
Cluster Assignment in Multi-Agent Systems
Miel Sharf

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden
sharf@kth.se

Daniel Zelazo
Faculty of Aerospace Engineering

Technion - Israel Institute of Technology
Haifa, Israel

dzelazo@technion.ac.il

Abstract—We study cluster assignment in multi-agent net-
works. We consider homogeneous diffusive networks, and focus
on design of the graph that ensures the system will converge to
a prescribed cluster configuration, i.e., specifying the number of
clusters and agents within each cluster. Leveraging recent results
from cluster synthesis, we show that it is possible to design an
oriented graph such that the action of the automorphism group
of the graph has orbits of predetermined sizes, guaranteeing that
the network will converge to the prescribed cluster configuration.
We provide upper and lower bounds on the number of edges that
are needed to construct these graphs along with a constructive
approach for generating these graphs. We support our analysis
with some numerical examples.

Index Terms—Multi-Agent Systems, Graph Theory, Cluster-
ing, Diffusively-Coupled Systems

I. INTRODUCTION

The process of reaching an agreement between agents is
one of the fundamental tasks for a multi-agent system (MAS).
Indeed, agreement protocols, the decision rule implemented by
each agent that enables them to distributedly reach agreement,
appear across many diverse fields. These include distributed
computation [1], robotics [2], biochemical systems [3], and
sensor networks [4]. A natural extension to the agreement
problem is the cluster agreement problem, which seeks to
drive agents into groups. All the agents within the same group
should then reach an agreement. The clustering problem also
appears in many areas including neuroscience [5], biomimicry
of swarms [6], and social networks [7].

Various approaches have been used to study clustering,
e.g. exploiting the structural balance of the underlying graph
[8], pinning control [9], inter-cluster nonidentical inputs [10],
and network optimizaton [11]. Our approach to the cluster
agreement problem is to leverage notions of symmetry within a
multi-agent system. Symmetry of graphs has recently emerged
as an important property for multi-agent systems, in particular
in the study of controllability and observability properties of
these systems [12]–[15].

In our recent work [16], we introduced the notion of the
weak automorphism group of an MAS. This new notion of
symmetry for MAS combines two ideas: the automorphism
group for graphs and weak equivalence of dynamical systems.
Graph automorphisms are known to capture notions of symme-
tries for graphs, while weak equivalence of dynamical systems

This research was supported by grant no. 2285/20 from the Israel Science
Foundation

aims to characterize similarities of heterogeneous dynamical
agents in terms of their achievable steady-states. The weak
automorphisms of an MAS can be thought of, therefore, as a
permutation of the nodes in the underlying graph that preserves
graph symmetries together with certain input-output properties
(i.e., steady-state maps) of the associated agents. We focused
on clustering for diffusively coupled networks, as shown in
Figure 1. Under appropriate passivity assumptions for the
agent dynamics, we showed that these diffusively coupled
networks converge to a clustered solution in the steady-state,
where two agents are in the same cluster if and only if there
exists a weak automorphism mapping one to the other. Thus,
the clustering of the MAS can be understood by studying the
action of the weak automorphism group on the underlying
interaction graph.

In this work we focus on homogeneous networks, that is
networks where the agent dynamics are all identical, noting
that the weak automorphism group of the network is identical
to the automorphism group of the underlying graph in this
case. The problem we aim to solve is how to design graphs
that ensure the networked system will converge to a prescribed
cluster configuration, i.e., specifying the number of clusters
and the number of agents within each cluster. Employing tools
from group theory, we show that it is possible to design an
oriented graph such that the action of the automorphism group
of the graph has orbits of specified sizes determined by the
designer. We provide upper and lower bounds on the number
of edges that are needed to construct these graphs. The proof
of these results in turn provide a constructive approach for
generating these graphs. We support our analysis with some
numerical examples.

The rest of the paper is organized as follows. Section II
reviews basic concepts related to network systems and group
theory required to define a notion of symmetry for multi-
agent systems. In Section III, the main results related to
cluster assignment are given. This section also presents some
numerical studies to demonstrate the theory. Finally, some
concluding remarks are offered in Section IV.

Notations: This work employs basic notions from graph
theory [17]. An undirected graph G = (V,E) consists of a
finite set of vertices V and edges E ⊂ V × V. We denote
by k = {i, j} ∈ E the edge that has ends i and j in V.
For each edge k, we pick an arbitrary orientation and denote
k = (i, j) when i ∈ V is the head of edge k and j ∈ V the

2022 The 13th Asian Control Conference (ASCC 2022)

Jeju Island, Korea, May 4-7, 2022

978-89-93215-23-6/22/$31.00 ⓒACA 947
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 02,2024 at 11:55:08 UTC from IEEE Xplore. Restrictions apply.

E ET

ζ(t)µ(t)

u(t) y(t)
Σ1

Σ2

Σ|V|

. . .

Π1

Π2

Π|E|

. . .

Fig. 1. A diffusively coupled network.

tail. A path is a sequence of distinct nodes v1, v2, . . . , vn such
that {vi, vi+1} ∈ E for all i. A cycle is the union of a path
v1, . . . , vn with the edge {v1, vn}. A simple cycle is a cycle
whose vertices are all distinct. A graph is called connected if
there is a path between any two vertices, and a graph is called
a tree if it is connected but contains no simple cycles.

The incidence matrix of G, denoted E ∈ R|E|×|V|, is defined
such that for edge k = (i, j) ∈ E, [E]ik = +1, [E]jk = −1,
and [E]ℓk = 0 for ℓ ̸= i, j. For a graph G, an automorphism
of G is a permutation ψ : V → V such that i is connected
to j if and only if ψ(i) is connected to ψ(j). We denote its
automorphism group by Aut(G). Lastly, the greatest common
divisor of two positive integers m,n is denoted by gcd(m,n),
and their least common multiple is denoted by lcm(m,n).
Note that lcm(m,n) = mn

gcd(m,n) always holds.

II. SYMMETRIES IN NETWORKED SYSTEMS

In this section we provide background on the notion of sym-
metries for multi-agent systems originally proposed in [16].

A. Diffusively Coupled Networks

In this subsection, we describe the structure of the network
dynamical system studied in [18]. Consider a collection of
agents interacting over a network G = (V,E). The nodes i ∈ V
are assigned dynamical systems Σi, and the edges e ∈ E are
assigned controllers Πe, having the following form:

Σi :

{
ẋi = fi(xi, ui)

yi = hi(xi, ui),
Πe :

{
η̇e = ϕe(ηe, ζe)

µe = ψe(ηe, ζe)
. (1)

We consider stacked vectors of the form u = [uT1 , ..., u
T
|V|]

T

and similarly for y, ζ and µ. The network system is diffusively
coupled with the controller input described by ζ = ET y,
and the control input to each system by u = −Eµ, where
E is an incidence matrix of the graph G. This structure is
denoted by the triplet (G,Σ,Π), and is illustrated in Fig. 1.
In this work we focus on homogeneous networks, i.e., where
all the agent dynamics and control dynamics are the same.
In [18] it was shown that the network converges to a steady-
state satisfying the interconnection constraints if the agents
and controllers are (output-strictly) maximum equilibrium
independent passive (MEIP). This property can be thought of
as an extension of equilibrium independent passivity developed
in [19]. The details of these definitions are not essential for the
development of this work, and the interested reader is referred

to [18], [20] for more details. For the rest of this paper, we
will assume one of the following two alternatives. If this is
not the case, see [21], [22] for plant augmentation techniques.

Assumption 1. The agents Σi are output-striclty MEIP and
the controllers Πe are MEIP.

Assumption 2. The agents Σi are MEIP and the controllers
Πe are output-strictly MEIP.

A final technical definition is needed to characterize the
steady-states of the network. Indeed, embedded in our passiv-
ity assumption is a requirement that each agent and controller
converge to steady-state outputs given a constant input. This
allows us to define a relation between constant inputs to
constant outputs that we call the steady-state input/output
relation of a system; see [18]. We denote the steady-state
input-output relations of the node i and the edge e by ki and
γe, respectively. For example, for agent i, we say that (ui, yi)
is a steady-state input/output pair if yi ∈ ki(u).

Definition 1 ([16]). Two dynamical systems Σ1 and Σj are
called weakly equivalent if their steady-state input-output
relations are identical.

Examples of weakly equivalent systems are given in [16].

B. Group Theory, Graph Automorphisms, and Symmetric MAS

The main tool we use to facilitate clustering is symmetry,
which is usually modelled using the mathematical theory of
group theory [23]. There are many possible ways to define
what a group is, and we choose the most concrete one:

Definition 2. Let X be a set, and let G be a collection of
invertible functions X → X . Then G is called a group if for
any G ∋ f, g : X → X , both the composite function f ◦g and
the inverse function f−1 belong to G.

Colloquially, the group G defines a collection of symmetries
of the set X . The action of the group G on X allows us to
identify certain elements of X which are symmetric.

Definition 3. Let G be a group of functions X → X . We say
that x, y ∈ X are exchangeable (under the action of G) if
there is some f ∈ G such that f(x) = y. The orbit of x ∈ X
is the set of elements which are exchangeable with X .

Exchangeability was considered in [16] to identify the clus-
tering behavior of a multi-agent system. Namely, the different
clusters corresponded to the different orbits of a certain group.

Proposition 1. Let G be a group of functions X → X . Then
the set X can be written as the union of disjoint orbits.

In this paper, we focus on the automorphism group Aut(G)
of an (oriented) graph G. Namely, fixing an oriented graph
G = (V,E), a graph automoprhism is a permutation ψ : V →
V such that if (i, j) ∈ E, then (ψ(i), ψ(j)) ∈ E. In that case,
we abuse the notation and say that Aut(G) acts on G (rather
than on V).

948
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 02,2024 at 11:55:08 UTC from IEEE Xplore. Restrictions apply.

Finally, we combine the notions of automorphisms for
graphs with diffusively coupled networks comprised of agents
that are weakly equivalent.

Definition 4. Let (G,Σ,Π) be any multi-agent system for SISO
agents. A weak automorphism of a MAS is a map ψ : V → V
such that the following conditions hold:

i) The map ψ is an automorphism of the graph G.
ii) For any i ∈ V, Σi and Σψ(i) are weakly equivalent.

iii) For any e ∈ E, Πe and Πψ(e) are weakly equivalent.
iv) The map ψ preserves edge orientation.

We denote the collection of all weak automorphisms of
(G,Σ,Π) by Aut(G,Σ,Π). Naturally, this is a subgroup of
the group of automorphisms Aut(G) of the graph G.

III. CLUSTER ASSIGNMENT IN MAS
We now turn our attention to the problem of clustering in

MAS. Specifically, we focus on the case where the agents
are homogeneous, i.e. they have the exact same model. In
that case, we restrict ourselves by requiring that the edge
controllers (1) are also homogeneous.

In [16] we proposed a symmetry-based framework to under-
stand the clustering behaviour of a multi-agent system, through
Definition 4. The main result from [16] can be summarized
below.

Theorem 1 ([16]). Consider the diffusively-coupled system
(G,Σ,Π), and suppose that either Assumption 1 or Assump-
tion 2 hold. Then for any steady-state y =

[
y1 · · · y|V|

]T
of the closed-loop and any weak automorphism ψ ∈
Aut(G,Σ,Π), it follows that Pψy = y, where Pψ is the
permutation matrix representation of ψ.

This result can in fact be used to show that the system
converges to a clustering configuration. The clusters are de-
termined by the orbits of the weak automorphism group.
Here, one considers diffusively-coupled networks (G,Σ,Π)
satisfying either Assumption 1 or 2. Under this assumption, the
closed-loop network is known to converge, and the invariance
properties of the steady-state limit are studied. Focusing on
homogeneous networks, [16] further identified the value of
γe(0) as decisive. Namely, [16] shows that if 0 ∈ γe(0) for
all e ∈ E, then the closed-loop network (G,Σ,Π) converges
to consensus, and otherwise it displays a clustering behavior.
Namely, for homogeneous networks, two nodes i, j ∈ V are
in the same cluster whenever i, j ∈ V are exchangable under
the action of Aut(G), and the converse is almost surely true.

Although [16] presents an extensive study toward under-
standing the clustering behaviour of diffusively-coupled multi-
agent systems, it does not offer a synthesis procedure toward
solving the clustering problem:

Problem 1. Consider a collection of n homogeneous agents
{Σi}i∈V, and let r1, . . . , rk be positive integers which sum to
n. Find a graph G = (V,E) and homogeneous edge controllers
{Πe}e∈E such that the closed loop network converges to
a clustered steady-state, with a total of k clusters of sizes
r1, . . . , rk.

The goal of this section is use the tools of [16] to solve
Problem 1. As described above, this can be achieved in
two steps. We first make the following assumption about the
controllers:

Assumption 3. The homogeneous MEIP controllers are cho-
sen so that 0 ̸∈ γe(0) for any edge e ∈ E.

Second, given the desired cluster sizes r1, . . . , rk, we seek
an oriented graph G = (V,E) such that the action of Aut(G)
on G has orbits of sizes r1, . . . , rk. Moreover, we desire that
the oriented graph G will be weakly connected1 to assure a
flow of information throughout the corresponding diffusively-
coupled network. If we find such a graph, the results of
[16] guarantee that the desired clustering behavior is achieved
almost surely, so long that Assumption 3 holds. We make the
following definition for the sake of brevity, and define the
corresponding problem:

Definition 5. The oriented graph G is said to be of type
OS(r1, . . . , rk) if it is weakly connected and the action of
Aut(G) on G has orbits of sizes r1, . . . , rk.2

Problem 2. Given positive integers r1, . . . , rk, determine if
an oriented graph of type OS(r1, . . . , rk) exists, and if so,
construct it.

Additionally, running the system with an underlying graph
G requires means to implement the corresponding intercon-
nections. For that reason, graphs with fewer edges are more
desirable. We wish to understand how many edges does a di-
rected graph of type OS(r1, . . . , rk) require. This is formalized
in the next result.

Theorem 2. Let r1, . . . rk be any positive integers, and let
n = r1 + . . .+ rk

i) Any directed graph of type OS(r1, . . . , rk) has at least m
edges, where

m = min
T tree on k vertices

∑
{i,j}∈T

lcm(ri, rj). (2)

ii) There exist a directed graph of type OS(r1, . . . , rk) with
at most M edges, where

M = min
T path on
k vertices

(∑
{i,j}∈T

lcm(ri, rj)

)
+min

i∈V
ri. (3)

Proof. We start with the former claim. Consider a graph G of
type OS(r1, . . . , rk). Let V1, · · · , Vk be the orbits of Aut(G) in
G, corresponding to the different clusters. For any two indices
i, j ∈ {1, · · · , k}, we consider the induced bi-partite subgraph
Gij on the vertices Vi ∪ Vj .3 We claim that if it is not empty,
then Gij has at least lcm(ri, rj) edges.

Indeed, Vj is invariant to Aut(G), hence, for any x ∈ Vi
and any ψ ∈ Aut(G), x and ψ(x) have the same number

1Recall that a directed graph is weakly connected if its unoriented coun-
terpart is connected.

2OS stands for ”orbit structure”
3In other words, only edges between Vi and Vj exist in the subgraph.

949
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 02,2024 at 11:55:08 UTC from IEEE Xplore. Restrictions apply.

of edges from them to Vj . Thus, all vertices in Vi have the
same Gij-degree. Similarly, all vertices in Vj have the same
Gij-degree. Let di be the Gij-degree of vertices in Vi, and
dj be the Gij-degree of vertices in Vj . As the edges in Gij
only link Vi and Vj , the number of edges in Gij is equal
to ridi = rjdj . In particular, the number rj divides ridi,
and the number rj

gcd(ri,rj)
divides ri

gcd(ri,rj)
di. However, the

numbers rj
gcd(ri,rj)

, ri
gcd(ri,rj)

are relatively prime, meaning
that rj

gcd(ri,rj)
must divide di. In particular, di ≥ rj

gcd(ri,rj)
,

and Gij has at least ridi ≥ rirj
gcd(ri,rj)

= lcm(ri, rj) edges.
Now, consider the condensed graph G′. The vertices of G′

are {v1, · · · , vk}, and vi is connected to vj if and only if there
is an edge between Vi and Vj . As G is weakly connected, G′

is also connected. Let T be a spanning tree for G′. If there is
an edge e = (i, j) in T , Vi and Vj are linked, meaning that
the graph Gij contains at least lcm(ri, rj) edges. As a result,
G has at least

∑
{i,j}∈T lcm(ri, rj) ≥ m edges.

We now consider the second part of the theorem. Let T
be a path on k vertices, and let i1, · · · , ik be the order of the
vertices in the path. By reordering r1, · · · , rk, we may assume
that ij = j for j = 1, 2, · · · , k. Let i be the vertex at which
ri is minimized. For each j ∈ {1, · · · , k}, we number the
vertices in Vj as vj1, · · · , vjrj . Build the graph G as follows:

I) For every j, add the following edges between Vj and
Vj+1: For p = 1, . . . , lcm(rj , rj+1), connect vjp mod rj

to vj+1
p mod rj+1

.
II) If ri > 1, then for each p = 1, . . . , ri, connect vip to

vi(p+1) mod ri
.

The number of edges in G is equal to
∑

{i,j}∈T lcm(ri, rj)+ri
if ri ≥ 2, and equal to

∑
{i,j}∈T lcm(ri, rj) otherwise. We

show that the orbits of the action of Aut(G) on G are given
by V1, · · · , Vk, and that G is weakly connected, concluding
the proof.

First, we show G is weakly connected. We note that the
induced subgraph on Vi is weakly connected. Indeed, this is
clear if ri = 1, and in the case ri ≥ 2, the following cycle
eventually passes through all the nodes in Vi:

vi1 → vi2 → vi3 → · · ·

Now, by the construction of G, any vertex vip is connected
all vertices vlp mod rl

. Thus, for any two arbitrary vertices
vj1p1 and vj2p2 , we can consider a path that starts from vj1p1 ,
goes to vip1 mod ri

, moves to vip2 mod ri
using the connectivity

of induced subgraph on Vi, and continues to vj2p2 . Thus G is
weakly connected.

As for the orbits, we first consider the map ψ defined on
the vertices of G by sending each vertex vjp to vj(p+1) mod rj

.
By definition of the graph G, it is clear that ψ is a graph
automorphism. Moreover, repeatedly applying ψ can move vjp
to any vertex in Vj . Thus the orbit of vjp contains the set Vj .

Conversely, we show that each Vj is invariant under Aut(G),
so the orbits of the action of Aut(G) on G are exactly
V1, · · ·Vk. This is obvious if k = 1, as then V1 = V, so
we assume that k ≥ 2. In that case, either i ̸= 1 or i ̸= k

(or both). We assume i ̸= k, as the complementary case can
be treated similarly. Graph automorphisms preserve all graph
properties, and in particular, they preserve the out-degree of
vertices. As all edges are oriented from Vj to Vj+1 or from
Vi to itself where i ̸= k, the vertices in Vk have an out-degree
of 0, and they are the only ones with this property. Thus Vk
must be invariant under Aut(G). The only vertices with edges
to Vk are in Vk−1, meaning that Vk−1 is also invariant under
Aut(G). Iterating this argument, we conclude that V1, · · ·Vk
must all be invariant under the action of Aut(G). Thus they
are the orbits of the action, and the action of Aut(G) on G
has orbits of size r1, · · · , rk. This completes the proof.

The construction of OS-type graphs presented in the proof is
explicitly stated in Algorithm 1. The Algorithm takes as input
the desired cluster sizes, as well as a path T describing the
desired interconnection topology of the different clusters in the
graph. While any path gives a graph of type OS(r1, . . . , rk),
the number of edges in the graph depends on the path T .

Algorithm 1 Building OS-type graphs
Input: A collection r1, . . . , rk of positive integers summing
to n, and a path T on k vertices.
Output: A graph G of type OS(r1, . . . , rk).

1: Let G = (V, E) be an empty graph.
2: for j = 1, . . . , k and p = 1, . . . , rj do
3: Add a node with label vjp to V.

4: for any edge {i, j} in T do
5: for p = 1, . . . , lcm(ri, rj) do
6: Add the edge vip mod ri

→ vjp mod rj
to E.

7: Compute i⋆ = argmin{ri}. If ri⋆ = 1, go to step 10.
8: for p = 1, . . . , ri⋆ do
9: Add the edge vi

⋆

p → vi
⋆

(p+1) mod ri⋆
to E.

10: Return G = (V,E).

Remark 1. One might ask why the lower bound considers
all possible trees, while the upper bound only considers path
graphs. The main reason for this distinction can be seen in the
proof - one can build a general graph G using a tree graph
as a basis, instead of the path graph 1 → 2 → 3 → · · · → k.
In that case, proving that the orbit of vjp contains Vj is easy,
but it is possible that the orbit is actually larger than Vj .

Remark 2. The lower bound in Theorem 2 can be found using
any algorithm finding a minimal spanning tree, e.g. Kruskal’s
algorithm which runs in polynomial time [24]. However, the
upper bound requires one to solve a variant of the traveling
salesman problem, which is known to be NP-hard [24].

Theorem 2 deals with a general cluster assignment by
explicitly constructing a graph solving the problem. We apply
it to more specific cases in order to achieve concrete bounds
on the number of edges needed for clustering in these cases.

950
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 02,2024 at 11:55:08 UTC from IEEE Xplore. Restrictions apply.

Corollary 1. Suppose that all cluster sizes r1, · · · , rk are
equal, and bigger than 1. Then there exists a graph of type
OS(r1, . . . , rk) with at most n = r1 + . . .+ rk edges.

Proof. Let r be the size of all clusters. We note that in this
case, lcm(r, r) = r, and the number of clusters is k = n/r.
Thus, if we build a graph G as in the proof of Theorem 2, then
G has exactly n edges, as the summation over the edges has
k − 1 elements. It remains to show that no such graph with
less than n edges exists.

First, any graph on n nodes and less than n−1 edges is not
weakly connected [25]. Thus, it suffices to show that no such
graph with n−1 edges exists. Indeed, let di be the out-degree
of any vertex in the i-th orbit, i = 1, · · · , k. As the action of
Aut(G) preserves the out-degree, it is the same for all vertices
in the i-th orbit. The number of edges is the sum of the out-
degree over all vertices, but it’s equal to rd1+ · · ·+rdk. Thus
the number of edges in G must be divisible by r. But n = kr,
meaning that n − 1 is not divisible by r unless r = 1. Thus
there is no such graph on n− 1 edges.

Corollary 2. Let r1, · · · , rk be positive integers such that k ≥
2 and that for every j, l, either rj divides rl or vice versa.
Then there exists a graph of type OS(r1, . . . , rk) with n =
r1 + . . .+ rk edges.

Proof. We reorder the numbers r1, · · · , rk such that rl divides
rj for l ≤ j. We note that if rl divides rj , then lcm(rl, rj) =
rl. Thus, if we let G be the graph built in the proof of Theorem
2, it has the following number of edges:

k−1∑
j=1

lcm(rj , rj+1) + r1 =

k−1∑
j=1

rj+1 + r1 =
∑
j=1

rj = n.

Corollary 3. Let r1, · · · , rk be positive integers such that rj ≤
q for all j, and let n = r1+ · · ·+rk. Then there exists a graph
of type OS(r1, . . . , rk) with at most n+O(q3) edges.

Proof. By reordering, we may assume that that r1 ≤ r2 ≤
· · · rk. Let ml be the number of clusters of size s for l =
1, 2, · · · , q. As before, consider the graph G built in the proof
of Theorem 2. If rj = rj+1 then lcm(rj , rj+1) = rl, and
lcm(rj , rj+1) ≤ rjrj+1 otherwise. Thus, the number of edges
in G is given by:
k−1∑
j=1

lcm(rj , rj+1) + r1 ≤
∑

l∈{1,...,q},
ml ̸=0

(ml − 1)l +

q−1∑
l=1

l(l − 1) + r1.

Indeed, for each l ∈ {1, . . . , q}, if there’s at least one cluster
of size l, then there are ml − 1 edges in the path T = 1 →
2 → · · · → k that touch two clusters of size l. The second term
bounds the number of edges that appear between clusters of
different sizes. We note that n =

∑q
l=1 lml, so the first term is

bounded by n. As for the second term, we can bound l(l− 1)

by l2 and then use the formula
∑q−1
l=1 l

2 = (q−1)q(2q−1)
6 , dating

back to Fibonacci’s Liber Abaci from 1201 [26]. Lastly, the
last term r1 is bounded by q. This completes the proof.

We now give examples of graphs constructed by Algorithm
1, and show they indeed force a clustering structure on the
agents.

Example 1. We consider a collection of identical agents, all
of the form ẋ = −x+ u+α, y = x where α is a log-uniform
random variable between 0.1 and 1, identical for all agents.
In all experiments described below, we considered identical
controllers, equal to the static nonlinearity of the form

µ = a1 + a2(ζ + cos(ζ)),

where a1 was chosen as a Gaussian random variable with
mean 0 and standard deviation 10, and a2 was chosen as
a log-uniform random variable between 0.1 and 10. We
note that the agents are indeed output-strictly MEIP and the
controllers are MEIP. Moreover, the network is homogeneous,
so Aut(G,Σ,Π) = Aut(G). Thus, we can use the graphs
constructed by Theorem 2, as depicted in Algorithm 1, to force
a clustering behavior.

We first consider a network of n = 15 agents and tackle
the cluster synthesis problem with five equally-sized clusters,
i.e., r1 = r2 = r3 = r4 = r5 = 3. One possible graph forcing
these clusters, as constructed by Algorithm 1 for a path T of
the form 1 → 2 → 3 → 4 → 5, can be seen in Figure 2,
along with the agents’ trajectories for the closed-loop system.

Second, we consider a network of n = 10 agents with
desired cluster sizes r1 = 1, r2 = 2, r3 = 3, r4 = 4. We
build a graph forcing these cluster sizes by using Algorithm
1 for a path T of the form 4 → 2 → 1 → 3, which is the
minimizer in (3). The graph can be seen in Figure 2, along
with the agents’ trajectories for the closed-loop system.

IV. CONCLUSIONS

In this work we explored the problem of cluster assign-
ment for homogeneous multi-agent systems. We extended
the results of [16] to provide a characterization of graphs
with an automorphism group containing orbits of a prescribed
size. When such graphs are used in a network comprised of
weakly equivalent agent and controller dynamics, the network
converges to a cluster configuration.

REFERENCES

[1] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[2] N. Chopra and M. W. Spong, Advances in Robot Control: From
Everyday Physics to Human-Like Movements. Springer, 2006, ch.
Passivity-Based Control of Multi-Agent Systems, pp. 107–134.

[3] L. Scardovi, M. Arcak, and E. Sontag, “Synchronization of intercon-
nected systems with applications to biochemical networks: An input-
output approach,” IEEE Transactions on Automatic Control, vol. 55,
no. 6, pp. 1367–1379, Jun. 2010.

[4] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
2007 46th IEEE Conference on Decision and Control, 2007, pp. 5492–
5498.

[5] A. Schnitzler and J. Gross, “Normal and pathological oscillatory commu-
nication in the brain,” Nature reviews. Neuroscience, vol. 6, pp. 285–96,
05 2005.

[6] K. M. Passino, “Biomimicry of bacterial foraging for distributed opti-
mization and control,” IEEE Control Systems Magazine, vol. 22, no. 3,
pp. 52–67, June 2002.

951
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 02,2024 at 11:55:08 UTC from IEEE Xplore. Restrictions apply.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Graph forcing cluster sizes r1 = r2 = r3 = r4 = r5 = 3. Nodes
with the same color will be in the same cluster.

0 1 2 3 4 5 6 7

Time [sec]

-4

-3

-2

-1

0

1

2

3

4

O
u
tp

u
t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Agent’s trajectories for the closed-loop system.
Colors correspond to node colors in the graph.

Fig. 2. First example of graphs solving the cluster synthesis problem, achieved
by running Algorithm 1.

[7] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex
networks,” Scientific Reports, vol. 2, no. 1, p. 336, dec 2012.

[8] C. Altafini, “Consensus problems on networks with antagonistic inter-
actions,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp.
935–946, 2013.

[9] J. Qin and C. Yu, “Cluster consensus control of generic linear
multi-agent systems under directed topology with acyclic partition,”
Automatica, vol. 49, no. 9, pp. 2898 – 2905, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109813003312

[10] Y. Han, W. Lu, and T. Chen, “Cluster consensus in discrete-time
networks of multiagents with inter-cluster nonidentical inputs,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 24, no. 4,
pp. 566–578, April 2013.

[11] M. Bürger, D. Zelazo, and F. Allgöwer, “Hierarchical Clustering of Dy-
namical Networks Using a Saddle-Point Analysis,” IEEE Transactions
on Automatic Control, vol. 58, no. 1, pp. 113–124, jan 2013.

[12] A. Rahmani and M. Mesbahi, “Pulling the strings on agreement:
Anchoring, controllability, and graph automorphisms,” in Proc. 2007
American Control Conference, July 2007, pp. 2738–2743.

[13] A. Chapman and M. Mesbahi, “On symmetry and controllability of
multi-agent systems,” in Proc. 53rd IEEE Conference on Decision and
Control, Dec 2014, pp. 625–630.

[14] ——, “State controllability, output controllability and stabilizability of
networks: A symmetry perspective,” in Proc. 2015 54th IEEE Confer-
ence on Decision and Control (CDC), Dec 2015, pp. 4776–4781.

[15] G. Notarstefano and G. Parlangeli, “Controllability and observability
of grid graphs via reduction and symmetries,” IEEE Transactions on
Automatic Control, vol. 58, no. 7, pp. 1719–1731, 2013.

[16] M. Sharf and D. Zelazo, “Symmetry-induced clustering in multi-agent
systems using network optimization and passivity,” in Proc. 2019 27th
Mediterranean Conference on Control and Automation (MED), July
2019, pp. 19–24.

7

5

6

8

9

10

1

2

3

4

(a) Graph forcing cluster sizes r1 = 1, r2 =
2, r3 = 3, r4 = 4. Nodes with the same color
will be in the same cluster.

0 1 2 3 4 5 6 7

Time [sec]

-3

-2

-1

0

1

2

3

4

O
u

tp
u
t

1

2

3

4

5

6

7

8

9

10

(b) Agent’s trajectories for the closed-loop system.
Colors correspond to node colors in the graph.

Fig. 3. First example of graphs solving the cluster synthesis problem, achieved
by running Algorithm 1.

[17] C. Godsil and G. Royle, Algebraic Graph Theory, ser. Graduate Texts
in Mathematics. Springer New York, 2001.

[18] M. Bürger, D. Zelazo, and F. Allgöwer, “Duality and network theory
in passivity-based cooperative control,” Automatica, vol. 50, no. 8, pp.
2051–2061, 2014.

[19] G. H. Hines, M. Arcak, and A. K. Packard, “Equilibrium-independent
passivity: A new definition and numerical certification,” Automatica,
vol. 47, no. 9, p. 1949–1956, 2011.

[20] M. Sharf and D. Zelazo, “A network optimization approach to coopera-
tive control synthesis,” IEEE Control Systems Letters, vol. 1, no. 1, pp.
86–91, July 2017.

[21] A. Jain, M. Sharf, and D. Zelazo, “Regulatization and feedback pas-
sivation in cooperative control of passivity-short systems: A network
optimization perspective,” IEEE Control Systems Letters, vol. 2, pp.
731–736, 2018.

[22] M. Sharf, A. Jain, and D. Zelazo, “A geometric method for passivation
and cooperative control of equilibrium-independent passivity-short sys-
tems,” IEEE Transactions on Automatic Control, vol. 66, no. 12, pp.
5877–5892, 2021.

[23] D. S. Dummit and R. M. Foote, Abstract algebra. Prentice Hall
Englewood Cliffs, NJ, 1991, vol. 1999.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[25] J. A. Bondy, U. S. R. Murty et al., Graph theory with applications.
Macmillan London, 1976, vol. 290.

[26] L. Sigler, Fibonacci’s Liber Abaci: a translation into modern English of
Leonardo Pisano’s book of calculation. Springer Science & Business
Media, 2003.

952
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 02,2024 at 11:55:08 UTC from IEEE Xplore. Restrictions apply.

