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Abstract— This paper presents two bearing-only control laws
that guarantee almost global convergence of the desired forma-
tion in finite time. For each control law, the equilibrium set is
firstly studied. Then, we provide rigorous analysis on asymptotic
convergence as well as finite time convergence of the system
to the desired equilibrium. Finally, numerical simulations are
provided to validate our analysis.

I. INTRODUCTION

Recently, formation control has received much research

attention [1], [2]. The task of achieving a target formation

shape in a multi-robot system is fundamental to many

applications in decentralized cooperative control. It is well-

known that sensing variables, controlling variables, and

graph topological requirements can be used to classify the

existing works on formation control in the literature [2].

Figure 1 briefly surveys the classification of formation con-

trol problems presented in [2]. Based on this classification,

this paper studies a bearing-only formation control problem,

where the sensing and controlling variables are both based

on bearings.
Note that bearing information can be given as the bearing

vector or as the angle between two bearing vectors [3],

[4]. Consequently, there are two main approaches in solving

bearing-based formation control problems. The first approach

involves controlling the bearing angles, for example, the

early works on three-, and four-agent formations [5], [6].

Extension to n-agent systems can be found in [7]–[9].

However, it is difficult to extend the bearing angle approach

to control formations in a three dimensional space.
Another approach is based on the bearing rigidity the-

ory in R
d [10]–[13]. Considering a planar formation with

undirected sensing topologies, the authors in [14] proposed

a control law to stabilize undirected planar formations to a

desired formation shape. Under the bearing-only control law

proposed in [12], all infinitesimally bearing rigid frameworks

can be almost globally exponentially achieved. For directed

cases, the leader-first follower formation [15], [16] in R
d

and the directed cycle formation in R
2 [17], [18] have been

studied. Finally, it is worth noting that bearing rigidity in

SE(2) and SE(3) have been recently developed and applied

to formation control and network localization problems, as

in [19]–[21].
This paper considers the problem of stabilizing a forma-

tion in finite-time using only bearing measurements. The
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Fig. 1: Classification of formation control problems based

on sensing variables, control variables and interconnection

topology [2].

motivation for designing finite-time controllers is as follows.

Consider a system of satellites achieving a desired formation

using only bearing measurements. The distance between

satellites are generally in kilometers, and since the desired

formation shape is defined by a set of bearing vectors, small

errors in bearing could lead to a relatively large formation

shape variance. Controllers with asymptotic stability perfor-

mance normally take a long time to achieve a good formation

shape and are vulnerable to noises. On the other hand, finite-

time controllers not only stabilize the formation faster, but

also enable us to estimate an upper-bound on the formation’s

settling time. For related works, the theory of finite time

convergence for continuous systems was developed in [22],

[23]. Applications of finite-time control laws on consensus

and formation control problems can be found in [24], [25],

and [8], [26], [27], respectively.

Along this avenue, this paper proposes two families of

finite-time bearing-only controllers for stabilizing formations

of n-single integrator agents in R
d. These proposed control

laws are modified from the control laws in [12] and, to the

best of our knowledge, are the first ones to be based only

on the bearing vectors. The analysis in this paper is divided

into two parts: almost globally asymptotic stability of the

desired formation, and finite-time convergence of the desired

formation under both of the proposed control laws. The

convergence of the desired formation is established based

on the bearing rigidity theory and the theory of finite-time

convergence [23].

Consequently, the contributions of this paper can be

summarized as follows. First, we propose two families of
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decentralized formation stabilizing controllers that use only

bearing information. Second, we characterize the equilibrium

set and prove almost global stability of the desired equilib-

rium under both control laws. Third, finite-time convergence

of the system is established under the two control laws and

upper bounds on convergence time are derived. Finally, we

provide simulations to support the analysis and compare the

performance between the unmodified control law and our

proposed ones.

The remainder of this paper is organized as follows. In

Section II, some preliminary results on finite-time conver-

gence and bearing rigidity are presented. The main problem

is formulated and two bearing-only finite-time formation

control laws are proposed in Section III. Section IV presents

the main stability results. Simulations are provided in Section

V. Finally, we summarize the conclusions and outline several

further research directions in Section VI.

II. PRELIMINARIES

A. Finite-time convergence theory

Let x = [x1, . . . , xd]
T denote a column vector in R

d. We

denote |x| = [|x1|, . . . , |xd|]T . Let ‖ ·‖ denote the 2-norm or

Euclidean norm, ‖x‖ =
√∑n

i=1 x
2
i . Further, we use ‖x‖1

to denote the 1-norm, ‖x‖1 =
∑d

i=1 |xi|.
For α ∈ R, the function sig(·)α : Rd → R

d is defined as

sig(x)α = [sign(x1)|x1|α, . . . , sign(xd)|xd|α]T [23]. The

following inequality will be used in this paper.

Lemma 1: [28] If ξ1, . . . , ξd ≥ 0 and 0 ≤ p ≤ 1, then(
d∑

i=1

ξi

)p

≤
d∑

i=1

ξpi .

A condition for finite-time convergence of a continuous

time system is given by the following lemma.

Lemma 2: [23] Suppose there exists a continuous func-

tion V (x) : D → R such that the following conditions hold

i) V (x) is positive definite,

ii) If there exist κ > 0, α ∈ (0, 1), and an open neighbor-

hood U0 ∈ D of the origin such that

V̇ (x) + κ(V (x))α ≤ 0, ∀x ∈ U0 \ {0},
then V (x) will reach zero in finite time with the settling time

T ≤ V (0)1−α/(κ(1− α)).

B. Bearing rigidity theory

Consider a framework G(p) in R
d (d ≥ 2). Here G =

(V, E) denotes an undirected graph with |V| = n vertices

and |E| = m edges, and p = [pT
1 , . . . ,p

T
n ]

T ∈ R
dn is a

configuration of G in R
d.

For each edge (i, j) ∈ E , we define a corresponding

displacement vector from the configuration as zij = pj−pi.

For an arbitrary labeling of the edges in E , let H ∈ R
m×n

denote the corresponding incidence matrix. Then, the stacked

displacement vector1 is defined as z = [zT1 , . . . , z
T
m]T =

1Although both zij and zk are used to denote displacement vectors, the
notation will be clear from the context in each part of the paper.

(H ⊗ Id)p = H̄p ∈ R
dm, where Id denotes the d × d

identity matrix, and ⊗ denotes the Kronecker product.

Suppose that pi 	= pj . The bearing vector gij is the unit

vector pointing from pi to pj [3], i.e.,

gij =
pj − pi

‖pj − pi‖ =
zij
‖zij‖ . (1)

The orthogonal projection matrix corresponding to gij is

defined by Pgij
= Id−gijg

T
ij . Note that Pgij is symmetric,

idempotent, and positive semidefinite, i.e. Pgij = PT
gij

=

P2
gij
≥ 0. Furthermore, Pgij has eigenvalues {0, 1, . . . , 1}

and its null space is given by N (Pgij
) = span{gij}.

With the same labeling of edges in E , we denote the

stacked bearing vector g = [gT
1 , . . . ,g

T
m]T ∈ R

dm. The

bearing rigidity matrix is defined as follows [12],

R(p) =
∂g

∂p
=

∂g

∂z

∂z

∂p
= diag

(
Pgk

‖zk‖
)
H̄ ∈ R

dm×dn, (2)

where the calculation uses the fact that

∂gij

∂zij
=

Pgij

‖zij‖ ,
∂gij

∂pi
= − Pgij

‖zij‖ ,
∂gij

∂pj
=

Pgij

‖zij‖ .

Further, for any bearing rigidity matrix, span{Range(1 ⊗
Id), p} = span{Range(1 ⊗ Id), p − 1 ⊗ p̄} ⊆ N (R(p)),
where 1 = [1, . . . , 1]T ∈ R

n denotes a vector of all ones

and p̄ = 1
n

∑n
i=1 pi is the formation centroid. Consequently,

rank(R(p)) ≤ dn − d − 1. A framework G(p) is said

to be infinitesimally bearing rigid (IBR) if and only if

rank(R(p)) = dn− d− 1. We have the following lemma.

Lemma 3: [12, Theorem 4] A framework G(p) is in-

finitesimally bearing rigid if and only if N (R(p)) =
span{Range(1⊗ Id),p− 1⊗ p̄}, where p̄ = 1

n

∑n
i=1 pi =

1
n (1⊗ Id)

Tp.

It may be remarked that an infinitesimally bearing rigid

framework can be uniquely determined up to a translation

and a scaling factor.

III. PROBLEM FORMULATION AND THE PROPOSED

CONTROL LAWS

A. Problem formulation

Consider a system consisting of n autonomous agents in

R
d (d ≥ 2). The dynamics of an agent i is governed by the

single-integrator dynamics

ṗi = ui, (3)

where pi,ui ∈ R
d are respectively the position and control

input of agent i, i = 1, . . . , n. The agents in the system aim

to achieve a desired/target formation shape. The desired for-

mation is specified by a set of bearing vectors {g∗ij}(i,j)∈E .

Suppose that there exists a framework G(p∗) realized from

the set {g∗ij}(i,j)∈E , and G(p∗) is infinitesimally bearing

rigid. Furthermore, the n-agent system satisfies the following

assumptions.

Assumption 1: All agents have information about a com-

mon reference frame.

Assumption 2: Each agent in the system can sense the

bearing vectors with regard to its neighboring agents and

the sensing topology is given by a fixed undirected graph G.
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We aim to solve the following problem in this paper.
Problem 1: Under the Assumptions 1-2, design a bearing-

only control law for each agent using only bearing vectors

that achieves the desired formation in finite time.

B. Proposed control laws
The following two control laws, for each agent i, are

proposed to solve Problem 1:

ui = −
∑
j∈Ni

Pgijg
∗
ij

‖Pgij
g∗ij‖α

, (4)

and

ui = −
∑
j∈Ni

Pgijsig(Pgijg
∗
ij)

α, (5)

where 0 < α < 1 is a positive constant. Observe that for

0 < α < 1, (4) and (5) are continuous control laws. Both

of the proposed control laws are modified from the bearing-

only control law commonly used in the literature [12]. The

finite-time modifications are inspired from previous works on

finite-time consensus [24], [25] and distance-based formation

control [27].
We can write the n-agent system under each control law

(4) and (5) in the compact forms

ṗ = f1(p) = H̄T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗, (6)

ṗ = f2(p) = H̄T diag(Pgk
)sig(diag(Pgk

)g∗)α, (7)

where g∗ = [g∗T1 , . . . ,g∗Tm ]T ∈ R
dm is the stacked vector

of all desired bearing vectors.
We study the two systems (6) and (7) in the next section

and prove that they asymptotically converge to the desired

formation in a finite time.

IV. ANALYSIS

In this section, we study the n-agent system under the

two control laws (4) and (5). First, we study the equilibrium

sets of the systems (6) and (7). Then we prove that under

each control law, the desired formation is almost globally

asymptotically stable. Finally, we prove that the desired

formation can be achieved in finite-time, given that the initial

agent configuration does not correspond to an undesired

equilibrium.

A. The equilibrium sets
In this subsection, we follow techniques similar to those

in [12] to analyze the equilibrium set of systems (6) and (7).

Let p̄ = 1
n

∑n
i=1 pi = 1

n (1 ⊗ Id)
Tp be the centroid and

s =
√

1
n

∑n
i=1 ‖pi − p̄‖2 = 1√

n
‖p−1⊗ p̄‖ be the scale of

formation, respectively.
Lemma 4: The formation’s centroid and scale are invari-

ant under the control laws (6) and (7).
Proof: Under the control law (4), the system (6) can

be rewritten as

ṗ = H̄T diag(Pgk
)diag

(
Id

‖Pgk
g∗k‖α

)
g∗

= R̃T diag

(
Id

‖Pgk
g∗k‖α

)
g∗. (8)

From (2), it follows that (diag(‖zk‖) ⊗ Id)R̃ = R.

Consequently, we have N (R̃) = N (R). As a result, it

follows from Lemma 3 that ṗ ⊥ span{Range(1 ⊗ Id),p}.
Since

˙̄p =
1

n
(1⊗ Id)

T ṗ = 0,

the formation centroid is invariant. Also, the formation scale

is invariant because

ṡ =
1√
n

(p− 1⊗ p̄)T

‖p− 1⊗ p̄‖ ṗ = 0.

Next, under the control law (5), we rewrite the system (7)

as follow:

ṗ = R̃T sig(diag(Pgk
)g∗)α. (9)

By using similar arguments on the null space of R̃, we can

also conclude that the formation’s centroid and scale are

invariant under the control law (5).

Next, we find the equilibrium sets of the systems driven

by control laws (6) and (7).

Lemma 5: The system (6) and (7) have two isolated

equilibria, p∗ corresponding to gk = g∗k, ∀k = 1, . . . ,m,
and p′ corresponding to gk = −g∗k, ∀k = 1, . . . ,m.

Proof: Let Q = {p ∈ R
dn| ṗ = 0}. Under both control

laws, ṗ = 0 implies diag(Pgk
)g∗ = 0, which is equivalent

to Pgk
g∗k = 0, ∀k = 1, . . . ,m.

Since the desired framework is IBR, and the formation

centroid and scale are invariant under both (8) and (9), the

claim follows from a similar proof as in [12, Theorem 10].

Let δi = pi−p∗i , and δ = [δT1 , . . . , δ
T
n ]

T . Since δ̇i = ṗi,

equations (6) and (7) can be rewritten as

δ̇ = f1(δ) = H̄T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗, (10)

δ̇ = f2(δ) = H̄T diag(Pgk
)sig(diag(Pgk

)g∗)α, (11)

where 0 < α < 1.

Let r(t) = p(t)−1⊗p̄(t) and r∗ = p∗−1⊗p̄∗. Since the

centroid of the formation is invariant (Lemma 4), it follows

that δ(t) = r(t)−r∗. Under both control laws (10) and (11),
d
dt‖r(t)‖ =

√
nṡ = 0, i.e. ‖r(t)‖ = ‖r∗‖ holds. Thus, from

δ(t) = r(t)− r∗, we have ‖δ(t)+ r∗‖ = ‖r(t)‖ = ‖r∗‖. As

a result, the systems (10) and (11) evolve on the surface of

the sphere

S = {δ ∈ R
dn| ‖δ + r∗‖ = ‖r∗‖}.

We observe that both systems (10) and (11) have two

equilibrium points δ = 0 and δ = −2(p∗−1⊗ p̄∗) = −2r∗
[12, Theorem 10]. In the next subsection, we will show that

δ = 0 is asymptotically stable while δ = −2(p∗−1⊗p̄∗) =
−2r∗ is unstable.

B. Almost global asymptotic stability analysis

This subsection establishes almost global convergence of

the desired formation under both control laws (4) and (5). By

almost global convergence, we mean that the target formation

is asymptotically achieved from all initial configurations in

R
dn \A, where A ⊂ R

dn is a set of Lebesgue measure zero.
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Theorem 1: Under the Assumptions 1–2 and the control

law (4), the desired equilibrium p = p∗ of system (6) is

asymptotically stable.

Proof: Consider the Lyapunov candidate function V =
1
2‖δ‖2 = 1

2‖p − p∗‖2, which is positive definite, radially

unbounded, and continuously differentiable. The derivative

of V along a trajectory of (10) is

V̇ (p) = (p− p∗)T H̄T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗

= (z− z∗)T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗

= −z∗T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗

= −g∗T diag

(
‖z∗k‖

Pgk

‖Pgk
g∗k‖α

)
g∗

= −
m∑

k=1

‖z∗k‖
g∗Tk Pgk

g∗k
‖Pgk

g∗k‖α

= −
m∑

k=1

‖z∗k‖‖Pgk
g∗k‖2−α. (12)

As a result, for 0 < α < 1, V̇ ≤ 0 holds for all p ∈
R

dn. Moreover, V̇ = 0 if and only if p = p∗ or p = p′.
Based on LaSalle invariance principle, any solution of (6)

asymptotically converges to one of the two formations p∗ or

p′.
Consider a neighborhood of p = p∗ which does not

contain −p′. We have V̇ < 0 for p 	= p∗ in this region.

Thus, p = p∗ is (locally) asymptotically stable.

Theorem 2: Under the Assumptions 1-2 and the control

law (5), the desired equilibrium p = p∗ of (7) is asymptot-

ically stable.

Proof: The proof is similar to that of Theorem 1 and

is omitted due to length restrictions.

Lemma 6: The undesired equilibrium of (4) (resp., (5))

corresponding to g = −g∗ is unstable.

Proof: Consider the Lyapunov function V = 1
2‖p −

p′‖2, where p′ ∈ R
dn corresponds to the undesired forma-

tion at which g = −g∗. Obviously, V is positive definite,

radially unbounded, and continuously differentiable. Further,

it follows from H̄p′ = −z′ that

V̇ (p) = (p− p′)T H̄T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗

= (z+ z∗)T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗

= z∗T diag

(
Pgk

‖Pgk
g∗k‖α

)
g∗

=

m∑
k=1

‖z∗k‖‖Pgk
g∗k‖2−α. (13)

As a result, V̇ > 0 in a neighborhood of p′. From Chetaev

instability theorem [29], the undesired equilibrium p = p′

of (4) is unstable.

By similar arguments, we can establish the instability of

the undesired equilibrium of (5).
Theorem 3: Under the control law (4) (the control law

(5)), the desired equilibrium p∗ of (6) ( resp. (7)) is almost

globally asymptotically stable.
Proof: The result follows directly from Theorem 1

(resp., Theorem 2), Lemma 6 and observing that in the proof

of Theorem 1 (resp., Theorem 2) V̇ < 0 everywhere in R
dn,

except at p′, which is a set of measure zero in R
dn.

C. Finite time convergence analysis
In order to prove finite time convergence, we need the

following useful lemma.
Lemma 7: Under the Assumptions 1-2, and under both

control laws (6) and (7), the following inequality holds

‖zk‖ ≤ 2s
√
n− 1, ∀k = 1, . . . ,m,

where s is the formation scale.
Proof: The proof of this lemma is similar to the proof

of [12, Corollary 2] and is omitted.
The next two theorems establish the finite time conver-

gence of the formations under the two newly proposed

control laws (4) and (5).
Theorem 4: Under the control law (4), starting from an

initial formation p(0) differing from the undesired equilib-

rium, p converges to the desired formation p∗ in a finite

time.
Proof: Let ε = mink=1,...,m ‖z∗k‖, from equation (12),

we have

V̇ = −
m∑

k=1

‖z∗k‖‖Pgk
g∗k‖2−α

≤ −ε
m∑

k=1

‖Pgk
g∗k‖2−α

≤ −ε
m∑

k=1

(g∗Tk Pgk
g∗k)

2−α
2 . (14)

Note that g∗Tk Pgk
g∗k = g∗Tk (Id − gkg

T
k )g

∗
k = Id −

g∗Tk gkg
T
k g
∗
k = Id − gT

k g
∗T
k g∗kgk = gT

k (Id − g∗kg
∗T
k )gk =

gT
k Pg∗kgk. Substituting this into (14) yields

V̇ ≤ −ε
m∑

k=1

(gT
k Pg∗kgk)

2−α
2

≤ −ε
m∑

k=1

(
1

‖zk‖2 z
T
kPg∗kzk

) 2−α
2

.

From Lemma 7, we know that ‖zk‖ ≤ 2s
√
n− 1, ∀k =

1, . . . , n. Thus,

V̇ ≤ −ε
m∑

k=1

(
1

(2s
√
n− 1)2

zTkPg∗kzk

) 2−α
2

≤ − ε

(2s
√
n− 1)2−α

m∑
k=1

(
zTkPg∗kzk

) 2−α
2

≤ −γ1
(

m∑
k=1

zTkPg∗kzk

) 2−α
2

, (15)
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Fig. 2: Illustration of proof of Theorem 4: δ and ζ.

where γ1 = ε
(2s
√
n−1)2−α and the last inequality follows by

applying Lemma 1 with 1
2 < 2−α

2 < 1.

We further rewrite (15) as follows.

V̇ ≤ −γ1
(

m∑
k=1

(zk − z∗k)
TPg∗k(zk − z∗k)

) 2−α
2

≤ −γ1
(
(p− p∗)T H̄T diag(Pg∗k)H̄(p− p∗)

) 2−α
2

≤ −γ1
(
δTR∗TR∗δ

) 2−α
2 . (16)

Since the desired formation is IBR, the matrix M∗ =
R∗TR∗ has d + 1 zeros eigenvalues. Denote λd+2 as the

smallest nonzero eigenvalue of M∗. Since δ ⊥ Range(1 ⊗
Id), and N (R∗TR∗) = N (R∗) = span{Range(1⊗Id), r

∗}
(Lemma 3), let ζ be the angle between δ and −r∗, we have

δTR∗TR∗δ ≥ λd+2 sin
2 ζ‖δ‖2

≥ λd+2 sin
2 ζ0‖δ‖2,

where ζ0 ≤ ζ(t) due to p → p∗ as t→∞ as illustrated in

Fig. 2. It follows from (16) that

V̇ ≤ −γ1
(
λd+2 sin

2 ζ0‖δ‖2
) 2−α

2 ≤ −κ1V
2−α
2 , (17)

where κ1 = γ1(2λd+2 sin
2 ζ0)

2−α
2 . Note that for 0 < α < 1,

we have 1
2 < 2−α

2 < 1. Combining Lemma 2, Theorem

3, and equation (17), we conclude that V → 0 in finite

time. Hence, p = p∗ is almost globally finite time stable

with the settling time T1 ≤ V (0)1−
2−α
2 /(κ1(1 − 2−α

2 )) =
2V (0)

α
2 /(κ1α).

Following a similar analysis, we have the following theorem.

Theorem 5: Under the control law (5), starting from an

initial formation p(0) differing from the undesired equilib-

rium, p converges to the desired formation p∗ in a finite

time.

Remark 1: In the proof of Theorem 5, we will have to

invoke the inequality in Lemma 1 twice to estimate γ2, which

is a term similar to γ1 in the proof of Theorem 4. Thus, the

upper-bound on the settling time in Theorem 5 is usually

more conservative than in Theorem 4. Therefore, in case the

upper bounds on the settling times for the two control laws

(4) and (5) are equal, the actual convergence time of control

law (5) is expected to be smaller.

V. SIMULATION

Consider a system comprising four agents in R
2. The

agents’ objective is to form a square. To accomplish this

Fig. 3: The sensing topology of the four-agent system.

task, the agents sense the bearing toward other agents and

the sensing topology is given as shown in Fig. 3. The edge

set is given by E = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)}. The

corresponding set of desired bearing vectors are given as

follows: g∗12 = −g∗21 = g∗34 = g∗43 = [1, 0]T , g∗23 = −g∗32 =
g∗14 = −g∗41 = [0, 1]T , and g∗13 = −g∗31 = [ 1√

2
, 1√

2
]T . It can

be verified that the desired formation graph is infinitesimally

bearing rigid.

We simulate the four-agent system under three control

laws: (i) - the control law ui = −∑j∈Ni
Pgij

g∗ij as used

in [12], (ii) the control law (4) with α1 = 1
2 , and (iii) the

control law (5) with α2 = 1
2 .

The simulation results are shown in Figs. 4-6. In all three

cases, the initial positions of the four agents are the same.

The formation converges to the desired formation. However,

convergence rate is different in each case. It can be observed

that in case (ii) and case (iii), the desired formation is

achieved in finite time.

It is worth noting that the upper-bound of the settling

time computed in both cases derived from Theorem 4 and

Theorem 5 are the same. However, the second and third

simulations in Figs. 5-6 show that the actual settling time

under the control law (4) (about 8s) is longer than the

settling time under the control law (5) (about 6.5s). Thus,

this observation is consistent with Remark 1.

VI. CONCLUSIONS

In this paper, two finite-time bearing-only control laws

have been proposed. We proved that under both of the

proposed control laws, the desired formation shape can be

almost globally achieved in a finite time. The upper bounds

of the convergence time are also estimated. As finite-time

convergence often leads to large control efforts, though the

control law (4) is expected to have a longer settling time

than (5), it could be more realistic in implementation.

The current paper only deals with undirected formations.

Thus, finite-time bearing only formation control of directed

formations is left for further investigations. Moreover, noises

are always presented in bearing measurements and could

contaminate into the system dynamics. Studying the detri-

mental effects of noises are thus essential for assessing the

system performance. Finally, studying finite-time bearing

only formation control with more general agents’ dynamics

is also an interesting research direction.
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(a) Trajectories. (b) Bearing angle errors vs. Time.

Fig. 4: A simulation using the unmodified bearing only

control law ui = −∑j∈Ni
Pgij

g∗ij in [12]. The formation

shape at t = 10s is depicted in magenta color.

(a) Trajectories. (b) Bearing angle errors vs. Time.

Fig. 5: A simulation using the control law (4) with α = 1
2 .

(a) Trajectories. (b) Bearing angle errors vs. Time.

Fig. 6: A simulation using the control law (5) with α = 1
2 .
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