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Abstract— The theory of network identification, namely iden-
tifying the interaction topology among a known number of
agents, has been widely developed for linear agents over recent
years. However, the theory for nonlinear agents remains less
extensive. We use the notion maximal equilibrium-independent
passivity (MEIP) and network optimization theory to present a
network identification method for nonlinear agents. We do so by
introducing a specially designed exogenous input, and exploiting
the properties of networked MEIP systems. We then specialize
on LTI agents, showing that the method gives a distributed
cubic-time algorithm for network reconstruction in that case.
We also discuss different methods of choosing the exogenous
input, and provide an example on a neural network model.

I. INTRODUCTION

Multi-agent systems have been widely studied in recent
years, as they present both a variety of applications and
a deep theoretical framework. They have been employed
across numerous domains, including flocking, formation con-
trol, robotics rendezvous, social networks, and distributed
estimation [1], [2]. One of the most important aspects in
multi-agents systems, both in theory and in practice, is the
information-exchange layer, governing which agents interact
with each other. Identifying the underlying network of a
multi-agent system from measurements is of great impor-
tance in many applications. One example is systems biology,
in which measurements are used to understand the con-
nection between genes in regulatory networks [3]. Another
example is international finance, in which past exchange
rates between different currencies are used to determine
their influence on one another, giving a useful guide for
understanding the causal relationship between individual
currencies [4]. Other fields with similar problems include
social networks [5], neuroscience [6], [7], communication
networks [8] and ecology [9].

The problem of network identification has been widely
studied for linear agents. Seminal works dealing with net-
work identification include [10], providing exact recon-
struction for tree-like graphs, and [11] in which sparse
enough topologies can be identified from a small number
of observations. Other important works include [12], us-
ing a node knockout method, and [13], presenting a sieve
method for solving the network identification problems for
consensus-seeking networks. More recent methods include
auto-regressive models [14] and spectral methods [15]. How-
ever, a theory for network identification for interacting non-
linear agents is far less developed. We aim to provide in this
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work a network identification scheme for a wide range of
systems, including nonlinear ones. Our approach relies on a
concept widespread in multi-agent systems, namely passivity
theory.

Passivity theory is a cornerstone of the theoretical frame
work of networks of dynamical systems [16]. The main
reason is that it allows for the analysis of multi-agent systems
to be decoupled into two separate layers, the dynamic
system layer and the information exchange layer. Passivity
theory was first used to study the convergence properties
of network systems in [17]. Many variations and extensions
of passivity have been applied in different aspects of multi-
agent systems. For example, the related concepts of incre-
mental passivity or relaxed co-coercivity have been used to
study various synchronization problems [18], [19], and more
general frameworks including Port-Hamiltonian systems on
graphs [20].

One prominent variant is maximal equilibrium-
independent passivity (MEIP), which was applied in
[21] in order to reinterpret the analysis problem for multi-
agent system as a network optimization problem. Network
optimization is a branch of optimization theory dealing with
optimization of functions defined over graphs [22]. The
main result of [21] showed that the asymptotic behavior of
these networked systems is (inverse) optimal with respect
to a family of network optimization problems. In fact, the
steady-state input-output signals of both the dynamical
systems and the controllers comprising the networked
system can be associated to the optimization variables of
either an optimal flow or an optimal potential problem; these
are the two canonical dual network optimization problems
described in [22]. The results of [21] were used in [23],
[24] in order to solve the synthesis problem for multi-agent
systems.

We aim to use this network optimization framework to
provide a network identification scheme for multi-agent sys-
tems. We do so by injecting a constant exogenous output, and
tracking the output of the agents. By appropriately designing
the exogenous input, we are able to differentiate the outputs
of the closed-loop system associated to different underlying
graphs. The key idea in the proof is that the steady-state
outputs are solutions to network optimization problems and
they are one-to-one dependent on the exogenous input. Our
contributions are stated as follows:

i) We introduce the notion of indication vectors for MEIP
systems that are used for differentiating the output of
networked systems with different underlying graphs.

ii) We propose various methods for constructing these
indication vectors.
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iii) We propose an algorithm exploiting the notion of indi-
cation vectors to solve a network detection problem.

iv) We show that in the case of linear time-invariant (LTI)
systems, our solution gives a distributed O(n3) network
detection algorithm, where n is the number of agents.

The rest of the paper is organized as follows. Section
II surveys the relevant parts of the network optimization
framework. Section III presents the problem formulation.
Section IV presents the main technical tool used for building
the network detection schemes, namely indication vectors,
and shows different methods of constructing indication vec-
tors. Section V uses indication vectors to design a network
detection scheme for general MEIP agents. Lastly, we present
a case study simulating the network detection methods
discussed on a neural network.

Notations: We use basic notations from linear algebra.
For a linear map T : U → V between vector spaces, we
denote the kernel of T by kerT , and the image of T by
Im(T ). Furthermore, if U is a subspace of an inner-product
space X (e.g., Rd), we denote the orthogonal complement of
U by U⊥. The notation A ≥ 0 (A > 0) means the matrix A
is positive semi-definite (positive definite). We also use basic
notions from algebraic graph theory [25]. An undirected
graph G = (V,E) consists of a finite set of vertices V and
edges E ⊂ V × V. We denote by k = {i, j} ∈ E the edge
that has ends i and j in V. For each edge k, we pick an
arbitrary orientation and denote k = (i, j). The incidence
matrix of G, denoted EG ∈ R|E|×|V|, is defined such that
for edge k = (i, j) ∈ E, [EG ]ik = +1, [EG ]jk = −1, and
[EG ]`k = 0 for ` 6= i, j.

II. NETWORK OPTIMIZATION AND
MEIP MULTI-AGENT SYSTEMS

The role of network optimization theory in cooperative
control was introduced in [21], and was used in [23], [24] to
solve the synthesis problem for multi-agent systems. In this
section, we provide an overview of the main results from
these works.

A. The Closed-Loop and Steady-States

Consider a collection of agents interacting over a network
G = (V,E). Assign to each node i ∈ V (the agents) and
each edge e ∈ E (the controllers) the dynamical systems,

Σi :

{
ẋi = fi(xi, ui)
yi = hi(xi, ui)

, Πe :

{
η̇e = φe(ηe, ζe)
µe = ψe(ηe, ζe)

. (1)

We consider stacked vectors of the form u = [uT1 , . . . , u
T
|V|]

T

and similarly for y, ζ and µ and the operators Σ and Π.
The network system is diffusively coupled with the controller
input described by ζ = ETG y, and the control input to each
system by u = −EGµ. This structure is illustrated in Fig. 1
and we denote the closed-loop system above by the triple
(G,Σ,Π).

Of interest for these systems are the steady-state solutions,
if they exist, of the closed-loop. Suppose that (u, y, ζ, µ) is
a steady-state of the system. Then (ui, yi) is a steady-state

Fig. 1. Block-diagram of the closed loop.

input-output pair of the i-th agent, and (ζe, µe) is a steady-
state pair of the e-th edge. This motivates the following
definition, originally introduced in [21].

Definition 1. The steady-state input-output relation k of a
dynamical system is the collection of all steady-state input-
output pairs of the system. Given a steady-state input u and
a steady-state y, we define

k(u) = {y : (u, y) ∈ k} and k−1(y) = {u : (u, y) ∈ k}.

Let ki be the steady-state input-output relation for the
i-th agent, γe be the steady-state input-output relation for
the e-th controller, and k, γ be their stacked versions. Then,
the network interconnection shown in Fig.1 imposes on the
closed-loop steady-states (u, y, ζ, µ) that y ∈ k(u), ζ = ETG y,
µ ∈ γ(ζ), and u = −EGµ. Equivalently stated, y is a
steady-state for the system (G,Σ,Π) if and only if 0 ∈
k−1(y)+EGγ(ETG y). The above expression summarizes both
the dynamic and algebraic constraints that must be satisfied
by the network system to achieve a steady-state solution.

B. MEIP Systems and Convergence of the Closed-Loop

Convergence of the system (G,Σ,Π) can be guaranteed
under a passivity assumption on the agent and controller
dynamics [21].

Definition 2 (Maximal Equilibrium Independent Passivity [21]).
Consider the dynamical system of the form

Υ :

{
ẋ = f(x, u)

y = h(x, u),
(2)

with steady-state input-output relation r. The system Υ is
said to be (output-strictly) maximal equilibrium independent
passive (MEIP) if the following conditions hold:

i) The system Υ is (output-strictly) passive with respect
to any steady state pair (u, y) ∈ r.

ii) The relation r is maximally monotone. That is, if
(u1, y1), (u2, y2) ∈ r then either (u1 ≤ u2 and y1 ≤
y2), or (u1 ≥ u2 and y1 ≥ y2), and r is not contained
in any larger monotone relation [26].

Such systems include simple integrators, gradient systems,
Hamiltonian systems on graphs, and others (see [21], [24] for
more examples). We remark that the monotonicity require-
ment is used to prove existence of a closed-loop steady-state,
see [21] or [24] for more details.
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Theorem 1 ( [21], [23]). Consider the closed-loop system
(G,Σ,Π). Assume that the agents Σi are MEIP, and that
the agents Πe are output-strictly MEIP. Then the signals
u, y, ζ, µ of the closed-loop system converge to some steady-
state values u, y, ζ, µ satisfying 0 ∈ k−1(y) + EGγ(ETG y).

III. MOTIVATION AND PROBLEM FORMULATION

The problem of network identification we aim to solve can
be stated as follows. Given a multi-agent system (G,Σ,Π),
determine the underlying graph structure G from the network
measurements and an appropriately designed exogenous
input w. Many works on network identification consider
networks of consensus-seeking agents [12], [13],

ẋi =
∑
{i,j}∈E

αij(xj − xi) +Biwi, (3)

where wi is the controlled exogenous input for the i-th agent,
and αij = αji are the coupling coefficients. We consider a
more general case of (possibly nonlinear) agents interacting
over a modified protocol,

ẋi = fi(xi) +
∑
{i,j}∈E

αijgij(hj(xj)− hi(xi)) +Biwi, (4)

where xi ∈ R , and fi, gij , hi : R→ R are smooth functions.
1 Examples of systems governed by (4), for appropriate
choice of functions fi, gij , hi, include traffic control models
[27], neural networks [28], and the Kuramoto model for
synchronizing oscillators [29]. We let f, g, h denote the
stacked versions of fi, gij , hi.

In this work, we shall restrict ourselves to the case of
αij = 1, i.e., of unweighted graphs [12]. Furthermore, in
the model (3), the standard assumption is that only certain
agents can be controlled using the exogenous input wi (i.e.,
Bi = 0 is possible), and one can observe the outputs of only
certain agents. To simplify the presentation, we assume that
the exogenous output wi can be added to all agents, and that
the output of all agents can be observed. In that case, we
can assume without loss of generality that Bi = 1.

We note that the system (4) is a special case of the closed-
loop presented in Fig. 1, where the agents and the controllers
are given by

Σi :

{
ẋi = fi(xi) + ui + wi
yi = hi(xi)

, Πij : ζij = gij(µij), (5)

and the network is connected using the diffusive coupling
ζ = ETG y and u = −EGµ. We would like to use the
mechanisms presented in Section II to establish network
identification results. We make the following assumptions on
the agents and controllers, allowing us to use the framework
presented in section II. With this model, we will often write
the closed-loop as (G,Σ, g).

Assumption 1. The systems Σi, for all i ∈ V, are output-
strictly MEIP. Furthermore, the controllers Πe, for all e ∈ E,
are MEIP, i.e., gij are monotone ascending functions.

1The functions gij are defined for all pairs, even those absent from the
underlying graph. It is often assumed in multi-agent systems that each agent
knows to run a given protocol (i.e., consensus).

Assumption 2. The inverse of the steady-state input-output
relation for each agent, k−1i (yi), is a smooth function of yi.
Furthermore, we assume that gij(ζij) is a smooth function
of ζij , and that the derivative dgij

dζij
> 0 for all ζij ∈ R.

Assumption 2 implies that the integral function K?
i as-

sociated with k−1i [21] is smooth and ∇K?
i = k−1i . The

assumption on gij implies that gij is strictly monotone
ascending, and the stronger assumption is made mainly to
avoid heavy technical tools.

We will also consider the special case where the agents
and controllers are described by linear and time-invariant
(LTI) dynamics. For such systems, the input-output relation
ki for each agent is linear and strictly monotone, and so is
the function gij . When Σi is an integrator, the input-output
relation is given as {(0, y) : y ∈ R}. In these cases, k−1i
is a linear function over R. In particular, k−1i (xi) = aixi
for some constant ai ≥ 0. We can then define the matrix
A = diag(a1, . . . , an) such that k−1(x) = Ax. Similarly,
we denote gij(xij) = bijxij , where bij > 0, and B =
diag(· · · , bij , · · · ) > 0.

We can now formulate two fundamental problems of
network detection that we will consider.

Problem 1. Consider the network system (G,Σ,Π) of the
form (4) satisfying Assumptions 1 and 2 with known steady-
state input-output relations for the agents and controllers.
Design the control inputs wi so that it is possible to differ-
entiate the network system (G,Σ,Π) from the network system
(H,Σ,Π), when H 6= G.

Problem 2. Consider the network system (G,Σ,Π) of the
form (4) satisfying Assumptions 1 and 2 with known steady-
state input-output relations for the agents and controllers,
but unknown network structure G. Design the control inputs
wi such that together with the output measurements of the
network, it is possible to reconstruct the graph G.

We aim for a solution of both problems, starting with the
Problem 1 in the sequel. We will later show how to augment
the algorithm solving Problem 1 to solve the harder problem
Problem 2.

Note the framework developed in [21] requires constant
signals for exogoneous inputs. Thus, we will consider con-
stant wi, and denote them as wi. For similar reasons, we
can only consider the output measurements of the system
in steady-state when reconstructing the graph G. However,
in practice we may not be able to wait for the system to
converge, and can only know the terminal state up to some
approximation error. We will deal with this issue by giving
a bound on the error one can tolerate.

IV. DISTINGUISHING BETWEEN DIFFERENT NETWORKS

In this section, we develop the notion of indication vectors
used for solving Problem 1, and provide different methods
for constructing them.

A. The Basic Equation and Indication Vectors
We consider a network system of the form (5). We first

study constant exogenous input vectors w that can differen-
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tiate between two different network systems (G,Σ,Π) and
(H,Σ,Π). In this direction, we provide a result relating the
constant exogenous inputs w to the network steady-states.

Proposition 1. Under Assumptions 1 and 2, for any w ∈ Rn,
the vector y ∈ Rn is a steady-state of the closed loop system
(G,Σ,Π) if and only if

k−1(y) + EGg
(
ETG y

)
= −w. (6)

Proof. The result follows directly from Theorem 1 using
γ(ζ) = g(ζ), k−1(y) = u + w and the network connection
ζ = ET y, u = −Eµ. We note that this is an equality and
not inclusion due to Assumption 2.

We denote a solution of (6) as yG . Furthermore, we note
that (6) is graph dependent, and that the steady-state output
yG can be measured from the network (as the network
converges to a steady-state by Theorem 1). The idea now is
to choose the bias vectors w wisely so that different graphs
will have different terminal outputs.

Definition 3. Consider a closed-loop system of the form (4)
satisfying Assumptions 1 and 2, where the controllers gij
have been determined for all possible pairs {i, j}. Let G be
a collection of graphs over n vertices. A vector w ∈ Rn is
called a G-indication vector if for any two graphs G,H ∈ G
with G 6= H, the steady-state output of (G,Σ, g) is different
from the steady-state output of (H,Σ, g). In other words, one
has that yG 6= yH.

Assume for now that the agents and controllers are LTI.
We can now restate (6) in a new manner, involving linear
inequalities. In turn, this will manifest in stronger results
later. The following result will be useful in the analysis.

Proposition 2. If A 6= 0, then for any connected graph G,
the matrix S = A+ EGBETG is invertible.

Proof. Note that EGBETG ≥ 0 and that A ≥ 0, implying that
S ≥ 0. Furthermore, the kernel of EGBETG consists solely of
the span of the all-ones vector, 1. It follows that 1TA1 =∑|V|
i=1 ai > 0, completing the proof.

Proposition 2 allows an explicit form for (6) for the case
A 6= 0 by inverting the matrix in question,

yG = −(A+ EGBETG )−1w = −XG,A 6=0w.

If A = 0, however, we note that for any G ∈ G, the linear
operator EGBETG preserves Im(EG) = 1⊥, and moreover,
it is invertible when restricted to it. Thus, we denote the
restriction of EGBETG on 1⊥ by YG , and obtain

yG = −YGProj1⊥w = −XG,A=0w.

These linear relations between the steady-state output yG
and the constant exogenous input w allows for an easier
statement of the definition of indication vectors.

Proposition 3. For LTI agents and controllers, and for a
vector w ∈ Rn, the following statements hold:

i) If A 6= 0, w is a G-indication vector if and only
if for any two different graphs G,H ∈ G, we have
XG,A 6=0w 6= XH,A 6=0w.

ii) If A = 0, w is a G-indication vector if and only if any
two different graphs G,H ∈ G, we have XG,A=0w 6=
XH,A=0w.

We will use XG for notational simplicity. We first note the
following interesting property of XG .

Proposition 4. If G 6= H then XG 6= XH.

Proof. Suppose first that A 6= 0. We can reconstruct the
weighted graph Laplacian EGBETG from XG using the rela-
tion EGBETG = −A+X−1G , thus XG = XH implies G = H,
as B > 0. If A = 0, we note that YG = −X−1G on the set 1⊥.
This determines the graph Laplacian, as it is the projection of
the weighted graph Laplacian on 1⊥ = ker(EGBETG )⊥.

After restating the definition of indication vectors for LTI
systems, we return to the case of general agents and con-
trollers satisfying Assumptions 1 and 2. Given an indication
vector w, we can quantify how much it can differentiate
between different graphs. We do so with the following
definition.

Definition 4. The separation index of w, denoted ε = ε(w),
is defined as the minimal distance between yG and yH where
G 6= H, i.e., ε = minG6=H ‖yG−yH‖, where the minimization
is over all graphs in G.

Remark 1. The separation index ε acts as a bound on the
error we can tolerate when computing the steady-state output
of the closed-loop system. This error can be comprised of
both numerical errors, as well as errors arising from early
termination of the system (i.e., before reaching steady-state).
Indeed, suppose we want to differentiate between G,H. We
know that ‖yG − yH‖ ≥ ε. Suppose we have the terminal
output y of the closed-loop system for either G or H. By the
triangle inequality, if ‖y − yG‖ < 0.5ε then ‖y − yH‖ ≥
0.5ε and vice versa. Thus, if we know that the sum of the
numerical and early termination errors is less than 0.5ε, we
can correctly choose the underlying graph by choosing which
of yG and yH is closer to y.

Remark 2. Consider the case of LTI agents and controllers.
In that case, Proposition 3 implies that the relation between
yG and w is linear. Thus, for any constant β > 0, the
separation index satisfies ε(βw) = βε(w).

B. Methods of Choice for Indication Vectors

We now explore how to construct indication vectors for a
multi-agent system of the form (4) satisfying Assumptions
1 and 2. In this sub-section, we present several methods for
doing so.

Randomization: Our first approach is to construct the
indication vectors via randomization. We claim that random
vectors w ∈ Rn are indication vectors with probability 1.
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Theorem 2. Let P be any continuous probability distribution
on Rn, and let G be any collection of graphs over n nodes.
Then P(w is a G-indication vector) = 1.

Proof. Recall that w is not an indication vector if and only
if there are two distinct graphs G1,G2 and a vector y ∈ R|V|
such that

k−1(y) + EGig(ETGiy) = −w, i = 1, 2.

Subtracting each equation from the other gives

EG1g(ETG1y)− EG2g(ETG2y) = 0. (7)

For each G1,G2, the collection of solutions to (7) forms a
set, and note that w is an indication vector if and only if the
solutions y are not in any of these sets. Define

F (y) = EG1g(E
T
G1y)− EG2g(E

T
G2y),

so that F : Rn → Rn is a smooth function. Its differential
is given by

∇F (y) = EG1∇g(E
T
G1y)E

T
G1 − EG2∇g(E

T
G2y)E

T
G2 ,

where ∇g = diag(
dgij
dζij

) is the derivative of g. Because
dgij
dζij

> 0 by Assumption 2, ∇F (y) is the difference of two
weighted graph Laplacians, with underlying graphs G1,G2
and positive weights. Thus ∇F never vanishes, and the
implicit function theorem implies that the solutions of (7)
form a zero measure set. Thus w is an indication vector if
and only if the solutions y are not in the finite union of the
zero measure sets defined by (7), i.e., a zero-measure set.

The mapping between −w and y, −w = k−1(y) +
EGg(ETG y) = G(y), is smooth and strictly monotone, mean-
ing that it is the gradient of a strictly convex and smooth
function. Thus, the inverse function y = G−1(w) is a smooth
and strictly convex function, as the gradient of the dual
function, which is also strictly convex and smooth [22]. This
implies that G−1 is absolutely continuous [30], sending the
zero measure sets to zero measure sets. In turn, the set that
y has to avoid (for w to be an indication vector) is zero-
measure, meaning that the corresponding set that w has to
avoid is also zero measure. But P is a continuous probability
measure, and thus the probability of the zero-measure set that
w has to avoid is zero. This completes the proof.

This method works under the Assumptions 1 and 2, but
can produce stronger results when considering LTI agents
and controllers. In particular, we can estimate the separation
index of a randomly chosen vector.

Corollary 1. Suppose the agents and controllers are LTI.
Furthermore, suppose that w is sampled according to the
standard Gaussian probability measure P on Rn. Define β =
min{a1, ..., an} if A 6= 0, and β = min{bij}/

(
n
2

)
otherwise.

Then for any δ > 0, the separation index ε = ε(w) satisfies
δ ≤ ε with probability ≥ 1−2n

2

(2Φ(δ/2β)−1), where Φ is
the cumulative distribution function of a standard Gaussian
random variable.

See [31] for the proof., omitted due to lack of space.

Remark 3. Corollary 1 and Remark 2 give a viable method
for assuring that the distance between different terminal
states of the system (corresponding to different base graphs)
is as large as desired. First, choose a desired degree of
security p, which is the probability of the choice to be
successful (say p = .9999). Choose δ so that p ≤ 1 −
2n

2

(2Φ(δ/2β) − 1). Now choose w randomly according to
a standard Gaussian distribution, and multiply it by 1/δ.

Let us present another, more constructive approach for
designing indication vectors, building upon number theory.

Bases of Computation: For the rest of this subsection,
we continue with LTI agents. We can apply this method if
the elements of A are rational. In this case, the elements
of XG are all rational. The idea is that we can reconstruct
the entries of XG from XGw if w is of the form w =
[1,M,M2, ...,Mn−1]T for M large enough.

Example 1. Suppose that C = [a, b, c] is a vector with
positive integer entries having a numerator no greater than
9. Take w = [1, 10, 100]T . Then Cw = a+ 10b+ 100c is a
three-digit number, and we can reconstruct C by looking at
the three digits individually - a is the unit digit, b is the tens
digit, and c is the hundreds digit.

We can generalize this to a more general framework.

Theorem 3. Suppose that A,B are rational, the denomina-
tors of all entries of the matrices {XG}G∈G divide D, and
that the numerator (in absolute value) is no larger than N .
Let M be any integer larger than (2N+1)D. Then the vector
w = [1,M, ...,Mn−1]T is a G-indication vector.

Proof. Each element in the product XGw corresponds to
a single row of XG multiplied with w, so it’s enough to
reconstruct a row. We take a single row of XG and mark it
as [p1q1 , · · · ,

pn
qn

]T , where |pi| ≤ N and qi divides D. We let
R = (XGw)i. Therefore,

R =
[ p1
q1

· · · pn
qn

]
w =

p1
q1

+
p1
q1
M + · · ·+ pn

qn
Mn−1.

We can define mi = D
q1

, which is an integer no larger than
D, and multiply both sides of the equation by D to obtain

DR = m1p1 +m2p2M + · · ·+mnpnM
n−1.

Note that mipi is an integer lying between −ND and ND.
We can add

∑n−1
i=0 (NDM i) to both sides of the equation,

leading to

DR+

n−1∑
i=0

(NDM i) = (m1p1+ND)+· · ·+(mnpn+ND)Mn−1.

The left hand side is known, and the coefficients in the right
hand side are integers between 0 and 2ND. Thus, writing
DR +

∑n−1
i=0 (NDM i) in the system with radix M , the

numbers mipi + ND can be computed by looking at the
individual digits. Deducting ND and dividing by D gives
all of the entries pi

qi
, allowing reconstruction.
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V. INDICATION VECTORS FOR NETWORK DETECTION

Up to now, we have dealt with indication vectors, which
give an easy way of solving Problem 1, i.e., differentiating
between closed-loop systems of the form (4) which differ
only on underlying graph level. We claim that we can
go a step further and solve Problem 2, i.e., reconstructing
the underlying graph of a system of the form (4). We
now present the network reconstruction scheme based on
indication vectors. The key notion that will allow us to take
the leap is through the use of appropriate look-up tables.

Look-up tables are tables comprising of two columns, one
called the key and the other called the value, that act like
oracles and are designed to decrease runtime computations.
The key is usually easy to come by, and the value is
usually harder to find. Examples of look-up tables include
mathematical tables, like logarithm tables and sine tables.
Other examples include phone books and other databases
like hospital or police records.

We now state the main result about network detection for
general agents and controllers, focusing on the LTI case later.

Proposition 5. Let (G,Σ, g) be a network system of the form
(4) satisfying Assumptions 1 and 2. Then for any indication
vector w, there exists an algoritgm solving Problem 2 using
only a single exogenous output, namely w.

Proof. Let G be the collection of all graphs on n vertices. We
construct a G-indication vector w using Theorem 2. Before
running the system, we build a lookup table with keys being
graphs H ∈ G, and values being the outputs yH, which can
be computed by (6). Now, run the closed-loop system with
the input w. By definition of a G-indication vector, we know
that the terminal output y of closed-loop system completely
classifies the underlying graph G, i.e., different underlying
graphs give rise to different terminal outputs. We can now
reconstruct the graph G by comparing y to the values of the
look-up table, finding the graph H minimizing ‖y − yH‖.
Then because w can differentiate the systems (G,Σ, g) and
(H,Σ, g) if G 6= H, we must have that G = H.
Remark 4. In the proof above, we assumed that the closed-
loop system is run until the output converges. However, in
practice, both numerical errors and early termination errors
give us a skewed value of the true terminal output of the
closed-loop system, as was discussed in Remark 1. In the
algorithm presented above, we can tolerate an error of up
to 0.5ε(w) in the value of y.

Remark 5. We should note that in order to implement the
network detection scheme in the proof of Proposition 5, we
need an observer with access to the look-up table, the output
of all of the agents, and the input w. This network detection
scheme is not distributed in the sense that it requires one
observer to know the outputs of all of the agents. The size of
the look-up table increases rapidly with the number of nodes
if we don’t assume anything about the underlying graph. One
should note that should recall that the computation can be
done offline, and that it can be completely parallelized - we
are just comparing the entries of the table to the measured

output. Furthermore, if we add additional assumptions on
the graph (e.g., the underlying graph is a subgraph of
some known graph), the size of the look-up table drops
significantly.

We can prove a stronger result for the case of LTI agents
and controllers, namely a distributed implementation strategy
and an analysis of the algorithm complexity.

Theorem 4. Let (G,Σ, g) be a network system of the form
(4) satisfying Assumptions 1 and 2, consisting of LTI agents
and controllers, and that the matrices A,B have rational
entries. Then there exists a distributed O(n3) algorithm
solving Problem 2. It requires to run the system only once,
with a specific constant exogenous input w.

Remark 6. In the case of LTI agents and controllers,
finding the graph G is roughly equivalent to finding XG . The
distributive nature of the algorithm is manifested in the fact
that the i-th row of XG is computed solely from the terminal
output of the i-th agent.

Proof. We pick an indication vector using the method of
Theorem 3. The proof of Theorem 3 gives an easy way to
reconstruct XG’s i-th row from the output of the i-th agent,
taking O(n) time. Doing this for all agents takes O(n2)
times, and gives us XG . Afterward, we can reconstruct the
graph Laplacian using the formula EGBETG = −A−X−1G in
O(n3) time, and then find the underlying grpah by looking
at the non-zero off-diagonal entries of it.

Note 1. In the LTI case, we do not use look-up tables, but
give a different solution relying on bases of computation.
This allows us to have only a polynomial increase in time,
and exempts us from worrying about storage issues.

VI. CASE STUDY : NEURAL NETWORK

We consider a continuous neural network, as appearing in
[32], on n neurons of one species. The governing ODE is,

V̇i = −
1

τi
Vi + bi

∑
j∼i

(tanh(Vj)− tanh(Vi)) + wi (8)

where Vi is the voltage on the i-th neuron, τi > 0 is the self-
correlation time of the neurons, bi is a coupling coefficient,
and the external input wi is any other input current to
neuron i. This is a scenario similar to the one depicted in
[33]. We run the system with 10 neurons. The correlation
times were chosen randomly between 0.5sec and 1sec. The
homogeneity requirement on the network forces us to take
equal bi-s over all agents, and we choose bi = 0.1. We
note that the agents, modeled by ẋi = − 1

τi
xi + ui; yi =

tanh(xi), are output striclty MEIP, as the following storage
function can be used for to prove output-strict passivity
with respect to (ui, tanh(τiui)), Vi(xi) =

∫ xi

0
tanh(s)ds −∫ τiui

0
tanh(s)ds− tanh(τiui)(x− τiui).

We choose an indication vector as in the proof of Proposi-
tion 5, and run the system with the original underlying graph,
showing in Fig. 2(a). The output of the system can be seen
in Fig. 2(b). We first run the system for 10 seconds (enough
for convergence). After 10 seconds, the red edge in Fig. 2(a)
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(a) The interaction graph. The
red edge is cut after 10sec, and
the blue edge is cut after 20sec.
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(b) Trajectories of the neural network
(8) with changes in the underlying
network.

Fig. 2. Simulation of a neural network.

gets cut off. We can see that the output of agent #6 (in light
blue) and agent #10 (in yellow) change meaningfully, so we
are able to detect the change in the underlying graph. After
ten more seconds, we also remove the blue edge. We see
that again the outputs of two agents, #1 (in black) and #2
(in pink), are changed by a measurable amount, allowing to
detect the second change in the underlying graph. Finally,
after 20 seconds, we reintroduce both removed edges. We
can see that the system returns to its original steady-state.

VII. CONCLUSION

In this work we presented a procedure operating on a
network system that allows for the reconstruction of the
underlying network assuming only prior knowledge on the
agents. This was done through the novel notion of indi-
cation vectors, that were achieved for general maximally
equilibrium-independent passive agents, allowing for detec-
tion of the underlying network in a very general case. We
have found stronger results for LTI agents, allowing a dis-
tributed cubic-time reconstruction of the underlying network,
while dealing with numerical errors present in the system.
We have exhibited the use of indication vectors in network
detection, and demonstrated the results in a simulation.
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