
Received: 6 September 2022 Revised: 29 March 2023 Accepted: 13 May 2023

DOI: 10.1002/asjc.3149

Cluster assignment in multi-agent systems:
Sparsity bounds and fault tolerance

Miel Sharf 1 Daniel Zelazo2

1Jether Energy Research, Tel Aviv, Israel
2Faculty of Aerospace Engineering,
Technion—Israel Institute of Technology,
Haifa, Israel

Correspondence
Miel Sharf, Jether Energy Research, Tel
Aviv, Israel.
Email: mielsharf@gmail.com

Funding information
Israel Science Foundation, Grant/Award
Number: 2017658 and 2285/20

Abstract

We study cluster assignment in homogeneous diffusive multi-agent networks.
Given the number of clusters and agents within each cluster, we design the
network graph ensuring the system will converge to the prescribed cluster con-
figuration. Using recent results linking clustering and symmetries, we show
that it is possible to design an oriented graph for which the action of the auto-
morphism group of the graph has orbits of predetermined sizes, guaranteeing
the network will converge to the prescribed cluster configuration. We provide
bounds on the number of edges needed to construct these graphs along with a
constructive approach for their generation. We also consider the robustness of
the clustering process under agent malfunction.

KEYWORDS
clustering, diffusive coupling, fault tolerance, graph theory, multi-agent networks, sparsity

1 INTRODUCTION

One of the most important tasks in the field of multi-agent
systems (MASs) is reaching agreement. Distributed pro-
tocols guaranteeing the agents reach agreement appear
in many different fields, including robotics [1], sensor
networks [2], and distributed computation [3]. A natu-
ral generalization is the cluster agreement problem, which
seeks to drive agents into groups, so that agents within the
same group reach an agreement. The clustering problem
appears in social networks [4], neuroscience [5], and
biomimetics [6]. Clustering is also vital in the operation
of autonomous decentralized MASs in order to perform
on-the-fly efficient task allocation. For example, a group
of fire-fighting drones handling multiple active fires of
varying severities must allocate which agents will attend
which fires in a way that avoids deadlock situations [7].
This should happen even though all agents are identical
and without a designated leader. Once the severity of each

fire is estimated, and the number of agents allocated to
handle each fire can be designated. The agents can be
dispatched using a clustering algorithm. Clustering has
been studied using different approaches, for example, net-
work optimization [8], pinning control [9], inter-cluster
nonidentical inputs [10], and exploiting the structural bal-
ance of the underlying graph [11]. We tackle the cluster-
ing problem by using symmetries within the MAS. Recent
works on MAS apply graph symmetries to study various
problems, for example, controllability and observability of
MAS [12–15].

Our recent work [16] introduced the notion of the weak
automorphism group of a MAS, combining the two con-
cepts of the automorphism group for graphs and weak
equivalence of dynamical systems. The former summa-
rizes all symmetries for a given graph, while the latter
characterizes similarities between achievable steady states
of heterogeneous (dynamical) agents. Therefore, the weak
automorphisms of a MAS can be understood as permu-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Asian Journal of Control published by John Wiley & Sons Australia, Ltd on behalf of Chinese Automatic Control Society.

Asian J Control. 2025;27:63–75. wileyonlinelibrary.com/journal/asjc 63

S P E C I A L I S S U E AR T I C L E

https://doi.org/10.1002/asjc.3149
https://orcid.org/0000-0002-2931-245X
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fasjc.3149&domain=pdf&date_stamp=2023-06-13

SHARF and ZELAZO

tations of the nodes in the underlying graph that pre-
serve both graph symmetries and certain input–output
properties of the corresponding agents. More specifically,
the paper [16] focused on clustering for diffusively cou-
pled networks and showed that under appropriate passivity
assumptions, these diffusively coupled networks converge
to a clustered steady-state solution, where two agents are
in the same cluster if and only if there exists a weak
automorphism mapping one to the other. Thus, the clus-
tering of the MAS can be understood by studying the
action of the weak automorphism group on the underlying
interaction graph.

We focus in this paper on homogeneous networks, that
is, networks where the agent dynamics are all identical,
noting that the weak automorphism group is identical
to the automorphism group of the underlying graph in
this case. We wish to design graphs ensuring the MAS
will converge to a prescribed cluster configuration, that
is, specifying the number of clusters and the number of
agents within each cluster. Our previous work [17] applied
tools from group theory to prescribe an algorithm for con-
structing an oriented graph such that the action of the
automorphism group on the graph has orbits of prescribed
sizes. It also provided implicit upper and lower bounds on
the number of edges needed to construct such graph. This
work extends the previous work [17] in two ways. First, we
further explore the bounds on the number of edges needed
to build such graphs by understanding the reason for the
difference between the upper and the lower bounds (the
example in Remark 1). We also study the scaling proper-
ties of the upper bound with the number of agents n and
the number of clusters k (Theorem 5 and Remark 3), show-
ing that a graph with the desired clustering configuration
can be built with roughly O(n2∕k) edges, and providing a
construction to build it. Furthermore, we study the robust-
ness of such graphs to agent malfunctions. We show that
the existing graph synthesis method does not provide any
guarantees on the behavior of the closed-loop network
when agent malfunctions occur, and explain how to alter
the synthesis procedure to guarantee the most extensive
possible robustness of the clustering possible (Section 3.2).
This results in a network topology which guarantees the
agents cluster in the provided formation when no mal-
functions occur, and as close as possible to the provided
clustering configuration for any number of faults. The gen-
eral results on the number of edges needed to construct
graphs with the desired cluster configuration (Theorem 5
and Remark 3) are naturally extended to the case of these
robust graphs.

The rest of paper is organized as follows. Section 2
reviews basic concepts related to network systems and
group theory required to define a notion of symmetry for

MAS. Section 3 presents the main results about cluster
assignment, as well as a numerical study to demonstrate
the theory. Finally, some concluding remarks are offered
in Section 5.

1.1 Notations
This work employs basic notions from graph theory [18].
An undirected graph = (V,E) consists of finite sets of
vertices V and edges E ⊂ V × V. We denote the edge with
ends i, 𝑗 ∈ V as e = {i, 𝑗}. For each edge e, we pick an
arbitrary orientation and denote e = (i, 𝑗) when i ∈ V is
the head of edge and 𝑗 ∈ V is its tail. A path is a sequence
of distinct nodes v1, v2, … , vn such that {vi, vi+1} ∈ E for
all i. A cycle is path v1, … , vn, v1. A simple cycle is a cycle
whose vertices are all distinct. A graph is connected if there
is a path between any two vertices, and a tree if it is con-
nected but contains no simple cycles. The incidence matrix
of , denoted ∈ R

|E|×|V|, is defined such that for any
edge e = (i, 𝑗) ∈ E, []ie = +1, []𝑗e = −1, and []𝓁e = 0
for 𝓁 ≠ i, 𝑗. Moreover, the greatest common divisor of two
positive integers m,n is denoted by gcd(m,n), and their
least common multiple is denoted by lcm(m,n). Note that
lcm(m,n) = mn

gcd(m,n)
always holds. Two integers are rela-

tively prime (or coprime) if there is no integer greater than
one that divides them both. The cardinality of a finite set
A is denoted by |A|.
2 SYMMETRIES IN NETWORKED
SYSTEMS

In this section, we provide background on the notion of
symmetries for MASs originally proposed in [16].

2.1 Diffusively coupled networks
This section describes the structure of the MAS studied in
the papers [16] and [19]. Consider a set of agents interact-
ing over a network = (V,E). Each node i ∈ V is assigned
a dynamical system Σi, and the edges e ∈ E are assigned
controllers Πe, having the following form:

Σi ∶
{ .xi = 𝑓i(xi,ui), 𝑦i = hi(xi,ui),

Πe ∶
{ .
𝜂e = 𝜙e(𝜂e, 𝜁e), 𝜇e = 𝜒e(𝜂e, 𝜁e) .

(1)

We consider the stacked vectors u = [uT
1 , … ,uT|V|]T

and similarly for 𝑦, 𝜁 , and 𝜇. The MAS is diffusively cou-
pled with the controller input described by 𝜁 = T𝑦, and
the control input is u = −𝜇, where is the incidence
matrix of the graph . This structure is denoted by the

64

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SHARF and ZELAZO

FIGURE 1 A diffusively coupled network.

triplet (,Σ,Π) and is illustrated in Figure 1. In Bürger
et al. [19], it was shown that the network converges to a
steady state satisfying the interconnection constraints if
the agents and controllers are (output-strictly) maximum
equilibrium independent passive (MEIP). The details of
this definition and related definitions are not essential for
the development of this work, and the interested reader is
referred to the papers [19] and [20] for more details. In this
work, we focus on homogeneous networks, that is, where
all the agent dynamics and control dynamics are identical.
Moreover, we assume one of the following two alternatives
(Assumption 1). If this is not the case, see previous studies
[21–23] for plant augmentation techniques.

Assumption 1. The agents Σi are output-strictly
MEIP and the controllers Πe are MEIP, or vice versa.

A final technical definition is needed to characterize the
steady states of the network. Indeed, we implicitly assume
that each agent and controller converges to a steady-state
output given a constant input. This allows us to define
a relation between constant inputs and constant outputs
called the steady-state relation of a system; see Bürger et al.
[19]. We denote the steady-state relations of node i and
edge e by ki and 𝛾e, respectively. For example, for an agent i,
we say that (ui, yi) is a steady-state input/output pair if yi ∈
ki(u). We now introduce the notion of weak equivalence
for dynamical systems.

Definition 1 (Sharf and Zelazo [16]). Two systems
Σ1 and Σ𝑗 are weakly equivalent if their steady-state
relations are identical.

We refer the reader to the paper [16] for a more thorough
study and examples of weakly equivalent systems.

2.2 Group theory, graph automorphisms,
and symmetric MAS
Our approach for clustering will hinge on symmetry,
which is modeled by the mathematical theory of groups
[24]. The notion of a group can be defined in various ways,
but we opt for the most concrete one.

Definition 2. Let X be a set, and let G be a collec-
tion of invertible functions X → X . The collection G is
called a group if for any G ∋ 𝑓, g ∶ X → X , both the
composite function 𝑓◦g and the inverse function 𝑓−1

belong to G.

Colloquially, the group G defines a collection of symme-
tries of the set X , and its action on X allows us to identify
certain elements of X which are symmetric. Of interest in
this work is the automorphism group of a (oriented) graph,
which encodes structural symmetries of a graph.

Definition 3. An automorphism of a (directed or
undirected) graph = (V,E) is a permutation 𝜓 ∶
V → V such that i ∈ V is connected to 𝑗 ∈ V if
and only if 𝜓(i) is connected to 𝜓(𝑗). We denote the
automorphism group of by Aut().

We slightly abuse notation and say that Aut() acts on

(rather than on V).

Definition 4. Let G be a group of functions X → X .
We say x, 𝑦 ∈ X are exchangeable (under the action of
G) if there is some 𝑓 ∈ G such that 𝑓 (x) = 𝑦. The orbit
of x ∈ X is the set of elements which are exchangeable
with X .

Exchangeability was considered in the paper [16] to
describe the clustering behavior of a MAS. Namely, the
different clusters corresponded to the different orbits of
the weak automorphism group of the MAS. The following
result ensures that we can consider orbits, and conse-
quently different clusters in an MAS, as disjoint sets.

Proposition 1 (Dummit and Foote [24]). Let G be a
group of functions X → X. Then, X can be written as the
union of disjoint orbits. In particular, any element of X
belongs to exactly one orbit.

Finally, we combine the notions of graph automor-
phisms and diffusively coupled MAS comprised of weakly
equivalent agents.

Definition 5 (Sharf and Zelazo [16, 17]). Let (,Σ,Π)
be a diffusively coupled MAS. A weak automorphism
of a MAS is a map 𝜓 ∶ V → V with the following
properties: (1) 𝜓 is an automorphism of the graph

and preserves edge orientations; (2) for any i ∈ V, Σi
and Σ𝜓(i) are weakly equivalent; and (3) for any e ∈

65

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SHARF and ZELAZO

E, Πe and Π𝜓(e) are weakly equivalent. We denote the
collection of all weak automorphisms of (,Σ,Π) by
Aut(,Σ,Π).

Naturally, the weak automorphism of a MAS is a sub-
group of the group of automorphisms Aut() of the
graph .

3 CLUSTER ASSIGNMENT IN MAS

We now consider the clustering problem for MAS. Specif-
ically, we focus on the case where the agents are homoge-
neous, that is, they have the exact same model, and restrict
ourselves by requiring the edge controllers (1) are also
homogeneous. The paper [16] established a link between
the clustering behavior of a MAS and certain symmetries
it has, using Definition 5. The main result from [16] is
summarized below.

Theorem 1 (Sharf and Zelazo [16]). Take a diffu-
sively coupled MAS (,Σ,Π) where Assumption 1 holds.
Then, for any steady-state y =

[
y1 … y|V|]T of

the closed-loop and any weak automorphism 𝜓 ∈
Aut(,Σ,Π), we have P𝜓y = y, where P𝜓 is the permuta-
tion matrix representation of 𝜓 .

This result can in fact be used to show that the net-
work converges to a clustering configuration, where the
clusters are given by the orbits of the weak automorphism
group. Namely, one considers diffusively coupled MAS
(,Σ,Π) satisfying Assumption 1, for which the closed loop
is known to converge, and the invariance properties of the
steady-state limit are studied. Focusing on homogeneous
networks, the paper [16] identified the value of 𝛾e(0), the
steady-state relation for the controller on the eth edge, as
indicative of clustering. Namely, it shows that if 0 ∈ 𝛾e(0)
for all e ∈ E, then the MAS (,Σ,Π) converges to con-
sensus, and otherwise, it displays a clustering behavior.
Namely, for homogeneous MAS, two nodes are in the same
cluster if they are exchangeable under the action of Aut(),
and the converse is almost surely true.

Although the paper [16] presented a strong link between
symmetry and clustering in MAS, it did not consider a
synthesis procedure for solving the clustering problem:

Problem 1. Consider a collection of n homogeneous
agents {Σi}i∈V, and let r1, … , rk be positive integers
which sum to n. Find a directed graph = (V,E) and
homogeneous edge controllers {Πe}e∈E such that the
closed-loop MAS converges to a clustered steady state,
with a total of k clusters of sizes r1, … , rk.

The goal of this section is use the tools of [16] to solve
Problem 1. As described above, this can be achieved in two

steps. We first make the following assumption about the
controllers:

Assumption 2. The homogeneous MEIP controllers
are chosen so that 0 ∉ 𝛾e(0) for any edge e ∈ E.

Second, given the desired cluster sizes r1, … , rk, we seek
an oriented graph = (V,E) such that the action of
Aut() on has orbits of sizes r1, … , rk. Moreover, we
require to be weakly connected1 to assure a flow of infor-
mation throughout the corresponding diffusively coupled
network. If we find such a graph and Assumption 2 holds,
the results of [16] guarantee that the desired clustering
behavior is achieved almost surely. We make the following
definition for the sake of brevity and define the corre-
sponding problem:

Definition 6. The oriented graph is said to be of type
OS(r1, … , rk) if it is weakly connected and the action
of Aut() on has orbits of sizes r1, … , rk.2

Problem 2. Given positive integers r1, … , rk, deter-
mine if an oriented graph of type OS(r1, … , rk) exists,
and if so, construct it.

Before moving on to the solving this problem, we present
a tool we apply later in the proofs, called the graph quo-
tient.

Definition 7. Let = (V,E) be a (directed or undi-
rected) graph, and let V1,V2, … ,Vk be a partition of
V to disjoint sets. The quotient of , according to the
partition V1,V2, … ,Vk, is a graph with the following
properties:

(i) The nodes of are denoted by 1, 2, … , k.
(ii) For any l1, l2 ∈ {1, 2, … , k}, there is an edge

l1 → l2 in the quotient graph if and only if
there is at least one edge between elements of Vl1

and Vl2 .

In other words, the quotient graph is achieved by group-
ing the nodes of by the sets V1,V2, … ,Vk, removing
edges within the same set, and identifying all edges going
between the same two groups Vi and V𝑗 . An illustration can
be seen in Figure 2. It is easy to see that if is connected,
then so is its quotient. Indeed, if i, 𝑗 are two arbitrary nodes
in the quotient graphs, we take nodes vi ∈ Vi and v𝑗 ∈ V𝑗 .
As is connected, we can find a path from vi to v𝑗 in ,
which in turn defines a path in the quotient graph from i
to 𝑗. This fact will play a vital role later.

1Recall that a directed graph is weakly connected if its unoriented coun-
terpart is connected.
2OS stands for “orbit structure.”

66

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SHARF and ZELAZO

FIGURE 2 An example of graph
quotient. The original graph is depicted
on left, and the sets V1,V2 of the partition
are marked in blue and red, respectively.
The corresponding quotient graph can
be seen on the right.

3.1 Construction and sparsity bounds
on OS-type graphs
In this subsection, we exhibit a construction for OS-type
graphs, as well as bounds on the sparsity of such graphs.
Running the system requires means to implement the
corresponding interconnections, ergo graphs with fewer
edges are desirable. The following theorem provides a
lower bound on the number of edges required to construct
OS-type graphs.

Theorem 2. Let r1, … rk be any positive integers. Any
directed graph of type OS (r1, … , rk) has at least m
edges, where

m = min
 tree on k vertices

∑
{i,𝑗}∈

lcm(ri, r𝑗). (2)

Proof. Let be a graph of type OS(r1, … , rk), and
V1, … ,Vk be the orbits of Aut() in , correspond-
ing to the different clusters. The proof will consist of
two steps. First, we show that if there exists at least
one edge between Vi and V𝑗 , then there are at least
lcm(ri, r𝑗) edges between Vi and V𝑗 . This will follow
from the fact that the automorphism group of can
map any two nodes in each Vi to one another. Sec-
ond, we consider the quotient graph by the partition
V1, … ,Vk, which must be connected as is connected.
Hence, it must have a spanning tree, which can be
used to determine which pairs i, 𝑗 ∈ {1, … , k} are
connected by an edge in the quotient graph. These
two facts together will allow us to establish the lower
bound (2).

We start with the former claim. Let i, 𝑗 ∈ {1, … , k}
such that there is an edge between a node in Vi and a
node in V𝑗 . Let i𝑗 be the following subgraph of —it
consists of nodes in Vi ∪ V𝑗 and of edges touching one
node of Vi and one node of V𝑗 . We recall that Vi and
V𝑗 are both invariant under any automorphism of ,
meaning that the restriction of any automorphism 𝜓 ∈
Aut() to i𝑗 is an automorphism of i𝑗 . In particular,
by assumption, any two nodes in Vi can be mapped to

one another using automorpshims, and the same goes
for V𝑗 . Now, recall that automorphisms preserve the
degree of nodes, that is, that if 𝜓 is an automorphism
of some graph and x is a node in that graph, then x and
𝜓(x) have the same degree. For the graph i𝑗 , which
only contains nodes between Vi and V𝑗 , the degree of
a node in Vi is equal to the number of nodes in V𝑗 it is
linked to. Thus, as all the nodes in Vi can be mapped to
one another using automorphisms, we conclude they
are all linked to the same number of nodes in V𝑗 . We
denote this number of nodes by di. A similar argument
with opposite roles for i and 𝑗 shows that each node in
V𝑗 is linked to the same number of nodes in Vi, and this
number is denoted as d𝑗 . Recall now that each edge of
i𝑗 touches one node from Vi and one node from V𝑗 . In
particular, the number of edges in i𝑗 can be found by
summing over the degrees of nodes in Vi. As there are
ri nodes in Vi, and each has a degree of di, we conclude
that i𝑗 has a total of ridi edges. However, if we sum on
the nodes in V𝑗 instead, we similarly find that i𝑗 has
r𝑗d𝑗 edges. In particular, the equality ridi = r𝑗d𝑗 holds,
where both sides are positive integers.

The rest of the proof of this part of the claim follows
from basic number theory. We divide both sides of the
equation ridi = r𝑗d𝑗 by the greatest common divisor
gcd(ri, r𝑗) and get the equation ri

gcd(ri,r𝑗)
di = r𝑗

gcd(ri,r𝑗)
d𝑗 ,

where all four numbers ri
gcd(ri,r𝑗)

,
r𝑗

gcd(ri,r𝑗)
, di, and d𝑗 are

positive integers. As ri
gcd(ri,r𝑗)

and r𝑗
gcd(ri,r𝑗)

are coprime by
the definition of the greatest common divisor, we con-
clude that di must be divided by r𝑗

gcd(ri,r𝑗)
. In particular,

di ≥
r𝑗

gcd(ri,r𝑗)
, and in turn, the graph i𝑗 has at least

ridi ≥
rir𝑗

gcd(ri,r𝑗)
= lcm(ri, r𝑗) edges, as claimed

We now move to the second part of the proof. We
consider the quotient of by the partition V1, … ,Vk.
As is (weakly) connected, so is the quotient . In
particular, there exists a spanning tree for . By the
definition of the quotient, for any two nodes i, 𝑗 con-
nected in (and hence in), there is at least one edge
between elements of Vi and V𝑗 in . However, by the

67

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com

SHARF and ZELAZO

first part of the proof, we conclude that there are at
least lcm(ri, r𝑗) edges between them. By summing over
all connected pairs of nodes in , we conclude that the
graph has at least

∑
{i,𝑗}∈ lcm(ri, r𝑗) ≥ m edges. This

concludes the proof. □

Beside giving a lower bound on the number of edges
in an OS-type graph, Theorem 2 also highlights the role
of the quotient base graph in the construction of such
graphs. Namely, , which was taken as a tree, deter-
mines which clusters are connected in . The following
algorithm, Algorithm 1, uses this idea to construct OS-type
graphs when is taken as a path graph.

Algorithm 1 essentially tries to reverse the quotient pro-
cess described in the proof of Theorem 2. It starts with
the quotient graph, given by the tree , and it constructs
the original graph be assigning nodes to each element of
the partition. More precisely, the algorithm assigns to each
node 𝑗 in the tree a set of r𝑗 nodes in , denoted by V𝑗 =
{v𝑗p}

r𝑗
p=1. In Step 3, the algorithm populates the graphwith

edges corresponding to those found in the quotient , and
it does so with the minimal possible amount of edges guar-
anteeing symmetry (as seen in the proof of Theorem 2). An
illustration of this step can be seen in Figure 3. In Step 5,
the algorithm adds a few more edges to guarantee the con-
structed graph is connected, but in a way that does not
effect the quotient process, as all new edges are between
nodes in the same set Vi⋆ of the partition. As the following
theorem shows, choosing any path will result in a graph
of type OS(r1, … , rk). However, the number of edges in the
graph depends on the path . We note that must be a
path rather than a general tree, see Remark 1 for further
discussion.

Theorem 3. Let r1, … rk be positive integers summing
to n. For any path , Algorithm 1 outputs a graph

of type OS(r1, … , rk) having
∑

{i,𝑗}∈ lcm(ri, r𝑗)+miniri

edges. Thus, there is a graph of type OS(r1, … , rk) hav-
ing M edges, where

M = min
 path on k vertices

∑
{i,𝑗}∈

lcm(ri, r𝑗) + min
i

ri. (3)

Proof. We assume, without loss of generality and for
the benefit of neater notation, that the path is of the
form 1 → 2 → … → k, and let i⋆ be the vertex
chosen in Step 5, that is, the node at which ri is min-
imized. Step 3 adds a total of

∑
{i,𝑗}∈ lcm(ri, r𝑗) edges

to the graph, and Step 5 adds ri⋆ more edges to the
graph if ri⋆ ≥ 2 (and no edges if ri⋆ = 1). In particular,
the number of edges in is equal to

∑
{i,𝑗}∈ lcm(ri, r𝑗),

plus ri⋆ if ri⋆ ≥ 2. Thus, it suffices to show that is
a graph of type OS(r1, … , rk), that is, that the orbits
of the action of Aut() on are given by V1, … ,Vk,
where V𝑗 = {vp

𝑗
}r𝑗

p=1, and that is weakly connected.
We start with the former.

Regarding the orbits, we must show that all nodes
in V𝑗 are exchangeable and that V𝑗 are invariant under
Aut(), for any 𝑗 = 1, … , k. For the first claim, we
consider the map 𝜓 ∶ V → V defined by sending each
vertex v𝑗p to v𝑗(p+1)mod r𝑗

, illustrated by the dashed green
edges in Figure 3. One can check that this map is an
automorphism of . Moreover, if we repeatedly apply
𝜓 on v𝑗p, we can get any vertex in V𝑗 ; hence, any two
nodes in V𝑗 are exchangeable.

Second, we show that each V𝑗 is invariant under
Aut(), which would imply that the orbits of Aut()
in are exactly V1, … Vk. This is obvious if k = 1, as
V1 = V. If k ≥ 2, we first consider the case for which
i⋆ ≠ k. Graph automorphisms preserve all graph prop-
erties, including the out-degree of vertices. As all edges
are oriented from V𝑗 to V𝑗+1 or from V⋆

i to itself, the
out-degree of all nodes in Vk is zero, and the out-degree
of all other nodes in the graph is at least 1. In partic-
ular, for any automorphism of , any node of Vk must
be mapped to a node with out-degree zero, meaning its
image must lie in Vk. Therefore, we conclude that Vk
is invariant under Aut(). Similarly, the set of all ver-
tices in that have an edge toward Vk is exactly Vk−1,
so a similar argument shows that Vk−1 must also be
Aut()-invariant. Repeating this argument shows that
V1, … ,Vk must all be Aut()-invariant, as desired. If
instead we have i⋆ = k, then we must have i⋆ ≠ 1
as k ≥ 2. One can now reach the same result using a
similar argument, starts from V1 and moving forward
by looking at the in-degree (instead of starting from Vk
and moving backwards using the out-degree).

Now, we show that is weakly connected. First, note
the induced subgraph on Vi⋆ is weakly connected (by
Step 5). Indeed, this is clear if ri⋆ = 1, and in the case

68

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SHARF and ZELAZO

FIGURE 3 An illustration of Step 3 in
Algorithm 1 with ri = 4 (in red) and
r𝑗 = 2 (in blue). The algorithm starts
with the edge between vi

1 and v𝑗1. It then
moves along the green dashed lines,
adding an edge after each one step. This
step of the algorithm terminates when
the algorithm tries to add an already
existing edge, resulting in the black edges
depicted in the figure.

FIGURE 4 The tree graph discussed in Remark 1.

ri⋆ ≥ 2, the cycle vi⋆
1 → vi⋆

2 → vi⋆
3 → · · · eventu-

ally passes through all the nodes in Vi⋆ . However, by
using the edges added to the graph in Step 3 of the
algorithm, we can build a path between any two nodes
vi

p and v𝑗p. Namely, this is the path vi
p → vi+1

p mod ri+1
→

· · · → v𝑗−1
p mod r𝑗−1

→ v𝑗p. Thus, any two arbitrary vertices

v𝑗1
p1

and v𝑗2
p2

can be linked—first, go from v𝑗1
p1

to vi
p1 mod ri

using the edges added in Step 3; then, move to vi
p2 mod ri

using the edges added in Step 5; lastly, continue from
vi

p2 mod ri
to v𝑗2

p2
using the edges added to the graph in

Step 3. Hence, is weakly connected, and the proof
is complete. □

Remark 1. The lower bound considers all possible
trees, but the upper bounds only considers path graphs.
It can be seen in the proof of Theorem 3 that the fact
that is a path is only used to prove that each V𝑗 is
invariant under the action of Aut(). This might be
false if is any tree, as the following example shows.
Consider Algorithm 1 with four clusters of size 1 and
a tree as depicted in Figure 4. In this case, the graph
 is equal to the tree . However, the permutation
switching the Nodes 2 and 3 is a graph automorphism,
so there is a cluster of size at least 2; hence, is not
OS(1, 1, 1, 1). Nevertheless, one should notice that the
upper and lower bounds coincide when there are at
most three clusters, as any tree on at most three nodes
must be a path.

Remark 2. The lower bound (2) can be found using
Kruskal's algorithm, which runs in O(k2 log(k)) time
in our case [25]. Contrarily, the upper bound (3)
requires one to solve a variant of the traveling salesman
problem, which is NP-hard.

Algorithm 1 solves the general cluster assignment
problem, as it constructs graphs of type OS(r1, … , rk) for
any cluster sizes r1, … , rk. Unfortunately, the bound (3)
is implicit in terms of the number of nodes and clusters.
We elucidate it by applying it to more specific cases, result-
ing in concrete bounds on the number of edges needed for
clustering in these cases.

Corollary 1. Suppose all cluster sizes r1, … , rk > 1 are
equal. Then, there exists a graph of type OS(r1, … , rk)
with at most n = r1 + · · · + rk edges, and this number of
edges is minimal.

Proof. Let r be the size of all clusters, so that lcm(r, r) =
r and the number of clusters is k = n∕r. Thus, the
graph outputted by Algorithm 1 (for an arbitrary)
has exactly n edges, as the summation over the edges
has k − 1 elements. It remains to show that no graph
of type OS(r1, … , rk) can have fewer than n edges. As
any graph with fewer than n − 1 edges is not weakly
connected [18], it suffices to prove that such a graph
cannot have exactly n − 1 edges.

First, note that the out-degree is preserved by
the action of Aut(), meaning that vertices in the

69

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com

SHARF and ZELAZO

same cluster have the same out-degree. Denoting the
out-degree of nodes in the ith cluster by di, the total
number of edges is equal to the sum of the out-degree
over all nodes, that is, to r(d1 + · · · + dk). In partic-
ular, the number of edges, n − 1 is divisible by r. As
n = kr, n is also divisible by r, which together implies
that r divides 1, which is absurd. Thus, no such graph
on n − 1 edges can exist. □

Corollary 2. Let r1, … , rk be positive integers such that
k ≥ 2 and that for every 𝑗, l, either r𝑗 divides rl or vice
versa. Then, there exists a graph of type OS(r1, … , rk)
with n = r1 + · · · + rk edges.

Proof. We reorder the numbers r1, · · · , rk so that rl
divides r𝑗 for l ≤ 𝑗. We note that if rl divides r𝑗 , then
lcm(rl, r𝑗) = rl. Thus, running Algorithm 1 with =
1 → 2 → … → k gives a graph type OS(r1, … , rk)
with the following number of edges:

k−1∑
𝑗=1

lcm(r𝑗 , r𝑗+1) + r1 =
k−1∑
𝑗=1

r𝑗+1 + r1 =
k∑

𝑗=1
r𝑗 = n.

□

Corollary 3. Let r1, … , rk be positive integers such that
r𝑗 ≤ q for all 𝑗, and let n = r1+· · ·+rk. Then, there exists
a graph of type OS(r1, … , rk) with at most n + O(q3)
edges.

Proof. We assume without loss of generality that r1 ≤

r2 ≤ · · · ≤ rk. Let ml be the number of clusters of size l
for l = 1, 2, … , q, and let be the graph constructed by
Algorithm 1 for the path = 1 → 2 → · · · → k. If r𝑗 =
r𝑗+1, then lcm(r𝑗 , r𝑗+1) = r𝑗 , and lcm(r𝑗 , r𝑗+1) ≤ r𝑗r𝑗+1
otherwise. Thus, the number of edges in is given by

k−1∑
𝑗=1

lcm(r𝑗 , r𝑗+1) + r1 ≤
∑

l∈{1,… ,q},
ml≠0

(ml − 1)l +
q−1∑
l=1

l(l − 1) + r1.

Indeed, for each l ∈ {1, … , q}, if there's at least one
cluster of size l, then there are ml − 1 edges in the path
 that touch two clusters of size l. The second term
bounds the number of edges between clusters of dif-
ferent sizes. We note that n =

∑q
l=1 lml, so the first

term is bounded by n. As for the second term, we write
l(l − 1) ≤ l2 and use the formula

∑q−1
l=1 l2 = (q−1)q(2q−1)

6
.

Lastly, the last term r1 is bounded by q. This completes
the proof. □

Theorem 5 will show that the upper bound (3) is
bounded by (k−1)n2

k2 for any cluster sizes, and it will also give

a heuristic for choosing the path for Algorithm 1 guar-
anteeing the number of edges does not exceed this upper
bound.

3.2 Robust OS-type graphs
The previous section presented a solution to the problem
of cluster assignment. Namely, given a collection of homo-
geneous agents and the desired cluster sizes, the designer
constructs the interconnection graph using Algorithm 1,
and then chooses a controller following Assumption 2.
The analysis depicted in the paper [16] shows that the
closed-loop network would then converge to the desired
clustered steady state. However, there are no guarantees
on what happens if the network changes abruptly, either
due to hardware or software malfunction, a cyber attack, or
both. In these cases, one (or more) of the agents effectively
become disconnected from the rest of the network and are
effectively removed from the dynamical system and the
interaction graph. For this reason, we wish to explore the
robustness of OS-type graphs to changes. Ideally, when
one (or more) agent is removed from the system due to a
malfunction, all other agents should still cluster as before.
More specifically, two non-compromised agents that were
previously in the same cluster, should still belong to the
same cluster. We thus make the following definition:

Definition 8. The oriented graph = (V,E) with n
nodes is said to be s-robustly OS(r1, … , rk) for a posi-
tive integer s (called the clustering robustness param-
eter) if the following conditions hold: (i) is weakly
connected; (ii) the orbits V1, … ,Vk of the action of
Aut() on have sizes r1, … , rk, respectively; and (iii)
for any set A ⊆ V such that |A| ≥ n − s (comprised of
the non-compromised agents), denoting the induced
subgraph with node set A as ̃, the action of Aut(̃) on
̃ has orbits V1 ∩ A, … ,Vk ∩ A. Moreover, we say that
the oriented graph is totally robustly OS(r1, … , rk) if
it is s-robustly OS(r1, … , rk) for s = n.

Proposition 2. Let r1, … , rk be positive integers, and
let = (V,E) be a 1-robustly OS(r1, … , rk) with clus-
ters V1, … ,Vk. Then, for any i ≠ 𝑗 ∈ {1, … , k}, either
there are no edges between Vi and V𝑗 or that any node
from Vi is linked with any node from V𝑗 .

Proof. Let i, 𝑗 ∈ {1, … , k}, and suppose there is an
edge between two nodes v⋆i ∈ Vi and v⋆

𝑗
∈ V𝑗 . We

first show that any node in v𝑗 ∈ V𝑗 are connected to
v⋆i . Indeed, consider the graph ̃∖{v⋆i } corresponding
to the case in which v⋆i malfunctions. As is 1-robustly
OS(r1, … , rk) with clusters V1, … ,Vk, we conclude
that v𝑗 and v⋆

𝑗
are in the same cluster for both and

̃. Thus, there exist automorphisms 𝜓 ∈ Aut() and

70

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SHARF and ZELAZO

�̃� ∈ Aut(̃) such that 𝜓(v𝑗) = v⋆
𝑗

and �̃�(v𝑗) = v⋆
𝑗

.
As automorphisms preserve the degree of nodes, we
conclude that v𝑗 and v⋆

𝑗
have the same degree both in

 and in ̃. However, the degree of v⋆
𝑗

in ̃ is smaller
than its degree in by one, as we removed the edge
between v⋆i and v⋆

𝑗
when we constructed ̃. This means

that the degree of v𝑗 in ̃ is smaller than its degree in

by one, which implies that v𝑗 is connected to v⋆i in , as
̃ = ∖{v⋆i }. If we repeat this argument while replac-
ing v⋆

𝑗
by v𝑗 and swapping i and 𝑗, we conclude that

any node in Vi is connected to v𝑗 . As v𝑗 was an arbi-
trary node in V𝑗 , we conclude that any node in Vi is
connected to any node in V𝑗 , as claimed. □

Proposition 2 suggests a necessary update to Algorithm
1 to get robust OS-type graphs. Indeed, the modulo-based
construction of edges between different clusters is replaced
by taking all possible edges. The adapted Algorithm 2 is
given below.

Theorem 4. Let r1, … rk be positive integers, and let
n = r1 + · · · + rk. For any path , Algorithm 2 outputs a
graph which is totally robustly OS(r1, … , rk), having∑

{i,𝑗}∈ rir𝑗 edges.

Proof. Let us denote the graph constructed by
Algorithm 2 by = Alg,2(r1, r2, … , rk|), and con-
sider the following set of nodes Vi = {vi

p}
ri
p=1. We

first prove that this graph is of type OS(r1, … , rk),
that is, that is weakly connected, that all nodes
inside each Vi are exchangeable, and that each set
Vi is invariant under Aut(). The graph is obviously
weakly connected, as any node in Vi is connected to
any node in Vi+1. Moreover, one can show that each
set Vi is invariant using a similar argument to the
proof of Theorem 3. As for the claim that all nodes
inside each Vi are exchangeable, we note that the
nodes inside each set Vi can be permuted arbitrarily
without changing the structure of the graph. More

precisely, if 𝜎i is an arbitrary permutation on the set
{1, 2, … , ri}, then the map 𝜓 ∶ V → V defined by
𝜓(vi

p) = vi
𝜎i(p)

is an automorphism of . In particular,
any to nodes inside each Vi can be mapped to one
another by an automorphism, as desired. We therefore
conclude that = Alg,2(r1, r2, … , rk|) is of type of
type OS(r1, … , rk).

Now, let A be a set of non-compromised agents, and
let ci = |Vi∖A| be the number of compromised agents
in cluster i. We observe that the induced subgraph ̃ on
A is equal to Alg,2(r1 −c1, r2 −c2, … , rk −ck|), where
the clusters are given by V1 ∩ A,V2 ∩ A, … ,Vk ∩ A.
Thus, is a completely robust OS-type graph. Lastly,
counting the number of edges in added in Step 3 of
Algorithm 2, we conclude that has

∑
{i,𝑗}∈

rir𝑗 edges,

as claim. This completes the proof of the theorem. □

Regrading sparsity, Proposition 2 and Algorithm 2 show
that the number of edges in s-robust (or totally robust)
OS-type graphs can be bounded from above by M′ and from
below by m′, where

m′ = min
 tree on k vertices

∑
{i,𝑗}∈

rir𝑗 ,

M′ = min
 path on k vertices

∑
{i,𝑗}∈

rir𝑗 .
(4)

Furthermore, the relation ab = gcd(a, b)lcm(a, b) gives
a connection between (4), (2), and (3). Namely, if 𝜌 =
maxi,𝑗 gcd(ri, r𝑗), then m ≤ m′ ≤ 𝜌m and M ≤ M′ ≤ 𝜌M.
We note that 𝜌 ≤ maxiri, meaning the number of edges
required to get totally robust OS-type graphs isn't much
larger than the number of edges required to get OS-type
graph, at least when there are no large clusters.

Before moving on to a numerical example, we wish to
provide one more result relating the upper bound M′ (and
hence M) to the number of nodes and the number of
clusters.

Theorem 5. Let r1, … , rk be positive integers summing
to n. Suppose without loss of generality that r1 ≥ r2 ≥

· · · ≥ rk, and let be the path 1 → k → 2 → (k − 1) →
… on k nodes. The graph outputted by Algorithm 2
has no more than (k−1)n2

k2 edges.

Proof. We first consider the case in which k is odd, that
is, k = 2𝓁+1 for some integer 𝓁. There are two types of
edges in the path —edges of the form i → (k+1)−i for
i = 1, 2, … ,𝓁, and edges of the form (k+ 1)− i → i+ 1
for i = 1, 2, … ,𝓁. Thus, by Theorem 4, the number of
edges in is no larger than the value of the following
(continuous) optimization problem:

71

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SHARF and ZELAZO

𝜈 = max

{ ∑
{i,𝑗}∈

xix𝑗 =
𝓁∑

i=1
xix(k+1−i) +

𝓁−1∑
i=1

xi+1x(k+1−i) ∶

k∑
i=1

xi = n, x1 ≥ x2 ≥ · · · ≥ xk

}
.

We let x⋆1 , … , x⋆k be the optimal solution to the
problem above. If we show that all x⋆i are equal to
each other (and hence to n∕k), this would imply that
the number of edges in is bounded by the value of
the cost function at x⋆1 , … , x⋆k , which is equal to 𝜈 =
(k−1)n2

k2 , as claimed. Suppose, for example, and heading
toward contradiction, that x⋆2 < x⋆3 and that 𝓁 ≥ 3. The
derivative of the cost function F satisfies the following
inequality:

𝜕F
𝜕x2

|x⋆ = x⋆k + x⋆k−1 ≤ x⋆k−1 + x⋆k−2 = 𝜕F
𝜕x3

|x⋆ ,
where the inequality follows from the constraints of
the optimization problem. Thus, slightly reducing x⋆2
and increasing x⋆3 by the same amount results in a fea-
sible solution with at least the same value of the cost
function. This is contradictory to the manner in which
x⋆ was chosen, meaning that x⋆2 = x⋆3 . A similar argu-
ment shows that in fact, x⋆1 = x⋆2 = · · · = x⋆𝓁 , and
that x⋆𝓁+1 = · · · = x⋆k . Finally, if the value of the former
is different from the value of the latter, one similarly
shows that reducing all x⋆1 , … , x⋆𝓁 by some small 𝜖 > 0
and simultaneously increasing all x⋆𝓁+1, … , x⋆k by the
same 𝜖 gives a feasible solution with at least the same
value of the cost function. Therefore, all the x⋆i s must
be equal, and the bound is achieved. The proof for an
even number of clusters k is analogous and is omitted
for the sake of brevity and due to lack of space. □

Remark 3. The proof of Theorem 5 also gives the
worst case scenario for Algorithm 2, namely, the max-
imal number of edges is achieved when all clusters
are equally sized. The upper bound in Theorem 5
also applies to the non-robust graphs outputted by
Algorithm 1. In fact, this upper bound is tight, at least
in order of magnitude. Indeed, a graph with O

(
(k−1)n2

k2

)
edges can be found by taking r1, … , rk as the (L +
1), … , (L+k)th prime numbers, where the L is chosen
as an integer satisfying L log L ≈ n

k
.

4 NUMERICAL EXAMPLE

We consider a team of identical drones trying to moni-
tor multiple fires of different sizes in a forested region [7,
26,27]. As in Sujit et al. [28], we assume the number of
agents required to monitor a given site increases with the

severity of the fire and can be between two and four agents.
The agents are assumed to be governed by the following
two-input two-output simplified first-order dynamics that
includes a saturation function on the velocity,

.pi = −sat(0.1pi + ui), 𝑦i = pi.

Here, pi ∈ R
2 is the position of the agent, ui ∈ R

2 is
the control input, and the saturation function defined as
sat(x) = 20·x

max{20,||x||} scales the actuation signal to guaran-
tee that velocity never exceeds 20 m/s without affecting its
direction. The forested region is of size 2 km× 2 km, and
there are a total of five fires to be monitored—one mild fire
requiring two drones, two medium-severity ones requir-
ing three drones each, and two severe ones requiring four
drones each. The 16 required drones begin their task from
a warehouse stationed in the middle of the forest, where
their initial position is a 4 × 4 grid with distances of 25 m
from each other.

The drones use Algorithm 2 to construct a totally
robustly OS-type graph guaranteeing the desired cluster-
ing behavior, corresponding to one cluster of size 2, two
clusters of size 3, and two clusters of size 4, shown in
Figure 5a. While Theorem 4 guarantees that the desired
clusters form, we now force these clusters to be at the sites
of fires. This is done by considering the dependence of
the steady states on the agents, controllers, and underly-
ing graph, as expressed in [16]. Namely, if we let k be the
steady-state relation of the agents, let 𝛾 be the steady-state
relation of the controllers, and let y be the steady-state out-
put of the closed-loop system, then the following relation
holds:

0 = k−1(y) + 𝛾(⊤

y), (5)

where k−1 describes all constant inputs that can produce
the steady-state y [19]. If we fix the steady-state output y
as the locations of the fire sites and treat the controller
input/output relation 𝛾 (which we choose to be identical
between all edges) as the variable, then (5) turns into a lin-
ear equation connecting the values of 𝛾 at different points
ζ(1), … , ζ(N) ∈ R

2. For example, focusing on the first clus-
ter gives the equation 0 = k−1(y1) − r2𝛾(y2 − y1), where
yi ∈ R

2 is the desired position of the ith cluster and ζ(1) =
y2 − y1 ∈ R

2. Solving these linear equations, we get condi-
tions of the form 𝛾(ζ(i)) = μ(i) for vectors ζ(1), … , ζ(N) ∈ R

2

and μ(1), … , μ(N) ∈ R
2. So long that these conditions hold,

and the closed-loop network is known to converge (e.g.,
due to passivity), the results of the papers [16, 20] guar-
antee that the closed-loop network will converge to the
desired clustered steady state. In particular, choosing the
controller as a piecewise-linear function satisfying 𝛾(ζ(i)) =
μ(i) will work.

72

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SHARF and ZELAZO

(a) Graph built by Algorithm 2 for cluster sizes 1 = 2 = 3 3 = 2 ,
and 4 = 5 = 4 . This is a totally robust OS-type graph, as guaranteed
by Theorem 4.

(b) Agent’s trajectories in the x-y plane on the closed-loop system. The black dots
represent the fire sites.

FIGURE 5 First run for forest fire numerical example.

(a) The x coordinate of the agents. (b) The y coordinate of the agents.

FIGURE 6 Second run for forest fire numerical example. Agent #15, which was originally allocated to a large fire, malfunctions at
t = 120 s. The moment of malfunction can be seen by the vertical black line, and the path of the agent is portrayed by the dashed black line. It
can be seen that all still-functioning agents remain in their original clusters, as promised by Theorem 4.

In our case, the desired steady-state output is composed
of the locations of the fire sites. The site of the mild fire
is at y = (1300,900), the sites of the medium-severity fires
are at (1700,200) and (1000,650), and the two severe fires
are at (1150,1250) and (300,1800). Solving (5) and apply-
ing the process above yields the following piecewise-linear
controller, which is applied to all edges in the graph :

𝛾

([
𝜁1
𝜁2

])
=
([

interp([−850,−700,−150,300], [18.28,22.29,30.63,31.88])
interp([250,350, 450,550], [−60.94,−49.06,−27.81,−19.14])

])
,

where interp(…) is the (1-D) linear interpolation func-
tion. To conclude, Theorem 4 guarantees we achieve the
desired clustering structure by using the graph , and the

constructed controller guarantees the clusters are at the
fire sites. We run a closed-loop simulation for this system,
the results of which can be seen in Figure 5b. One can see
that the agents indeed converge to the desired clustering
structure at the sites of the fires.

We demonstrate the robustness of clustering to malfunc-
tioning agents. Recall that a malfunctioning agent does

not communicate with any of its neighbors, and is effec-
tively disconnected from the rest of the network. Theorem
4 implies that the constructed graph is totally robust,

73

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

SHARF and ZELAZO

meaning that any number of agent malfunctions should
have no effect on the clustering structure of the other,
still-functioning agents. To verify this claim, we rerun the
simulation, but cause one of the agents (#15) assigned to a
large fire to malfunction after two minutes. Figure 6 show
the x and 𝑦 coordinates of each of the agents, and one
can see that the clustering structure remains the same,
as promised by Theorem 4, although the clusters change
their location a bit. As agent #15 looses interaction with its
neighbors, its control becomes 0 and the agent returns to
its initial position (dashed line in Figure 6).

5 CONCLUSIONS

This work explored the problem of cluster assignment for
homogeneous diffusively coupled MASs. We relied upon
the clustering analysis results of Sharf and Zelazo [16]
to exhibit synthesis procedures that guarantee a cluster-
ing behavior, no matter the desired number of clusters
nor their size. This was done by prescribing graph syn-
thesis algorithms which have certain symmetry proper-
ties that reflect the desired clustering assignment. When
such graphs are used in a network comprised of weakly
equivalent agent and controller dynamics, the network
converges to a cluster configuration. We further stud-
ied the robustness of such MAS to node malfunctions
and presented a graph synthesis procedure which guaran-
tees the clustering structure is robust to any number of
agent malfunctions. The results were demonstrated in a
numerical example.

AUTHOR CONTRIBUTIONS
Miel Sharf: Conceptualization; formal analysis;
investigation; methodology; validation; visualization;
writing—original draft; writing—review and editing.
Daniel Zelazo: Conceptualization; investigation; project
administration; resources; software; supervision;
writing—review and editing.

CONFLICT OF INTEREST STATEMENT
The authors declare no potential conflict of interests.

ORCID
Daniel Zelazo https://orcid.org/0000-0002-2931-245X

REFERENCES
1. N. Chopra and M. W. Spong, Advances in robot control: from

everyday physics to human-like movements, Springer, Berlin,
Heidelberg, 2006, pp. 107–134.

2. R. Olfati-Saber, Distributed Kalman filtering for sensor networks,
Proc. IEEE Conf. Decis. Control, IEEE, New Orleans, LA, 2007,
pp. 5492–5498.

3. L. Xiao and S. Boyd, Fast linear iterations for distributed averag-
ing, Syst. Control Lett. 53 (2004), no. 1, 65–78.

4. A. Lancichinetti and S. Fortunato, Consensus clustering in com-
plex networks, Sci. Rep. 2 (2012), no. 1, 336.

5. A. Schnitzler and J. Gross, Normal and pathological oscillatory
communication in the brain, Nature Rev. Neurosci. 6 (2005),
285–96.

6. K. M. Passino, Biomimicry of bacterial foraging for distributed
optimization and control, IEEE Control Syst. Mag. 22 (2002), no.
3, 52–67.

7. C. Yuan, Y. Zhang, and Z. Liu, A survey on technologies for
automatic forest fire monitoring, detection, and fighting using
unmanned aerial vehicles and remote sensing techniques, Canad.
J. Forest Res. 45, no. 7, 783–792.

8. M. Bürger, D. Zelazo, and F. Allgöwer, Hierarchical clustering of
dynamical networks using a saddle-point analysis, IEEE Trans.
Autom. Control 58 (2013), no. 1, 113–124.

9. J. Qin and C. Yu, Cluster consensus control of generic linear
multi-agent systems under directed topology with acyclic partition,
Automatica 49 (2013), no. 9, 2898–2905.

10. Y. Han, W. Lu, and T. Chen, Cluster consensus in discrete-time
networks of multiagents with inter-cluster nonidentical inputs,
IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), no. 4, 566–578.

11. C. Altafini, Consensus problems on networks with antagonis-
tic interactions, IEEE Trans. Autom. Control 58 (2013), no. 4,
935–946.

12. A. Chapman and M. Mesbahi, On symmetry and controllability
of multi-agent systems, Proc. IEEE Conf. Decis. Control, IEEE,
Los Angeles, CA, 2014, pp. 625–630.

13. A. Chapman and M. Mesbahi, State controllability, output con-
trollability and stabilizability of networks: a symmetry perspec-
tive, Proc. IEEE Conf. Decis. Control, IEEE, Osaka, 2015, pp.
4776–4781.

14. G. Notarstefano and G. Parlangeli, Controllability and observ-
ability of grid graphs via reduction and symmetries, IEEE Trans.
Autom. Control 58 (2013), no. 7, 1719–1731.

15. A. Rahmani and M. Mesbahi, Pulling the strings on agreement:
anchoring, controllability, and graph automorphisms, Proc. Am.
Control Conf., IEEE, New York, 2007, pp. 2738–2743.

16. M. Sharf and D. Zelazo, Symmetry-induced clustering in
multi-agent systems using network optimization and passivity,
Proc. Mediterr. Conf. Control. Autom., 2019, pp. 19–24.

17. M. Sharf and D. Zelazo, Cluster assignment in multi-agent sys-
tems, Asian Control Confer. 2022 (2022), 947–952.

18. C. Godsil and G. F. Royle, Algebraic graph theory, Graduate Texts
in Mathematics, Springer, New York, 2001.

19. M. Bürger, D. Zelazo, and F. Allgöwer, Duality and network the-
ory in passivity-based cooperative control, Automatica 50 (2014),
no. 8, 2051–2061.

20. M. Sharf and D. Zelazo, A network optimization approach to
cooperative control synthesis, IEEE Control Syst. Lett. 1 (2017),
no. 1, 86–91.

21. A. Jain, M. Sharf, and D. Zelazo, Regulatization and feedback
passivation in cooperative control of passivity-short systems: a net-
work optimization perspective, IEEE Control Syst. Lett. 2 (2018),
731–736.

22. M. Sharf, A. Jain, and D. Zelazo, A geometric method for
passivation and cooperative control of equilibrium-independent
passivity-short systems, IEEE Trans. Autom. Control 66 (2021),
no. 12, 5877–5892.

74

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-2931-245X
https://orcid.org/0000-0002-2931-245X

SHARF and ZELAZO

23. M. Sharf and D. Zelazo, Network feedback passivation of
passivity-short multi-agent systems, IEEE Control Syst. Lett. 3
(2019), no. 3, 607–612.

24. D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed., Wiley,
Hoboken, NJ, 2004.

25. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro-
duction to algorithms, 3rd ed., The MIT Press, Cambridge, MA,
2009.

26. M. S. Allauddin, G. S. Kiran, G. S. S. R. Kiran, G. Srinivas, G.
U. R. Mouli, and P. V. Prasad, Development of a surveillance sys-
tem for forest fire detection and monitoring using drones, IGARSS
2019—2019 IEEE Int. Geosci. Remote Sens. Symp., IEEE, Yoko-
hama, 2019, pp. 9361–9363.

27. D. Kinaneva, G. Hristov, J. Raychev, and P. Zahariev, Early forest
fire detection using drones and artificial intelligence, 2019 42nd
Int. Convention Inf. Commun. Technol. Electron. Microelec-
tron. (MIPRO), IEEE, Opatija, Croatia, 2019, pp. 1060–1065.

28. P. B. Sujit, D. Kingston, and R. Beard, Cooperative forest fire
monitoring using multiple UAVs, 2007 46th IEEE Conf. Decis.
Control, IEEE, New Orleans, LA, 2007, pp. 4875–4880.

AUTHOR BIOGRAPHIES

Miel Sharf is a researcher at Jether
Energy Research, Tel Aviv, Israel. He
received his B.Sc. (2013) and M.Sc.
(2016) degrees in Mathematics and
his Ph.D. (2020) in Aerospace Engi-
neering at the Technion—Israel Insti-
tute of Technology. From 2020 to

2022, he was a postdoctral researcher at the Division
of Decision and Control Systems, KTH Royal Insti-
tute of Technology, Stockholm, Sweden. He is a recip-
ient of the Springer Thesis Award and was selected
as a part of the 2021 class of Forbes Israel “30 under
30.” His research interests include electrical networks,
graph theory, multi-agent systems, nonlinear control

and optimization, data-driven control, and formal ver-
ification of control systems.

Daniel Zelazo received the B.Sc. and
M.Eng. degrees in Electrical Engi-
neering and Computer Science from
the Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, in 1999
and 2001, respectively, and the Ph.D.
degree in Aeronautics and Astronau-

tics from the University of Washington, Seattle, WA,
USA, in 2009. He is an associate professor of Aerospace
Engineering and the director of the Philadelphia Flight
Control Laboratory, Technion—Israel Institute of Tech-
nology, Haifa, Israel. From 2010 to 2012, he was a
postdoctoral research associate and a lecturer with
the Institute for Systems Theory and Automatic Con-
trol, University of Stuttgart, Stuttgart, Germany. His
research interests include topics related to multi-agent
systems. Dr. Zelazo is currently a subject editor of the
International Journal of Robust and Nonlinear Control.

How to cite this article: M. Sharf and D. Zelazo,
Cluster assignment in multi-agent systems: Sparsity
bounds and fault tolerance, Asian J. Control 27 (2025),
63–75, DOI 10.1002/asjc.3149.

75

 19346093, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3149 by C

ochrane Israel, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1002/asjc.3149

	Cluster assignment in multi-agent systems: Sparsity bounds and fault tolerance
	Abstract
	1 INTRODUCTION
	1.1. Notations

	2 SYMMETRIES IN NETWORKED SYSTEMS
	2.1. Diffusively coupled networks
	2.2. Group theory, graph automorphisms, and symmetric MASxmltex	*.4pt?>

	3 CLUSTER ASSIGNMENT IN MAS
	3.1. Construction and sparsity bounds on OS-type graphs
	3.2. Robust OS-type graphs

	4 NUMERICAL EXAMPLE
	5 CONCLUSIONS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENG (Modified PDFX1a settings for Blackwell publications)
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

