinβi

diX
± sinαi cosφi

diX
. (32)

By the same token, we may obtain the following relation:

α̇i =− sinαi

di
± sinαi+1 cos γi

di

± sinβi+1 cos(γi ± φi)

di
± sinβi cosφi

di
. (33)

Note that in the control strategies, we controlled 2n
angle variables αi, βi (i = 1, . . . , n). However, these
angle dynamics are dependent on each other due to the
existence of a stationary target. In fact, only 2n − 1
independent angle variables are required to specify the
desired formation in R2. As a result, to analyze the
stability of the angle dynamics at equilibria, we consider
θ = [α1 . . . αn−1 β1 . . . βn] ∈ R2n−1. The desired equilibria
in D, correspond to θ = 02n−1 and the undesired equilibria
in U correspond to θ = π12n−1. The following theorem
deals with the local stability of the equilibria.

Theorem 3. In R2, the equilibria corresponding to D are
locally asymptotically stable, while those corresponding to
U are unstable.

Proof. By linearizing equations (32) and (33) near the
corresponding equilibrium, we find that at a desired equi-
librium, the perturbed system may be described by

∆θ̇ = M∆θ =

[
A B
C D

]
∆θ, (34)

where
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A =




−
1

d∗1
±
cos γ∗

1

d∗1
· · · 0

0
. . .

. . .
...

...
. . . −

1

d∗n−2

±
cos γ∗

n−2

d∗n−2

0 · · · 0 −
1

d∗n−1




,C =




−
1

d∗1,X
· · · 0

0
. . .

...
...

. . . −
1

d∗n−1,X

0 · · · 0




=

[
C1

0T
n−1

]
,D = diag

(
−

1

d∗iX

)
=

[
D1

−
1

d∗n−1,X

]

B =




−
cosφ∗

1

d∗1
±
cos

(
γ∗
1 − φ∗

1

)
d∗1

· · · 0

...
. . .

. . .
...

0 · · · −
cosφ∗

n−1

d∗n−1

±
cos

(
γ∗
n−1 − φ∗

n−1

)
d∗n−1




=


B1

0n−2

±
cos

(
γ∗
n−1 ± φ∗

n−1

)
d∗n−1


 .

det(λI2n−1 −M) =

(
λ+

1

d∗n,X

)
det

([
λIn−1 −A −B1

−C1 λIn−1 −D1

])
. (35)

The eigenvalues of M are the roots of the polynomial
equation in λ given by equation (35) obtained from the
Laplace expansion. Thus, we have det(λI2n−1 − M) =(
λ+ 1

d∗
n,X

) n−1∏
i=1

((
λ+ 1

d∗
i

)(
λ+ 1

d∗
iX

)
± (cosφ∗

1)
2

d∗
1d

∗
1X

)

=
(
λ+ 1

d∗
n,X

) n−1∏
i=1

(
λ2 +

(
1
d∗
1
+ 1

d∗
iX

)
λ+

1±(cosφ∗
1)

2

d∗
i
d∗
iX

)
.

Since cosφ∗
i < 1 at the desired equilibrium, each quadratic

equation λ2 +
(

1
d∗
1
+ 1

d∗
iX

)
λ+

1±(cosφ∗
i )

2

d∗
i
d∗
iX

= 0 has two

roots in the open left half plane. Thus, the matrix M is
Hurwitz and local asymptotic stability of the system about
any point in D is guaranteed.

Using similar reasoning as above, the equilibrium corre-
sponding to a point in U is an unstable one.

4. SIMULATIONS

We consider a six-agent system with the measurement
graph as depicted in Fig. 2. The desired bearing vectors
are chosen such that the agents form a regular octahe-
dron around the target. Simulation results are depicted
in Fig. 5a–5c. It can be observed in Fig. 5b that the
agents asymptotically converge to the desired hexagonal
formation around the target. Also, the bearings errors
asymptotically decay, as can be seen from Fig. 5c.

Similarly, in another example we considered four agents
trying to capture a moving target and obtain a square
formation around it. It is assumed that the agents have
information about the velocity of the target. Fig. 6 shows
the initial formation, the trajectories of the agents and
the target along with the bearing errors. Observed that
once again the agents manage to capture the moving target
while achieving a desired formation around it.

5. CONCLUSIONS

In this paper, a bearing-only cyclic pursuit strategy was
proposed for target capture. We have first shown that
when all desired bearing vectors are satisfied, a target
formation shape will be achieved. We also proved that the
desired formation is locally asymptotically stable, and the

undesired formation is unstable. Even though we carried
out our analysis assuming a stationary target, if the agents
have information about the target’s velocity, they can still
capture the target, as shown in our simulations.
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