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Abstract— In this paper, we propose a state dependent event
triggering condition to achieve consensus for a team of agents
modeled with second order integrator dynamics. We study
two event-based consensus algorithms. In the first algorithm
we guarantee that the agents reach position consensus with a
constant final velocity while the second algorithm guarantees
that the agents reach position consensus with a zero final
velocity. The results are verified through simulation examples.

I. INTRODUCTION

Multi-agent systems (MAS) are systems composed of
multiple interacting dynamic units that are characterized
by their autonomy, local perspective, and decentralization.
These systems are recently gaining attention due to their
broad applications in wireless sensor networks, formation
flying, and distributed robotic systems [1]–[3]. MAS can
either be centrally controlled by a central computer or
distributedly controlled where every agent decides its own
course of action. Coordination between systems is brought by
solving the consensus problem, where consensus is defined
as an agreement by multiple systems on a common state
[4]. With the computation and modeling tasks becoming
more and more complex, centralized systems are difficult to
maintain and operate, hence a distributed approach is needed
where the agents rely only on local information from their
neighbors [5].

One of the subfields of MAS are networked cyber-physical
systems. In these class of systems, there is a strong coupling
between cyber processes such as communication and storage,
and physical processes such as actuation and sampling. For
example, in wireless sensor networks, the sensors are in a
remote location and the action is communicated to the actu-
ator over a wireless communication channel. These channels
consists of limited bandwidth and as the number of sensors
increases effective utilization of these channels is necessary
which has given rise to event triggered control [6]. In event
triggered control, traditional periodic sampling is replaced
with deliberate, opportunistic and aperiodic sampling thereby
reducing load on communication and computation resources
[5]. One of the most fundamental dynamical systems for
which we can envision an event triggered control is an
integrator. Many complex dynamic systems can be feedback
linearized as double integrators such as mobile robots, power
grids, or quad-copters [4], [7]. The work in [8] was one of
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the very first notes to study distributed event-based consensus
where a time dependent event based condition was defined
for a central controller and the results were extended to a
distributed case.

Related to this note are [9]–[11]. In particular [9] proposes
a time dependent event-triggering function for first and sec-
ond order dynamics to achieve average velocity consensus.
In [10], event-based protocols on single integrator dynamics
involving both fixed and switching topology. In addition
it provides bounds on the sampling period in terms of
eigenvalues of the graph Laplacian. The work [11] inves-
tigates the problem of synchronization in complex networks
and provides conditions to ensure that infinitely frequent
triggering is excluded by providing lower bounds on inter-
event times.

Most of the current work on event-based control focuses
on time-dependent thresholds instead of state-dependent
ones. This approach requires the system to have prior
knowledge of the smallest non-zero eigenvalue of the graph
laplacian matrix and the event triggered condition (ETC)
is updated continuously [12]. This, however, may not be
practical when the graph has switching topology or if an
agent is disconnected from the system. Also, time dependent
thresholds do not take into account the proximity of agents
which may result in farther agents communicating more
frequently compared to closer ones.

In this work, we study the state-dependent event-triggered
control strategy for a continuous time second-order MAS
over an undirected network. The main contributions of this
paper are as follows. Firstly, a novel state dependent ETC
is derived along with sufficient conditions to asymptotically
achieve consensus. The derived ETC can be continuous or
piecewise continuous, thereby giving us the flexibility to
choose a continuous or a piecewise continuous controller.
Secondly, we use this ETC to achieve average consensus
with a final constant velocity and zero-velocity consensus
with a final zero velocity. This is important when you want
to convert a consensus problem to a rendezvous problem.
As we will see further in this paper, converting a consensus
problem to a rendezvous problem can be done very easily
by just updating the controller in continuous time while
still operating under the same ETC. This is a very strong
result and will be the main focus of this paper. Finally,
with the simulation results we prove the effectiveness of the
derived ETC under both cases and provide a comparison with
constant time-scheduled control that was presented in [13].

This paper is organized as follows. Section II presents the
background and system model. The proposed event triggered
scheme is derived in Section III. Section IV verifies the
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results with numerical example and simulations. Conclusion
is presented in Section V.

Notations: Some concepts of graph theory that will
be used through out this paper are defined here [14]. An
undirected graph G = {V, E} consists of a finite vertex
set V = {v1, v2, . . . , vN}, representing N agents, and an
edge set E ⊆ V × V where each edge is denoted by
(vi, vj) ∈ E . The adjacency matrix of the graph is denoted
as AG = [aij ] is the N × N matrix given by aij = 1, if
(i, j) ∈ E and aij = 0 otherwise. The degree matrix ∆(G)
for an undirected, unweighted graph is a diagonal matrix
diag(d1, d2, . . . , dn) with di being the number of neighbors
of agent i. The Laplacian matrix L(G) associated with the
undirected graph G is defined as L(G) = ∆(G)−AG where
∆(G) is the degree matrix and AG is the adjacency matrix.

II. PROBLEM FORMULATION

We consider multi-agent systems having double integrator
dynamics described as,

Pi : { ẋi(t) = vi(t), v̇i(t) = ui(t) i = 1, . . . , N, (1)

where xi(t) ∈ R, vi(t) ∈ R and ui(t) ∈ R are position,
velocity, and control inputs of agent i, respectively. The
agents are able to exchange information over a static and
given undirected graph G.

We are interested in distributed control strategies that
drive the team of agents to consensus in their state. In this
direction, we define two notions of consensus for the multi-
agent system comprised of agents with dynamics (1).

Definition 1. A second order system is said to have achieved
average consensus, if for all xi(0), ẋi(0) ∈ R, where i =
1, 2, . . . , N ,

lim
t→∞

(
xi(t)−

t

N

N∑

i=1

vi(0)
)

=
1

N

N∑

i=1

xi(0) and

lim
t→∞

vi(t) =
1

N

N∑

i=1

vi(0).

Definition 2. A second order system is said to have achieved
zero velocity consensus, if for all xi(0), ẋi(0) ∈ R, where
i = 1, 2, . . . , N ,

lim
t→∞

xi(t) = c and lim
t→∞

vi(t) = 0,

where c ∈ R is a scalar constant.

Consider the distributed control law proposed in [15] and
[16] and given by

ui(t) = −
n∑

j=1

aij [(xi(t)− xj(t)) + µ(vi(t)− vj(t))], (2)

where aij is the {i, j} entry of the adjacency matrix
AG ∈ Rn×n associated with graph G, and µ is a positive
scalar. Denote x(t) =

[
x1 x2 . . . xN

]T
and v(t) =

[
v1 v2 . . . vN

]T
, then the closed loop dynamics can

be written as[
ẋ(t)
v̇(t)

]
= Γ

[
x
v

]
, where Γ =

[
0 IN
−L −µL

]
.

The above system reaches average consensus for an appro-
priate choice of gain µ and a connected graph G, as shown
in [15, Lemma 4.1].

The broad gist of an event-triggered scheme is to sample
the states (x(t), v(t)) as (x̂(tik), v̂(tik)) where the sampled
states are constant between the event times {tik, tik+1}, that
is, a zero-order-hold (ZOH) is applied in between the event
times. The error in state measurements for agent i is defined
as,

{
eix(t) = x̂i(t

i
k)− xi(t)

eiv(t) = v̂i(t
i
k)− vi(t).

(3)

Agent i broadcasts its latest states to its neighbors at
event times {ti0, ti1, . . . , tik} which are decided when an event
triggered condition is violated, i.e., when

fi(e
i
x(t), eiv(t), x̂i(t

i
k), v̂i(t

i
k)) > 0,

for some function fi(·). Such an event triggered condition
should be designed to reduce the times at which its states
are sampled and communicated to its neighbors, and also
decrease its own controller updates thereby reducing the load
on its communication and computation resources. Note that
in this paper, the states x(t) and ẋ(t) are called position and
velocity respectively. However, in general, they need not be
position and velocity as their definitions can depend on the
considered system.

In this direction, we would like to consider an event trig-
gered strategy for implementing the second-order consensus
control law in (2).

Problem 1. Construct a state-dependent event triggered
condition fi(e

i
x(t), eiv(t), x̂i(t

i
k), v̂i(t

i
k)) > 0 for the system

in (1) and a distributed control for each agent such that the
multi-agent systems achieves,

i) average consensus,
ii) zero velocity consensus.

III. MAIN RESULTS

In this section, we solve the second order multi-agent
system consensus problem with the presentation of an event
triggered condition (ETC). The general notion of event based
sampling is to define a function that guarantees the error
function of a system to always be less than some prespecified
threshold. Such functions generally take the form below,

f(ξ, e) , g(e)− h(ξ), ξ =

[
x
v

]
, e =

[
ex
ev

]
, (4)

where g(e) is some function of the error and h(ξ) is a
threshold that in our case is dependent on the states of the
system. The proposed scheme closes the loop, as shown in
Figure 1, every time the error function crosses the prespeci-
fied threshold, i.e., when f(x, e) = 0 as defined in (4).
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The ETC we propose is defined as follows,

fi(e
i
x(t), eiv(t), x̂i(t), v̂i(t)) =

(
(eix)2 + µ(eiv)

2
)

+
(σαi
di

(−µ+ diαi + µdiαi)n
2
i

)
,

(5)

where eix and eiv are sampling errors defined in (3), di is
the number of neighbors of agent i, αi and σ are positive
constants, ni is the {i} element of n(t) = Lv(t). We now
use the ETC in (5) to achieve average consensus and zero-
velocity consensus as defined in Section II.

A. Event Triggered Control for Average Consensus

To minimize the controller updates, the controller in (2)
is modified as,

ui(t) = −
n∑

j=1

aij [(x̂i(t
i
k)− x̂j(tjk′)) + µ(v̂i(t

i
k)− v̂j(tjk′))],

(6)

for t ∈ [tik, t
i
k+1) and k′(t) = arg minl∈N:t≥tjl

{t − tjl }
denotes the last event instant of agent j. The sequence
{tk}k∈N are the time instants when agent i samples its states,
while agent j samples its states at {tjk′}k′∈N, which says that
the event times can be asynchronous, i.e., agent i can sample
its states without receiving/requesting its neighbors to sample
their states and continues to evolve with the last received
information from its neighbors. However, agent i will update
its controller as soon as it receives any new information from
its neighbors. The exchange of information for the system
(1) with controller (6) is shown in Figure 1.

ETC
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ge
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i
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i
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i
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Fig. 1. Agent i with event triggered control law (6).

In Figure 1, the event-triggered condition (ETC) has access
to the true state {xi, vi} of the plant and when the ETC
condition is violated, the state is sampled and provided to the
controller ({x̂i, v̂i}). These states are available in a sample
and hold fashion until the next updated states arrive. We now
provide a result showing that the trigger condition (5) with
control law (6) achieves average consensus for the system.

Theorem 1. Consider the system in (1) with control (6),
and assume that the communication graph is connected and
undirected. Suppose the event-triggered condition is given by

(eix)2 + µ(eiv)
2 ≥ −σαi

di
(−µ+ diαi + µdiαi)n

2
i , (7)

where eix and eiv are sampling errors defined in (3), ni(t) =∑
j∈Ni

(vi(t) − vj(t)), and µ > 0 ∀i. Then for 0 < σ < 1,
0 < αi <

µ
di+µdi

and for any initial conditions, the system
(1) with control (6) achieves consensus.

Proof. Consider the candidate Lyapunov function V (x, v) =
1
2x

TL2x + 1
2v
TLv where L is symmetric positive semi-

definite Laplacian matrix corresponding to the graph G. Then
the time derivative of V (x, v) can be expressed as,

V̇ (x, v) = xTL2ẋ+ vTLv̇ = −µnTn− nTL(ex + µev)

= −µnTn−
∑

i

∑

j∈di

ni(e
i
x − ejx)− µ

∑

i

∑

j∈di

ni(e
i
v − ejv)

= −µnTn−
∑

i

dinie
i
x +

∑

i

∑

j∈di

nie
j
x − µ

∑

i

dinie
i
v+

µ
∑

i

∑

j∈di

nie
j
v.

Using Young’s inequality [17] which states that for a given
x, y ∈ R and for any ε ∈ R>0, |xy| ≤ x2

2ε + εy2

2 , we can
bound V̇ as,

V̇ ≤ −µ
∑

i

n2i +
(∑

i

diαin
2
i

2
+
∑

i

di(e
i
x)2

2αi

)

+
(∑

i

diαin
2
i

2
+
∑

i

∑

j∈di

(ejx)2

2αi

)

+ µ
(∑

i

diαin
2
i

2
+
∑

i

di(e
i
v)

2

2αi

)

+ µ
(∑

i

diαin
2
i

2
+
∑

i

∑

j∈di

(ejv)
2

2αi

)

=
∑

i

(−µ+ diαi + µdiαi)n
2
i +

∑

i

di
αi

(
(eix)2 + µ(eiv)

2
)
.

Enforcing the below condition,

(eix)2 + µ(eiv)
2 ≤ −σαi

di
(−µ+ diαi + µdiαi)n

2
i (8)

ensures that,

V̇ ≤
∑

i

(
(1− σ)(−µ+ diαi + µdiαi)n

2
i

)
, (9)

which is negative semi-definite ∀ {x, v} given 0 < σ <
1 and 0 < αi < µ

di+µdi
. With the above Lyapunov

function, we now can define the compact set Ø1mega =
{(x, v) |V (x, v) ≤ c} and let S = {(x, v) ∈ Ω|V̇ (x, v) =
0}. Note that V̇ ≡ 0 in (9) is possible only when ni = 0
meaning that the velocities are in agreement (i.e., v ∈
span{1}). We now show that S cannot contain any trajec-
tories where Lx 6= 0. To prove this by contradiction, let
there be an agent k ∈ Ni such that xk > xi which ensures
Lx 6= 0. Then

v̇i = −
n∑

j=1

aij [(x̂i − x̂j) + µ(v̂i − v̂j)] = −
n∑

j=1

aij(x̂i − x̂j)

> −aik(x̂i − x̂k) > 0,
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due to our assumption that xk > xi, which is a contra-
diction because any trajectory in S must have v̇i = 0.
Therefore, S must be of the form S = {(x, v) ∈ Ω ∩
(span{1}, span{1})}. Invoking LaSalle’s invariance princi-
ple [18], we conclude that all trajectories starting in Ω must
converge to S as t→∞.

When the error grows and equality is attained in (8),
an event is triggered. At this instant, xi(t) = xi(t

i
k) and

vi(t) = vi(t
i
k) thus resetting the error function to 0. This

process of error function evolving from 0 to a positive
value continues until consensus is achieved. Notice that even
though the vector n(t) is a function of continuous time
’t’, the neighbors provide agent i only with the sampled
states {xj(tjl ), vj(t

j
l )}l∈N and we can either set the ETC to

receive xi(t) or xi(tik) without undermining the results. This
is explored in the sequel.

We now take a moment to talk about the error dynamics
as defined in (7). In vector form we can re-write (7) as,

ex + µev ≥ β(Lv)2

where ex =
[
(e1x)2 . . . (eNx )2

]T
, ev =[

(e1v)
2 . . . (eNv )2

]T
, and β = diag(β1, . . . , βN ) with

βi = −σαi

di
(−µ + diαi + µdiαi). Then when consensus

is achieved, v = c1 with c being a constant. We obtain
ex + µev ≤ β(Lv)2 = c2β(L1)2 = 0 because L1 = 0.
As the error function is always non-negative, we have
ex + µev = 0. Concluding that when consensus is achieved
the error function goes to 0.

B. Event Triggered Control for Zero Velocity Consensus

To achieve zero velocity consensus, we propose a mod-
ification to the controller proposed in (6). In this case, we
provide both the ETC and the controller access to continuous
time self-states {xi(t), vi(t)}, which renders the controller to
be continuous as opposed to that presented in III-A which is
piecewise continuous. The control is now defined as,

ui(t) = −
n∑

j=1

aij [(xi(t)− x̂j(tjk′)) + µ(vi(t)− v̂j(tjk′))],

(10)

where {x̂j(tjk′), v̂j(t
j
k′)} are the last received states from the

neighboring agent j. The control in (10) can be represented
in vector form as,

u(t) = −(∆(G)x(t)−AG x̂(tjk′))− µ(∆(G)v(t)−AG v̂(tjk′)).

Theorem 2. Consider the system in (1) with control (10),
and assume that the communication graph is connected and
undirected. Suppose the event-triggered condition is given by
(7), then for 0 < σ < 1, 0 < αi <

µ(2−σ)
di(1+µ)(1−σ) and for any

initial conditions, the system achieves consensus.

Proof. Consider the candidate Lyapunov function V (x, v) =
1
2x

TL2x + 1
2v
TLv where L is a symmetric positive semi-

definite Laplacian matrix corresponding to the graph G. Then

we have,

V̇ (x, v) = xTL2ẋ+ vTLv̇

= xTL2v + vTL[−(∆(G)x−AG x̂)− µ(∆(G)v −AG v̂)]

= −µvTL2v + vTLAGex + µvTLAGev

= −µ
∑

i

n2i +
∑

i

ni
∑

j∈di

ejx + µ
∑

i

ni
∑

j∈di

ejv.

Using Young’s inequality to bound the above equation and
enforcing the condition (7), we have,

V̇ (x, v) ≤
∑
i

(
µ(σ − 2) + αidi(1− σ) + µdiαi(1− σ)

)n2
i

2
,

which is negative semi-definite for 0 < αi <
µ(2−σ)

di(1+µ)(1−σ)
and 0 < σ < 1. We have V̇ ≡ 0 if and only if ni = 0 which
is possible only when the velocities are in agreement (i.e.,
v ∈ span{1}), hence using LaSalle’s invariance principle
[18] and the similar arguments posed at the end of Theorem
1, we can conclude that consensus is achieved i.e. |xi−xj | →
0 and |vi − vj | → 0 as t→∞.

Using the preceding theorem, we’d like to determine that
the consensus achieved is indeed zero-velocity consensus. In
this direction, consider the control in (10) and denote,

ξi = [xi vi]
T and ξ̂i = [x̂i v̂i]

T ,

leading to

ξ̇i = Cξi−BK
∑

j∈di

aij(ξi−ξ̂j)−BF
∑

j∈di

aij(ξi−ξ̂j), (11)

where C =

[
0 1
0 0

]
, B =

[
0
1

]
, K =

[
0 µ

]
and F =

[
1 0

]
. Then in state space form, the system can be repre-

sented as,
ξ̇(t) = ΞG ξ(t) + ΘG ξ̂(t) (12)

where

ΞG = IN ⊗C−∆(G)⊗B(K+F ), ΘG = AG⊗B(K+F ).

Lemma 3. The matrix ΞG is Hurwitz and exp(ΞGt)→ 0 as
t→∞.

Proof. Denoting the eigenvalues of ΞG as λ1 ≤ λ2 ≤ · · · ≤
λ2N and expressing the matrix ΞG as,

ΞG = IN ⊗ C − diag{d1, d2, . . . , dN} ⊗ (BK +BF )

= diag{C − d1BK − d1BF,C − d2BK − d2BF,
. . . , C − dNBK − dNBF}.

The above matrix ΞG is a block diagonal matrix and we can
study its individual blocks to gain more perspective on its
spectral properties. In particular,

det(C − diBK − diBF ) = det
([

0 1
−di −µdi

])
= di 6= 0,
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which shows that rank(C − diBK − diBF ) = 2, it follows
that,

rank(ΞG) =

N∑

i=1

rank(C − diBK − diBF ) = 2N,

hence the matrix ΞG is full rank and consists of only non-
zero eigenvalues. The characteristic equation corresponding
to the matrix (C − diBK − diBF ) for i = 1, . . . , N is,

f(s) =

∣∣∣∣
−s 1
−di −µdi − s

∣∣∣∣ = s2 + (µdi)s+ di,

and the roots of the above polynomial are,

s =
−µdi ±

√
µ2d2i − 4di
2

,

∀µ, di > 0, the matrices C − diBK − CiBF for i =
1, 2, . . . , N are Hurwitz stable, implying the matrix ΞG is
Hurwitz. Since ΞG is Hurwitz, exp(ΞGt)→ 0 as t→∞.

Theorem 4. Consider a connected and undirected graph G,
then under the event triggered condition (7) control in (10)
achieves zero velocity consensus.

Proof. From Theorem 2 we know that the system achieves
consensus i.e., xi(t) → xj(t) and vi(t) → vj(t). Now to
prove that this is a zero-velocity consensus, consider the
general solution to the state space equation in (12) as,

ξ(t) = exp(ΞGt)ξ(0) + exp(ΞGt)

∫ t

0

exp(−ΞGτ)ΘG ξ̂(τ)dτ

= exp(ΞGt)ξ(0) + exp(ΞGt)
(
− exp(−ΞGτ)Ξ−1G ΘG ξ̂(τ)

∣∣∣
t

0

−
∫ t

0

exp(−ΞGτ)(−ΞG)−1ΘG
˙̂
ξ(τ)dτ

)

= exp(ΞGt)ξ(0)− Ξ−1G ΘG ξ̂(t) + exp(ΞGt)Ξ
−1
G ΘG ξ̂(0)

+ exp(ΞGt)

∫ t

0

exp(−ΞGτ)Ξ−1G ΘG
˙̂
ξ(τ)dτ.

For a very large t, since ΞG is Hurwitz, exp(ΞGt)→ 0 as t→
∞ and since consensus is achieved, ˙̂v → 0 and the above
equation reduces to,

lim
t→∞

ξ(t) = lim
t→∞

−Ξ−1G ΘG ξ̂(t). (13)

The matrix ΞG is a block diagonal matrix with blocks[
0 1
−di −µdi

]
as shown in Lemma 3 and it’s easy to see

that it’s inverse is also a block diagonal matrix with blocks[
−µ −1/di
1 0

]
. The matrix ΘG is also composed of blocks

with components
[

0 0
× ×

]
and the product of Ξ−1G and ΘG

will be matrices with blocks of
[
× ×
0 0

]
. Hence, we see

that all the even numbered rows of (13) which correspond
to the velocities of the agents are 0 as t → ∞. Therefore
limt→∞ vi(t) = 0 and it’s obvious that limt→∞ xi(t) =
constant.

Reducing the communication load in a network comes
at a cost of slower convergence rate. To prove this, define
the convergence rate of V (x, v) as ρ := 1

2 inf
{
− V̇ (x,v)

V (x,v) :

(x, v) ∈ S
}

[19]. In this expression, infimum is attained
when V (x, v) and V (x0, v0) are at its maximum which
is V (x0, v0) and V̇ (x0, v0) respectively. Let ρe be the
convergence rate with event-based sampling and ρw without
event-based sampling and our goal is to show ρe < ρw. Then,

ρe =

∑
i(1− σ)(µ− diαi − µdiαi)ni(0)2

1
2x

T
0 L

2x0 + 1
2v
T
0 Lv0

, (14)

and,

ρw =
µvT0 L

2v0
1
2x

T
0 L

2x0 + 1
2v
T
0 Lv0

. (15)

Maximizing ρe over αi we set αi = 0 to obtain ρe =
(1−σ)µ

∑
i ni(0)

2

1
2x

T
0 L

2x0+
1
2v

T
0 Lv0

and it can be shown that
∑
i ni(0)2 =

vT0 L
2v0. Therefore, ρe = (1−σ)ρw implying ρe < ρw. This

also holds for the zero-velocity consensus case.

IV. SIMULATION EXAMPLE

In this section, we illustrate the theoretical results through
simulations for a network of 4 agents with communication
graph G as shown in Figure (2).

1 2

3 4

Fig. 2. Communication graph G of the multi-agent system.

Average consensus: Simulation results for double-
integrator agents with random initial conditions, µ =
2, α1 = α2 = α3 = α4 = 0.1 and σ = 0.9 are shown
in Figure 3. The results in Figure 3 are consistent with
Theorem 1 as all the agents reach position consensus with
constant final velocity. Since the control law is piecewise
continuous, this event based scheme makes use of lesser
computing power compared to traditional periodic sampling.
The evolution of error and trigger functions for agent 1 is
shown in Figure 4(a). As discussed earlier, the error function
increases from 0 in the positive direction until equality is
attained in (8) and subsequently the error function is reset to
zero and this process repeats until consensus is achieved. The
threshold function, as indicated in Figure 4(a) is re-evaluated
any time new information is received from the neighbors.
Figure 4(b) shows the evolution of the Lyapunov function
as defined in Theorem 1 and we note that V (x, v) → 0 as
consensus is achieved.

Zero velocity consensus: The simulation results for second
order multi agent system with random initial conditions, µ =
2, α1 = α2 = α3 = α4 = 0.1 and σ = 0.9 is shown in
Figure 5 where we conclude that the velocity convergence
takes place at zero and position consensus takes place at a
constant value consistent with the results of Theorem 4. The
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Fig. 3. Simulation result for double-integrator agents with trigger function
(5) and control law (2).
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Fig. 4. Results pertaining to the average consensus problem.
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Fig. 5. Simulation result for double-integrator agents with trigger function
(5) and control law (6).

controller inputs to individual agents as defined in equation
(10) is shown in Figure 6 and ui → 0 as the states converge.

V. CONCLUDING REMARKS

In this paper, a novel event triggered condition (ETC)
was proposed to asymptotically achieve average and zero-
velocity consensus among a group of agents with second-
order dynamics. We highlight that the proposed condition
relies only on relative state measurements and reduces the
communication load on the system. The proposed event
triggered scheme determines for each agent when to update
its own states and when to broadcast its states when a
locally computed error function exceeds a state-dependent
threshold. The simulations were performed with periodic
event detection which further minimizes the communication
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Fig. 6. Controller inputs for zero-velocity consensus.

load on the system and also provides a lower bound on the
inter-event time.
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