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Abstract—This work mainly addresses continuous-time
multiagent consensus networks where an adverse attacker affects
the convergence performances of said protocol. In particular,
we develop a novel secure-by-design approach in which the
presence of a network manager monitors the system and broad-
casts encrypted tasks (i.e., hidden edge weight assignments) to
the agents involved. Each agent is then expected to decode
the received codeword containing data on the task through
appropriate decoding functions by leveraging advanced security
principles, such as objective coding and information localization.
Within this framework, a stability analysis is conducted for show-
ing the robustness to channel tampering in the scenario where
part of the codeword corresponding to a single link in the system
is corrupted. A tradeoff between objective coding capability and
network robustness is also pointed out. To support these novelties,
an application example on decentralized estimation is provided.
Moreover, an investigation of the robust agreement is as well
extended in the discrete-time domain. Further numerical simu-
lations are given to validate the theoretical results in both the
time domains.

Index Terms—Consensus networks, secure systems.

I. INTRODUCTION

THE CONSENSUS protocol has become a canonical
model for the study of multiagent systems (MASs),

groups of autonomous entities (agents) that interact with each
other to solve problems that are beyond the capabilities of
a single agent [1]. Such architectures are characterized by
a cooperative nature that is robust and scalable. Robustness
refers to the ability of a system to tolerate the failure of one
or more agents, while scalability originates from system mod-
ularity. Because of these advantages, networked architectures
based on MASs have become popular in several cutting-edge
research areas, such as the Internet of Things [2] and cyber–
physical systems [3]. As stated in [4], within such networks
of agents, “consensus” means to reach an agreement w.r.t. a
certain quantity of interest that depends on the state of all
agents. A “consensus algorithm” (or agreement protocol) is
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an interaction rule that specifies the information exchange
between an agent and all of its neighbors in the network such
that agreement is attained.

Recently, the increasing demand for safety and security
measures in the most advanced technologies have skyrock-
eted in many fields, including that of MASs [5], [6]. In
fact, the concerns about the protection of networked systems
from cyber–physical attacks are not new and have attracted a
fair amount of attention in the engineering community. As
a consequence, several approaches to improve the security
of such systems or understand their vulnerabilities have been
developed [7]. A first step in this direction is to analyze the
robustness properties of consensus networks. Few examples
of different connotations addressing this desired property are
given by one or a combination of the following requirements:
1) the network reaches an ε-consensus, i.e., for all (i, j) ∈ E
it holds limt→∞ ‖xi − xj‖2 ≤ ε, for some ε > 0 [8]; 2) a
subset of the network vertices converges to an agreement [9];
3) a cost function of the state that serves as a performance
index for the level of agreement is expected to decrease or
stay below a certain given threshold [10]; and 4) the network
fulfills consensus in spite of the presence of “small”-magnitude
perturbations altering the agent dynamics [11].

Related Works: In the literature, many techniques for secure
consensus or synchronization within a network are available.
Most of them rely on the concept of resilience, ensuring
robustness to attacks or faulty behaviors. In [12], classic
tools from system theory are applied on networks modeled as
discrete-time MASs in order to design observers and algebraic
tests with the goal of identifying the presence of misbehav-
ing agents. These identification-based techniques require a
deep understanding of the processes to be controlled and thus
their design is quite complex. Also, to the best of our knowl-
edge, continuous-time MASs have not been studied by means
of those tools yet. In [8] and [13], part of the information
being exchanged by the neighbors to a certain agent is cho-
sen and then fully neglected via thresholding mechanisms.
These selections are executed according to a given order that
imposes some priority on the information itself to achieve
attack mitigation. Such an approach can however lead to strong
biases, since it is possible that the designated order is not ade-
quate. Moreover, global information on the network topology
is required in the design leading to a centralized implementa-
tion (see also [14]). In [15], robust synchronization is attained
through protocols based on regulators that make use of a state
observer. These methods require the computation of maximal
real symmetric solutions of certain algebraic Riccati equations,
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also involving weighting factors that depend on the spectral
properties of the network graph. There have been additional
works focusing on resilient architectures for microgrids [16],
and MASs under denial-of-service attacks [17]–[19]. Finally,
a thriving part of this area directs its effort toward investiga-
tions coping with “privacy-preserving consensus” [20]–[24].
However, in contrast to this study, the attention has been
focused much more on discrete-time systems or concealing
the information being exchanged by nodes, in order to pre-
serve privacy or relevant data, such as initial conditions of the
network states.

Adopted Framework: Notwithstanding the meaningful nov-
elties, many of these works lack a simple, scalable, flexi-
ble, and distributed principle that renders a consensus MAS
resilient to specific cyber–physical threats that aim at slow-
ing down the convergence or destabilizing the network by
attacking its links. This approach thus seeks to preserve
confidentiality, integrity, and availability in the system itself
starting by the design of resilient network connections. Instead
of developing tools to secure existing systems, we provide
inherently secure embedded measures that guarantee robust
consensus convergence.

Methodology: Our approach is not meant to replace usual
security measures; conversely, it furnishes further innovative
security mechanisms based on the secure-by-design philos-
ophy, popular in software engineering [25]. The core of
this study consists of the development of a secure-by-design
approach and its application to the consensus theory. To this
aim, we take the point of view of a network manager pit-
ted against an attacker. The goal of the network manager
is to supply a networked system with an objective to be
achieved. The goal of the attacker is to disrupt the oper-
ation of the system and prevent it from reaching its goal.
Generally, such sensitive information may lay in the state
of the agents, or be the global objective of the system. Our
proposed solution approach is built upon three overarching
principles: 1) embed the agents with hidden security mea-
sures; 2) control the information given to the agents; and
3) make the dynamics robust and resilient. The first prin-
ciple arises from the fact that a certain amount of freedom
is often available in the design stage. One can, for instance,
adopt encryption methods to conceal the objective the network
is aiming at, namely, objective coding can be leveraged as a
security measure whenever an attacker is attempting to inject
a malicious signal in the system. For this purpose, encod-
ing/decoding functions are employed to serve as an encryption
mechanism in order to keep hidden the real network objec-
tive. The second principle stems from the fact that an MAS is
designed, in general, to fulfill a certain situation-specific task.
Thus, the information spread among agents needs to be quan-
tified and maintained to the strict minimum, leading to the
study of information localization. Finally, the last principle
strives to render the dynamics as robust as possible to attacks,
while ensuring that the objective can be reached with limited
information.

Contributions: The contributions of this work are threefold.
1) A secure-by-design consensus protocol is devised to sat-

isfy principles 1)–3) within a given multiagent network

under attack. The tradeoff between information encryp-
tion and robust convergence is analyzed.

2) A stability and robustness analysis is performed both in
continuous and discrete time to show that the proposed
protocol is resilient to small perturbations affecting the
reception of encrypted edge weights.

3) An application to decentralized estimation involving
the decentralized power iteration algorithm (DPIA) is
presented to highlight the validity of our approach.

Article Outline: The remainder of this article is organized
as follows. Section II introduces the preliminary notions and
models for multiagent consensus. In Section III, our proposed
strategy to secure the design of consensus is developed and
discussed. Section IV provides its robustness analysis when
the network is subject to channel tampering modeled as a
single-edge-weight perturbation, while Section V reports on
an application to decentralized estimation. Section VI extends
this study in the discrete-time domain. Numerical simula-
tions assessing the obtained theoretical results are reported in
Section VII and conclusions are sketched in Section VIII.

Notation: The set of real, real non-negative, and complex
numbers are denoted with R, R≥0, and C, respectively, while
	[ς ] and 
[ς ] indicate the real and imaginary parts of ς ∈ C.
Symbols 1l ∈ R

l and 0l ∈ R
l identify the l-dimensional

(column) vectors whose entries are all ones and all zeros,
respectively, while Il ∈ R

l×l and 0l×l ∈ R
l×l represent the

identity and null matrices, respectively. We indicate with el

the canonical vector having 1 at its lth component and 0 at
all the others. The Kronecker product is denoted with ⊗. Let
� ∈ R

l×l be a square matrix. Relation � � 0 means that � is
symmetric and positive semidefinite. The notation [�]ij iden-
tifies the entry of matrix � in row i and column j, while ‖�‖,
�
, and �† indicate its spectral norm, its transpose, and its
Moore–Penrose pseudoinverse. Operators ker(�), coll[�], and
rowl[�] indicate each the null space, the lth column, and the
lth row of �. The ith eigenvalue of � is denoted by λ�i . The
space spanned by a vector ω ∈ R

l, with ith component [ω]i, is
identified by <ω>. The Euclidean and infinity norms of ω are
denoted with ‖ω‖2 and ‖ω‖∞. Finally, ω = vecl

i=1(ωi) defines
the vectorization operator stacking vectors ωi, i = 1, . . . , l, as
ω = [

ω

1 . . . ω


l

]

; whereas, diagl

i=1(ςi) is a diagonal matrix
with ςi ∈ R, i = 1, . . . , l, on the diagonal.

II. PRELIMINARIES AND MODELS

In this section, preliminary notions and models for MASs
are introduced along with a brief overview on consensus theory
and robustness in consensus networks.

An n-agent system can be modeled through a weighted
graph G = (V, E,W) so that each element in the vertex set
V = {1, . . . , n} is related to an agent in the group, while the
edge set E ⊆ V × V characterizes the agents’ interactions in
terms of both sensing and communication capabilities. Also,
W = {wk}m

k=1, with m = |E |, represents the set of weights
assigned to each edge. Throughout this article, bidirectional
interactions among agents are supposed, hence, G is assumed
to be undirected. The set Ni = {j ∈ V \ {i} | (i, j) ∈ E} iden-
tifies the neighborhood of the vertex i, i.e., the set of agents
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interacting with the ith one and the cardinality di = |Ni| of
neighborhood Ni defines the degree of node i. Furthermore,
we denote the incidence matrix as E ∈ R

n×m, in which each
column k ∈ {1, . . . ,m} is defined through the kth (ordered)
edge (i, j) ∈ E , where i < j is adopted w.l.o.g., and for edge k
corresponding to (i, j) one has [E]lk = −1, if l = i; [E]lk = 1,
if l = j; [E]lk = 0, otherwise. For all k = 1, . . . ,m, the
weight wk = wij = wji ∈ R is associated to the kth edge
(i, j), and W = diagm

k=1(wk) is the diagonal matrix of edge
weights. Also, the Laplacian matrix containing the topological
information about G is addressed as L(G) = EWE
 (see [26]).
Henceforward, we also assume that graph G is connected and
L(G) � 0, having eigenvalues λL

i , for i = 1, . . . , n, such that
0 = λL

1 < λL
2 ≤ · · · ≤ λL

n . A sufficient condition to satisfy the
latter requirement, which is adopted throughout this article, is
setting wij > 0 for all (i, j). Finally, we let wi = ∑

j∈Ni
wij

and �G = maxi=1,...,n wi be the weighted degree of the ith
node and the maximum weighted degree of G, respectively.

We now provide an overview of the weighted consensus
problem in MASs. Let us consider a group of n homogeneous
agents, modeled by a weighted and connected graph G. Let us
also assign a continuous-time state xi = xi(t) ∈ R

D to the ith
agent, for i = 1, . . . , n. The full state of the whole network can
be thus expressed by x = vecn

i=1(xi) ∈ X ⊆ R
N , with N = nD.

Consequently, the weighted consensus within an MAS can be
characterized as follows.

Definition 1 (Weighted Consensus [26]): An n-agent
network achieves consensus if limt→+∞ x(t) ∈ A, where
A = <1n> ⊗ ω, for some ω ∈ R

D, is called the agreement
set.

For a connected graph G with positive weights, it is well
known that the linear weighted consensus protocol, given by

ẋ = −L(G)x (1)

where L(G) = (L(G) ⊗ ID), drives the ensemble state to the
agreement set [26].

We now review a robustness result for the consensus
protocol with small-magnitude perturbations on the edge
weights [11]. In this setting, we consider the perturbed
Laplacian matrix L(G	W ) = E(W + 	W)E
 for a structured
norm-bounded perturbation 	W ∈ �W = {	W : 	W =
diagm

k=1(δ
w
k ), ‖	W‖ ≤ δ̄W}. When the injection attack is

focused on a single edge, the following result (trivially
extended from the corresponding one-dimensional case) is
obtained relating the stability margin of an uncertain consen-
sus network to the effective resistance of an analogous resistive
network [27].

Lemma 1 [11]: Consider the nominal weighted con-
sensus protocol (1). Then, for a single edge attack
	W = δw

uveze

z ∈ �W on the edge z = (u, v) ∈ E , such that

δw
uv is a scalar function of t, the perturbed consensus protocol

ẋ = −(L(G	W
)⊗ ID

)
x (2)

is stable for all δw
uv satisfying

∣∣δw
uv

∣∣ ≤ Ruv(G)−1 (3)

where Ruv(G) = [L†(G)]uu − 2[L†(G)]uv + [L†(G)]vv is the
effective resistance between nodes u and v in G.

The result in (3) is sharp in the sense it provides an exact
upper bound on the robust stability of the system. For multiple
edge perturbations, a more conservative result based on the
small-gain theorem is also provided [11, Th. V.2].

III. SECURE-BY-DESIGN CONSENSUS PROTOCOL

In this work, we consider MASs which are led by a so-called
network manager providing encrypted objectives or parame-
ters to the ensemble. The MAS is also subject to an attack
by an external entity aiming to disrupt the operation of the
network. In this setup, agents receive high-level instructions
from the network manager that describe a task the agents have
to achieve. Within the consensus framework, a task may con-
sist of the assignment of edge weights, albeit the concept of
“task” may be varied according to further generalizations (e.g.,
nonlinear consensus) or depending on a specific multiagent
framework (e.g., formation control). In particular, our atten-
tion is directed toward edge weight encryption, since these
dictate the convergence rate of protocol (1) to the agreement.
It is worth mentioning that the latter performance indicator
plays a key role in the functioning of certain applications,
e.g., those involving decentralized estimation [28], or in certain
theoretical fields, as the problems related to averaged control-
lability [29]. Another crucial aspect in this setup is that the
network manager is not conceived to operate as a central-
ized controller. Indeed, this does not send control signals to
each agent for the system to achieve a “global objective,” but
instead sends only a few parameters describing the objective
to be achieved by the agents. Hence, the presence of the exter-
nal manager does not invalidate any distributed architectures.
Moreover, the use of a network manager that broadcasts the
encoded objective to all the nodes is justified by the fact that
each element of the network must be somehow made aware
of the network parameters for their information exchange to
occur correctly: we aim at the secure design for such a pre-
liminary task assignment. In this consensus groundwork, our
approach is indeed fully supported by the fact that optimal
weight assignment problems requiring prior computations are
of extreme relevance in the literature and give birth to well-
known research branches, e.g., the study of fastest mixing
Markov processes on graphs [30], [31].

The kind of scenarios we envision then consists of two
steps: first, the network manager broadcasts only a few sig-
nals, in which an (or a sequence of) objective(s) is encoded,
and second, each agent follows a predesigned algorithm or
control law—the consensus protocol, in this precise context—
depending on these local objectives. To this aim, objective
coding and information localization represent the primary tools
to encrypt tasks and spread the exchanged information. In the
next lines, we provide more details about these principles,
casting them on the consensus framework.

A. Objective Coding and Information Localization

A major innovation of our approach lies in the introduction
of objective decoding functions. Here, we assume that tasks
are described by an encoded parameter θ that we term the
codeword. The space of all tasks is denoted as �. Each agent
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in the network then decodes this objective using its objec-
tive decoding function, defined as pi : � → 
i, where 
i

depends on the specific application (e.g., 
i ⊆ R
n within the

consensus setting). Functions pi represent a secure encryption–
decryption mechanism for the information describing the task
being received. For θ ∈ �, pi(θ) is called the localized objec-
tive. Whereas, if θ /∈ �, pi(θ) may not be calculable; however,
any agent receiving such a codeword may launch an alert, since
this can be seen as an attack detection. A possible example
of this framework is to have � be a Euclidean space (e.g.,
the identity function), and pi be a projection onto some of
the canonical axes in the Euclidean space. In other words,
the common case in which pi are projection functions (e.g.,
pi(θ) = θi ∈ � ⊆ R

n2
when θ := vecn

i=1(θi), θi ∈ R
n) justifies

the abuse of language of calling θ the objective. Moreover, we
assume that the codewords θ are transmitted as in a broadcast
mode, that is, the network manager broadcasts the objective
θ in an encoded manner. Each agent is equipped with an
individually designed function pi which extracts from θ the
relevant part of the objective. Most importantly, the encod-
ing and decoding mechanisms are assumed unknown to the
attacker.

In addition to objective coding, information localization, the
process by which only parts of the global variables describing
the system are revealed to the agents, is fundamental in this
design approach. So, to conclude, we let hi(x):X → Yi, with
Yi ⊆ X, represent the information localization about the state
of the ensemble (containing n agents) for agent i.

B. Secure-by-Design Consensus Dynamics

With the above conventions, principles, and architecture, the
general description of agent i can be expressed by

ẋi = fi(x, ui(hi(x), pi(θ))), i = 1, . . . , n (4)

where ui = ui(hi(x), pi(θ)) is the control or policy of agent i,
which can only depend on the partial knowledge of the global
state and objective coding.

Now, since in this article, we are coping with secure linear
consensus protocols, dynamics in (4) is specified through the
following characterization dictated by the nominal behavior
in (1). First, the objective coding is established through the
nonconstant functions pi : � → 
i ⊆ R

n, such that [pi]j :=
pij, with

pij(θ) =
{

wij, if (i, j) ∈ E
0, otherwise.

(5)

The values wij in (5) coincide with the nominal desired con-
sensus weights set by the network manager. Second, the
information localization about the global state x is expressed
by means of hi(x) : X → Yi ⊆ R

D×n, such that colj[hi(x)] :=
hij(x(t)) ∈ R

D with hij(x) = xi − xj, if (i, j) ∈ E ; hij(x) = 0D,
otherwise. As a consequence, the peculiar dynamics fi(x, ui)

for the ith agent involved in the secure-by-design consensus
(SBDC) is determined by

fi(x, ui(hi(x), pi(θ))) = −
∑

j∈Ni
pij(θ)hij(x). (6)

It is worth to notice that (6) reproduces exactly the lin-
ear consensus protocol introduced in (1), since fi(x, ui) =

Fig. 1. Block diagram depicting relation (7) and the presence of a cyber–
physical attack δθ deviating a sent codeword θ .

−rowi[L]x ∀i = 1, . . . , n. However, a different point of view
is here offered, since the adopted network manager may broad-
cast the codeword θ in order to redesign a subset of the edge
weights whenever an external disturbance affects the integrity
of the information exchanged between a couple of nodes in
the network (e.g., set a specific edge weight to 0 if it is
detected to be compromised). Also, dynamics (6) shows both
the presence and separation between the encryption mech-
anism to secure the signals sent by the network manager
and the state information spreading. Indeed, defining p(θ) =
vecn

i=1(pi(θ)) ∈ R
n2

and H(x) = diagn
i=1(hi(x(t))) ∈ R

N×n2
,

dynamics (4)–(6) finally takes the form of

ẋ = −H(x)p(θ) (7)

and, thus, the following result can be stated.
Lemma 2: The SBDC protocol (7) reaches the consensus

for any given objective decoding function p satisfying (5).
Proof: By construction, dynamics (1) and (7) are equiva-

lent. Indeed, by (6), the ith equation of (7) can be rewritten
as ẋi = −∑j∈Ni

pij(θ)hij(x), so that term (i, j) in the above
summation is equal to (wij(xi − xj)), if (i, j) ∈ E , or it is zero,
otherwise.

As we will see in the next section, the benefits of such a per-
spective directly connect with the possibility of designing an
objective coding map p hiding the information on edge weights
and yielding guarantees on the robust stability of the consensus
protocol (7). In particular, a codeword θ ∈ � (when belong-
ing to some Euclidean subspace) is deviated from its nominal
value following a cyber–physical attack δθ , i.e., (θ + δθ ) is
received by the function p. Fig. 1 summarizes the develop-
ments obtained so far, describing the basic framework in which
the next investigation is carried out.

IV. ROBUSTNESS TO CHANNEL TAMPERING

One of the goals of this study aims at the design of networks
that are secure to channel tampering while accomplishing the
consensus task. To this end, we propose to embed the system
with security measures that allow to make it robust to small
signal perturbations on a single edge. In the sequel, a descrip-
tion for the channel tampering is provided along with the
relative robustness analysis for the devised SBDC protocol.
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A. Model for the Channel Tampering

This particular channel tampering problem under investiga-
tion is formulated as follows. Let the prescribed codeword
θ be subject to a deviation (i.e., an attack) δθ ∈ �θ =
{δθ : ‖δθ‖∞ ≤ δ̄θ }. To proceed with our analysis within a plau-
sible framework, we let � be a Euclidean subspace, namely,
� ⊆ R

n2
, and allow a codeword θ = vecn

i=1(θi) ∈ � to
be decomposed into (at most) n(n − 1)/2 meaningful “sub-
codewords” θ(k) := [θi]j = θij, with k = 1, . . . ,m, such
that θij = θji, if i �= j, and θii takes an arbitrary value, for
i = 1, . . . , n. Each θij ∈ �ij ⊆ R can be seen as the jth com-
ponent of the ith codeword piece θi, with i = 1, . . . , n. Such
subcodewords directly affect the value of pij(θ) if and only if
j ∈ Ni, i.e., it holds that pij(θ) = pij(θij) ∈ 
ij ⊆ R for all
(i, j) ∈ E , with 
ij such that 
i = 
i1 ×· · ·×
ij ×· · ·×
in.
Hence, the consensus description we account for to support
this analysis is such that the ith nominal dynamics in (7) is
altered into

ẋi = −
∑

j∈Ni
pij

(
θij + δθij

)
hij(x), i = 1, . . . , n (8)

with δθij = [δθi ]j and δθi satisfying δθ = vecn
i=1(δ

θ
i ). Therefore,

in this direction, we aim to solve the following.
Problem 1: Find objective functions pij such that (8) reaches

consensus, independently from the codeword θ ∈ � ⊆ R
n2

,
while the underlying MAS is subject to an attack δθ ∈ �θ

focused on a single edge (u, v) ∈ E , i.e., with δθij = 0 for all
(i, j) ∈ E \ {(u, v)}. Also, provide robustness guarantees for a
given perturbation set �θ in terms of the maximum allowed
magnitude (denoted with ρθuv) for component δθuv.

B. Robustness of the SBDC

Within the setup described so far, it is possible to exploit
Lemma 1 and provide guarantees for the robustness of
system (8) when the target of a cyber–physical threat is a
single edge. To proceed in this way, we resort to the study of
perturbations of the type δw

uv = δw
uv(θuv, δ

θ
uv) affecting weight

puv(θuv) = wuv and caused by a deviation δθuv focused on con-
nection (u, v) ∈ E . Nevertheless, further assumptions on the
pi’s are required to tackle Problem 1. Indeed, this robustness
analysis is necessarily restricted to a particular choice for the
objective coding, that is for concave and Lipschitz continu-
ous differentiable functions pi. More precisely, we let the ith
objective coding function pi : � → 
i adopted in model (8)
possess the following characterization.

1) Values [pi(θ)]j = pij(θij), with θij = [θi]j, satisfy (5) for
all (i, j) ∈ E and are not constant w.r.t. θij.

2) pij is concave ∀θ ∈ �, i.e., pij(ςη1 + (1 − ς)η2) ≥
ςpij(η1)+ (1 − ς)pij(η2), ς ∈ [0, 1] ∀η1, η2 ∈ �ij.

3) pij is Lipschitz continuous and differentiable w.r.t. θ ,
implying ∃Kij ≥ 0 : |p′

ij(θij)| ≤ Kij ∀(i, j) ∈ E .
While property 1) is standard to obtain an equivalence
between (8) in the absence of attacks and its nominal ver-
sion (7), hypotheses 2) and 3), demanding for concavity
and Lipschitz continuity along with differentiability, respec-
tively, may not appear intelligible at a first glance. The reason
for such a characterization is clarified in the next theorem,
providing the key result to solve Problem 1.

Theorem 1: Assume the above characterization 1)–3) for
objective decoding functions pi holds. Then, for an injection
attack δθ ∈ �θ on a single edge (u, v) ∈ E , i.e., with δθij = 0
for all (i, j) ∈ E \{(u, v)}, the perturbed consensus protocol (8)
is stable for all δθuv such that

∣
∣δθuv

∣
∣ ≤ ρθuv = (KuvRuv(G))−1 (9)

independently from the values taken by any codeword θ ∈ �.
Proof: As the nominal system (7) associated to (8) is stable

by virtue of Lemma 2, characterization 1)–3) determines each
ordered logical step to conclude the thesis through Lemma 1.
First, condition 1) is necessary to construct at least a corre-
spondence from θij to the weight wij for all edges (i, j) ∈ E .
Second, condition 2) expresses a concavity requirement for
the pij’s, leading inequality pij(θij + δθij) ≤ pij(θij) + p′

ij(θij)δ
θ
ij

to hold for any deviation δθ ∈ �θ , when p′
ij(θij) exists finite

for all θij. Consequently, 1) also forces Kij > 0 and 3) leads
to

pij

(
θij + δθij

)
− pij

(
θij
) ≤ Kijδ

θ
ij ∀(i, j) ∈ E . (10)

The product Kijδ
θ
ij in the r.h.s. of (10) is key, as Kij|δθij| can be

seen as the maximum magnitude of an additive perturbation
δw

ij := pij(θij +δθij)−pij(θij) affecting the nominal weight wij =
pij(θij) independently from the transmitted codeword θ . That
is, under 1)–3) model (8) can be reformulated as

ẋ = −H(x)
(
p(θ)+ δw) (11)

where δw ∈ �w = {δw : ‖δw‖∞ ≤ δ̄w}, such that δw =
vecn

i=1(δ
w
i ) and [δw

i ]j = δw
ij ≤ Kij|δθij|. Therefore, imposing

inequality Kuv|δθuv| ≤ Ruv(G)−1 in accordance with Lemma 1
leads to the thesis, since Kuv|δθuv| can be seen as an upper
bound of the deviation |δw

uv| ≤ Kuv|δθuv| for edge (u, v) ∈ E
w.r.t. to an altered subcodeword θuv + δθuv.

Remark 1: It is worth highlighting that inequality (9) yields
a small-gain interpretation of the allowable edge-weight uncer-
tainty that guarantees the network to be robustly stable within
a framework where any value of a codeword θ ∈ � is consid-
ered, provided that mapping structure 1)–3) for the design of
(θ,p(θ)) is adopted.1 In addition, Theorem 1 may be conser-
vative with regard to free-objective-coding stability margins
offered by Lemma 1, since |δw

uv| ≤ Kuv|δθuv|.
Another critical aspect arising from Theorem 1 is reported,

i.e., the tradeoff between objective coding and robustness.
Fact 1: The encoding capability of puv can be expressed

(locally) in terms of the Lipschitz constant Kuv, since, given
an arbitrarily small neighborhood Uθ

uv := [a, b] ⊆ �uv cen-
tered around the points θuv with highest absolute slope Kuv,
the image subset Puv(Uθ

uv) = [puv(a), puv(b)] ⊆ 
uv dilates2

as Kuv increases. On the other hand, as Kuv decreases, the
maximum magnitude ρθuv of admissible deviations δθuv grows,
leading to a higher robustness w.r.t. edge (u, v). In particu-
lar, for Kuv < 1, the robustness of (7) is higher w.r.t. the
corresponding nominal system.

1This is the broadest setup possible, as more than a single edge weight
would be altered if more complex structures of (θ, p(θ)) were considered.

2Dilations are intended in terms of the Lebesgue measure of a set.
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The next concluding proposition yields a deep insight to
grasp the tradeoff arising from Fact 1 by also putting Lemma 1
and Theorem 1 in comparison.

Proposition 1: Let auv, buv ∈ R, buv �= 0, and (u, v) ∈ E
the single edge under attack. Then, it holds that Uθ

uv = �uv,
Puv(Uθ

uv) = 
uv, and (9) is exactly equivalent to (3), that is,
|δw

uv| = Kuv|δθuv|, if and only if puv(η) = buvη + auv.
Proof: As puv(η) = buvη + auv, all points η ∈ �uv

have the same absolute slope Kuv = |buv|, thus implying
Puv(�uv) = 
uv. Also, condition puv(η) = buvη + auv, with
buv �= 0, is sufficient and necessary to obtain |δw

uv| = Kuv|δθuv|
for all η ∈ �uv, since (10) applied to edge (u, v) holds with
the equality.

Proposition 1 shows the unique scenario where the tradeoff
in Fact 1 holds strictly, namely, it holds globally ∀η ∈ �uv,
also allowing (9) not to be conservative3 w.r.t. (3).

V. APPLICATION TO DECENTRALIZED ESTIMATION

Decentralized estimation and control of graph connectivity
for mobile sensor networks is often required in practical appli-
cations [28], [32]. As outlined in [28], the Fiedler eigenvalue
and eigenvector of a graph can be estimated in a distributed
fashion by employing the so-called DPIA with a uniformly
weighted PI average consensus estimator (PI-ACE). In this
setup, n agents measure a time-varying scalar ci = ci(t), and
by communication over an undirected and connected graph
estimate the average of the signal, ĉ(t) = n−1 ∑n

i=1 ci(t).
By considering estimation variables yi = yi(t) ∈ R and
qi = qi(t) ∈ R, i = 1, . . . , n, the continuous-time estima-
tion dynamics in question associated to the ith agent is given
by [28]
{

ẏi = α(ci − yi)− KP
∑

j∈Ni

(
yi − yj

)+ KI
∑

j∈Ni

(
qi − qj

)

q̇i = −KI
∑

j∈Ni

(
yi − yj

)

(12)

where α > 0 represents the rate new information replaces
old information and KP, KI > 0 are the PI estimator gains.
Remarkably, the latter constants play an important role in the
convergence rate of estimator (12), as the estimation dynam-
ics is demanded to converge fast enough to provide a good
approximation of ĉ = ĉ(t) (which is determined by each com-
ponent of y, i.e., limt→∞ |ĉ(t)− yi(t)| = 0 for i = 1, . . . , n is
desired). In the sequel, we thus first provide a spectral char-
acterization pertaining such an estimator dynamics and then
we adapt the results obtained in Section IV to this specific
framework, finally illustrating the criticalities of the DPIA.

A. On the Spectral Properties of the PI-ACE

Setting y = [
y1 · · · yn

]
, q = [
q1 · · · qn

]
 and x =
[
y
 q
]
, c = [

αc
 0

n

]

, dynamics (12) can be also

rewritten as

ẋ = −Mx + c (13)

3In other words, the conservatism expressed in Theorem 1 arises only if
decoding functions that are nonlinear in their argument are adopted.

such that

M =
[

KPL + αIn − KIL
KIL 0n×n

]
(14)

where, throughout all this section, L stands for the unweighted
graph Laplacian associated to the unweighted network G0 =
(V, E,W0), W0 = {1}m

k=1. Clearly, (13) can be thought as a
driven second-order consensus dynamics whose stability prop-
erties depend on the eigenvalues λM

l , l = 1, . . . , 2n, of state
matrix M. In this direction, we characterize the eigenvalues
of M in the function of those of L by means of the fol-
lowing proposition to grasp an essential understanding of the
convergence behavior taken by dynamics (13).

Proposition 2: The eigenvalues of matrix M, defined as
in (14), are given by

λM
2(i−1)+j = ϕi + (−1)jσi, i = 1, . . . , n ∀j ∈ {1, 2}, (15)

where
{
ϕi = (

α + KPλ
L
i

)
/2

σi =
√
ϕ2

i − (
KIλ

L
i

)2
, s.t. 
[σi] ≥ 0.

(16)

Furthermore, λM
1 = 0 and 	[λM

l ] > 0 for l = 2, . . . , 2n.
The proof of Proposition 2 can be found in the Appendix

and, for a further discussion on the convergence properties of
system (13) and the estimation of signal ĉ(t), the reader is
referred to [28] and [33]. In fact, in the sequel, we aim at
the adaptation of theoretical results obtained in Section IV to
this specific framework. Considering that KP, KI , and α can
be seen as parameters to be sent by the network manager, it
is, indeed, possible to discuss the following relevant practical
scenario.

B. Application Scenario

We now consider an application scenario with a couple of
setups based on the perturbed second-order consensus protocol
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẏi = p(α)ij

(
θij + δθij

)
(ci − yi)− ∑

j∈Ni

p(KP)
ij

(
θij + δθij

)
hij(y)

+ ∑

j∈Ni

p(KI)
ij

(
θij + δθij

)
hij(q)

q̇i = − ∑

j∈Ni

p(KI)
ij

(
θij + δθij

)
hij(y)

(17)

and defined through decoding functions and information local-
ization functions

p(ς)ij (θij) =
{
ς, ∀(i, j) ∈ E
0, otherwise

(18)

hij(ω) =
{
ωi − ωj, ∀(i, j) ∈ E
0, otherwise.

(19)

In the first setup, named S1, we assume that a perturbation
over a single codeword affects parameter KP, thus changing
quantities ϕi. Also, we suppose that gains α and KI are not
perturbed and are correctly received (or already known) by all
agents in the network G.

It is worth to note that all the results on robustness given so
far are directed toward the preservation of the positive semidef-
initeness of the weighted Laplacian matrix, which is also
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related to the stability of the corresponding consensus protocol.
In particular, in this application, terms (KPλ

L
i ) can be thought

as eigenvalues of the weighted Laplacian LP = KPEE
. In
addition, as the proof of Proposition 2 reveals, since ϕi > 0
for all i = 1, . . . , n then 	[λM

l ] > 0 for all l = 2, . . . , 2n
is ensured. Hence, as far as the perturbed values of ϕi,
i = 1, . . . , n, remain strictly positive for any value of α > 0
then stability for a perturbed version of protocol (13) can be
guaranteed, since each ϕi can also be seen as an eigenvalue
of matrix MP = (αIn + LP)/2. Indeed, the worst case in this
setup arises when α is arbitrarily small, implying that the sta-
bility of (13) can be guaranteed if LP preserves its positive
semidefiniteness under attack. Consequently, inequality (9) can
be applied to this setup, accounting for an auxiliary graph
GP constructed from LP, whenever a single edge codeword
associated to weight KP is perturbed. This reasoning is better
formalized in the following concluding corollary.

Corollary 1: Assume the characterization 1)–3) in
Section IV-B holds for objective decoding functions
pi. Let ω ∈ R

n, ς ∈ R, and GP = (V, E,WP),
with WP = {KP}m

k=1, be a graph constructed from
LP = KPEE
, given KP > 0. Then, for an injection

attack δθ = [
δθ
α δθ
KP

δθ
KI

]
 =
[
0


n2 δθ
KP
0


n2

]

, δθKP

∈ �θ ,

on a single edge (u, v) ∈ E , i.e., with δθKP,ij
= 0 for all

(i, j) ∈ E \ {(u, v)}, protocol (17)–(19) is stable for all
α,KP,KI > 0 and δθuv such that

∣∣δθuv

∣∣ ≤ ρθP,uv = (KuvRuv(GP))
−1 (20)

independently from the values taken by any codeword θ =[
θ

α θ


KP
θ


KI

]
 ∈ � ⊆ R
3n2

.
Proof: The result is a direct consequence of Proposition 2

applied to Theorem 1 within setup S1, which is characterized
by (17)–(19).

In the second setup, named S2, we differently assume that
only three scalar subcodewords θα , θKP , and θKI , constitut-
ing codeword θ = [

θα θKP θKI

]
 ∈ � ⊆ R
3, are broadcast

by the network manager. This framework can be motivated by
the attempt to reduce computational burden, network complex-
ity, or overall energy consumption. Each agent i then receives
θ and uses three decoding functions p(α)ij (θij) = p(α)(θα),

p(KP)
ij (θij) = p(KP)(θKP), and p(KI)

ij (θij) = p(KI)(θKI ) for all
(i, j) ∈ E to unveil the weights α, KP, KI encoded in θα ,
θKP , θKI , respectively.

With such a preliminary description for S2, we now provide
the following robust consensus guarantee.

Theorem 2: Assume the characterization 1)–3) in
Section IV-B holds for objective decoding functions
p(α), p(KP), p(KI) with Lipschitz constants Kα,KKP ,KKI > 0,
respectively. Let δθ = [

δθα δθKP
δθKI

]

, with δθα, δ

θ
KP
, δθKI

∈ �θ

scalar time-varying perturbations, be an injection attack
affecting all the edges in the network. Then, the perturbed
consensus protocol (17)–(19) reaches agreement for all

α,KP,KI > 0 and δθα, δ
θ
KP
, δθKI

such that
⎧
⎪⎪⎨

⎪⎪⎩

∣∣δθα
∣∣ < K−1

α α∣
∣∣δθKP

∣
∣∣ <

(
λL

nKKP

)−1(
α − Kα|δθα| + λL

nKP
)

∣∣∣δθKI

∣∣∣ < K−1
KI

KI

(21)

independently from the values taken by any codeword θ =[
θα θKP θKI

]
 ∈ � ⊆ R
3.

Proof: Recalling expressions (15) and (16) for the eigenval-
ues of update matrix M in (14) that determines the nominal4

dynamics (13) from Proposition 2, it is possible to com-
pute the expression for the perturbed eigenvalues associated
to dynamics (17). More precisely, expression (16) can be
modified in function of variations δw

α = p(α)(θα + δθα) − α,
δw

KP
= p(KP)(θKP + δθKP

)− KP, δw
KI

= p(KI)(θKI + δθKI
)− KI as

⎧
⎪⎨

⎪⎩

ϕi =
(
α + δw

α +
(

KP + δw
KP

)
λL

i

)
/2

σ i =
√

ϕ2
i −

((
KI + δw

KI

)
λL

i

)2
, s.t. 
[σ i] ≥ 0

(22)

to find out the eigenvalues λM
2(i−1)+j = ϕi + (−1)jσ i, i =

1, . . . , n ∀j ∈ {1, 2}, of the update matrix M regulating
dynamics (17), whose form is yielded by

M =
⎡

⎣

(
KP + δw

KP

)
L + (

α + δw
α

)
In −

(
KI + δw

KI

)
L

(
KI + δw

KI

)
L 0n×n

⎤

⎦.

It is now possible to focus on the computation of the
maximum magnitude allowed for deviations δw

α , δw
KP

, δw
KI

.
In particular, the first step to guarantee robust consensus is

to ensure that ϕi > 0 for all i = 1, . . . , n. Remarkably, the
first two conditions in (21) serve this purpose as the follow-
ing reasoning holds. For all i = 1, . . . , n, ϕi > 0 is verified
if |δw

α + λL
i δ

w
KP

| < α + λL
i KP. By the triangle inequality, the

latter condition can be replaced by |δw
α |+λL

i |δw
KP

| < α+λL
i KP.

Hence, exploiting the ascending magnitude of λL
i w.r.t. index

i ∈ {1, . . . , n}, conditions |δw
α | < α and |δw

α | + λL
i |δw

KP
| <

α + λL
i KP can be imposed simultaneously by, respectively,

looking at cases i = 1 and i ∈ {2, . . . , n}. Consequently, lever-
aging the concavity of functions p(α) and p(KP) as in (10),
namely, employing |δw

α | ≤ Kα|δθα| and |δw
KP

| ≤ KKP |δθKP
|,

the first two conditions in (21) can be finally enforced.
As a further observation, it is worth to notice that input
c = [

p(α)(θα + δθα)c

 0


n

]

corresponding to system (17) still

remains well defined in its sign, as p(α)(θα + δθα) > 0 if first
condition in (21) holds.

On the other hand, robust consensus can be guaranteed only
by also ensuring that σ i �= ϕi for i = 2, . . . , n, so that M
is prevented to have more than one eigenvalue at zero, as
eigenvalue λM

1 = 0 is attained for any perturbation δθα, δ
θ
KP
, δθKI

.
In this direction, only deviations δw

KI
to parameter KI such that

|δw
KI

| < KI can be accepted [see the structure of σ i in (22)].
Exploiting again concavity, namely, |δw

KI
| ≤ KKI |δθKI

|, the third
condition in (21) is lastly enforced as well.

4Note that nominal dynamics (13) can be obtained from (17) when δθα = 0,
δθKP

= 0, and δθKI
= 0.
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Fig. 2. Numerical results obtained from the application of the SBDC approach to the DPIA. (a) Chosen topology G. (b) Setup S1: attack on red edge of
GP ∼ KPG involving KP only. (c) Setup S2: attack on G� involving all parameters α, KP, and KI .

Security guarantees in (21) are conservative, in general.
Nevertheless, it is possible to find a sharp upper bound for any
perturbations δθα, δ

θ
KP
, δθKI

in Theorem 2 if decoding functions
p(α), p(KP), p(KI) are taken linear w.r.t. to their subcodeword
arguments, similarly to puv in Proposition 1. Finally, it is worth
noticing that the second inequality in (21) can be generalized
for any admissible δθα , with |δθα| < K−1

α α, so that any δθKP
such

that |δθKP
| < K−1

KP
KP be acceptable, implying that any self-loop

value α > 0 contributes to increase robust agreement.

C. Numerical Examples on the DPIA Criticalities

The following numerical simulations show the secure esti-
mation of eigenvalue λL

2 � 8.6231 of the Laplacian matrix L
associated to graph G = (V, E, {1}m

k=1), with n = 30 nodes, in
Fig. 2(a). This computation occurs in a distributed way within
each agent i ∈ {1, . . . , n} and is carried out accounting for the
additional dynamics5

ζ̇i = −k1yi,1 − k2

∑

j∈Ni

(
ζi − ζj

)− k3yi,2ζi (23)

in which y(1) = [
y1,1 · · · yn,1

]
 and y(2) =
[
y1,2 · · · yn,2

]
 are the y states of two distinct PI-
ACEs of the form (12). In addition, the latter estimators are
designed so that inputs ci,1 = ζi and ci,2 = ζ 2

i feed their
dynamics. The DPIA is therefore constituted by such a system
interconnection between (23) and a couple of PI-ACEs (12).

In the sequel, we employ network G within the two setups
S1 and S2 described in the previous sections. Throughout all
the discussion, we assume that the nominal parameters and
decoding functions are given by α = 25, KP = 50, KI = 10
and p(α)(η) = 5η, p(KP)(η) = 2η, p(KI)(η) = 0.1η, with η ∈ R.
The latter quantities are subject to numerical deviations for
both the PI-ACEs associated to y(1) and y(2). Moreover, we
assume that parameters k1 = 60, k2 = 1, and k3 = 200 are
fixed (according to requirements in [28]) and are not affected
by any type of uncertainty.

The ith estimate λ̂L
2,i of eigenvalue λL

2 can be obtained as
λ̂L

2,i = limt→∞ λL
2,i(t), where λL

2,i(t) = k−1
2 k3(1 − yi,2(t)).

We thus measure the performance of the DPIA through error

5The initial conditions are selected according to a uniformly random vector
with components in (0, 1).

�(t) = n−1 ∑n
i=1 |λL

2 − λL
2,i(t)|. We also define the conver-

gence rate r(T0,T) = −(lT − lT0 + 1)−1 ∑lT
l=lT0

log(�(tl))/tl
that approximates the exponential decay of �(tl), where tl
is the discretized timestamp used by the solver and lT0 and
lT are the indexes addressing instants T0 > 0 and T ≥ T0,
respectively. Whenever r(T0,T) ≤ 0 no decay is attained over
[T0,T].

Fig. 2(b) depicts four cases wherein a constant attack δθKP,12
strikes edge (1, 2), highlighted in red, of the uniformly KP-
weighted version of G, namely, GP = (V, E, {KP}m

k=1) ∼
KPG, according to S1. In this setup, the maximum allowed
perturbation related to edge (1, 2) is given by ρθ12 =
231.0444 [see (20)]. It can be appreciated that perturbations
to subcodewords concerning KP do not affect the conver-
gence rate, as far as the DPIA dynamics remain stable.
Furthermore, it is worth noticing that security guarantees
hold, as expected, and estimation instability certainly occurs if
δθKP,12 ≤ −1.0335ρθ12.

Considering instead S2, Fig. 2(c) refers to four struc-
tured constant attacks striking all the three subcodewords
θα , θKP , and θKI broadcast by the network manager, wherein
G� = (V, E, {�}m

k=1) ∼ �G denotes the weighted version of G
in Fig. 2(a) by � ∈ {α,KP,KI}. Each maximum allowed per-
turbation is yielded by |δθα| < 5, |δθKP

| < 1.5746 − 0.1149|δθα|
and |δθKI

| < 100 through (21). In this illustration, it is worth
to observe all the different effects due to deviations for such
parameters, resulting in a slowdown of the convergence rate
[i.e., a decrease of r(T0,T)] or in a change to an unde-
sired highly oscillatory behavior for the performance index
�(t). In particular, perturbations focusing on θα , θKP , and
θKI lead to slower convergence, noisy/oscillatory estimation
behavior, and a considerable steady-state estimation error,
respectively. Furthermore, all the stability behaviors of the
curves here reported comply with security guarantees in (21),
as expected, in a nonconservative fashion (i.e., multiple zero
eigenvalues appear in M for critical values of perturbations).
Remarkably, the introduction of performance index r(T0,T)
is also justified by the fact that it captures the general ten-
dency of the convergence rate for the DPIA to increase as
λL

2 grows. Fig. 3 illustrates this direct proportionality (see
dashed black line obtained with a linear regression applied to
black-marked dots) and that a strong perturbation on α dramat-
ically reduces the value of r(T0,T) in the majority of cases as
expected.
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Fig. 3. Computation of the convergence rate for several different random
topologies, depicted via diverse colored markers. Dots and diamonds repre-
sent, respectively, the results for the nominal DPIA and the perturbed DPIA
through δθα = −0.99α according to setup S2. Items marked in black are
acceptable while those marked in red are not, as r(10, 100) ≤ 0 for their
associated nominal simulation.

In conclusion, since consensus for the PI-ACE dynam-
ics (12) is a necessary condition for the correct λL

2 estimation
process performed by the DPIA, our proposed guarantees find
a deep relevance in the secure design for such applications
employing this kind of decentralized estimation algorithm.

VI. EXTENSION TO THE DISCRETE-TIME DOMAIN

In this section, we propose an extension of the secure-by-
consensus approach previously devised to the discrete-time
domain. Within this framework, we let t ∈ N to indicate,
without confusion, the discrete-time instants and we assume
the same setup proposed in the introductory part of Section III
and through all Section III-A.

A. Secure-by-Design Consensus in Discrete Time

We consider and investigate a well-known discrete-time
average consensus dynamics, namely, that described by

x(t + 1) = x(t)− εL(G)x(t) = Fε(G)x(t) (24)

where ε is a common parameter shared among all agents and
designed to belong to the interval (0, 2/λL

n) (see [4], [34]).
Constant ε is, indeed, selected in order to allow the state matrix
Fε(G) = IN − εL(G) to be doubly stochastic with exactly
M eigenvalues equal to 1 and all the remaining eigenvalues
having modulus smaller than 1 [4], [35]. Matrix Fε(G) can
be further decomposed as Fε(G) = (Fε(G) ⊗ ID), in which
Fε(G) = In − εL(G) is doubly stochastic and has eigenvalues
λ

Fε
i = 1 − ελL

i , for i = 1, . . . , n, ordered as 1 = λ
Fε
1 > λ

Fε
2 ≥

· · · ≥ λ
Fε
n . According to the characterization of the decoupling

between objective coding and information localization in (7),
dynamics (24) can be rewritten as

x(t + 1) = x(t)− εH(x(t))p(θ) (25)

since it has been shown that H(x)p(θ) = L(G)x in
Section III-B through Lemma 2.

In the next paragraph, we will explore how this kind
of discrete-time consensus protocol behaves whenever an
encoded edge weight is perturbed by an attacker.

B. Robustness to Channel Tampering in Discrete Time

Adopting the same background and attack models intro-
duced in Section IV, the ith component, i = 1, . . . , n, of the
perturbed dynamics associated to (25) is yielded by

xi(t + 1) = xi(t)− ε
∑

j∈Ni
pij

(
θij + δθij

)
hij(x(t)) (26)

similarly to the altered description provided in (8). It is possi-
ble then to state the discrete-time version of Theorem (1) for
the perturbed protocol (26) as follows.

Theorem 3: Assume that the characterization 1)–3) in
Section IV-B for objective decoding functions pi holds and
recall �G defined in Section II. Let an injection attack
δθ ∈ �θ affect a single edge (u, v) ∈ E , i.e., δθij = 0 for
all (i, j) ∈ E \ {(u, v)} is satisfied, and define

ψi
(
δθuv

) = wi + Kuv
∣∣δθuv

∣∣, i = u, v. (27)

Then, the perturbed consensus protocol (26) reaches robust
agreement for all δθuv such that both (9) and

φG
(
δθuv

)
:= max

{
�G, ψu

(
δθuv

)
, ψv

(
δθuv

)}
< ε−1 (28)

hold for any fixed ε, independently from the values taken by
any codeword θ ∈ �.

Proof: To assess agreement for protocol (26) we first investi-
gate the spectral properties of Fε+	Fε = In−ε(L+	L) = In−
εE(W +	W)E
, where quantity 	Fε = −ε	L = −εE	WE

captures the uncertainty w.r.t. Fε caused by a time-varying
weight variation 	W = δw

uveze

z , with z = (u, v). In order to

ensure robust agreement in the absence of objective coding,
i.e., when pij(θij) = θij = wij for all (i, j) ∈ E holds with no
uncertainty, one imposes

∣∣
∣λFε+	Fε

i

∣∣
∣ =

∣∣
∣1 − ελL+	L

i

∣∣
∣ < 1, i = 2, . . . , n. (29)

To satisfy condition (29), it is sufficient to ensure both

λL+	L

1 > 0 (30)

λL+	L

n /2 < ε−1. (31)

Inequality (30) is guaranteed to hold if (3) holds6 through
Lemma 1. Whereas, condition (31) foists a further requirement
to achieve stability w.r.t. to the continuous-time case.

By resorting to the Gershgorin circle theorem [36], it is pos-
sible to find an upper bound for λL+	L

n and ensure (31) as fol-
lows. If δw

uv = 0, i.e., considering the nominal system (24), then
λL+	L

n ≤ 2�G . Otherwise, if δw
uv �= 0, it is possible that the

following couple of inequalities may also be useful to find an
upper bound: λL+	L

n ≤ 2(wi + |δw
uv|), with i ∈ {u, v}. To sum-

marize, setting φ̄G(δw
uv) := max{�G, (wu + |δw

uv|), (wv + |δw
uv|)}

the following upper bound can be provided for all δw
uv ∈ R:

λL+	L

n /2 ≤ φ̄G
(
δw

uv

)
. (32)

Now, to guarantee the robust agreement in the presence of
objective coding, we recall inequality (10) and the fact that
|δw

uv| ≤ Kij|δθij|. It is, thus, straightforward to observe that
φ̄G(δw

uv) ≤ φG(δθuv) = max{�G, ψu(δ
θ
uv), ψv(δ

θ
uv)}. Therefore,

6Under a perturbation on a single edge weight, linear agreement to a unique
value can be reached if and only if (3) is satisfied.
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thanks to (32), the imposition of (28) is sufficient to sat-
isfy (31).

Remark 2: It is crucial to observe that inequality (28) is
conservative as the topology of G varies, even for decoding
functions pij linear in their argument. However, this is not the
case if: 1) the latter decryption for θ is chosen (this, indeed,
allows equality φ̄G(δw

uv) = φG(δθuv) to be attained) and 2) the
topology under consideration satisfies �G = λL

n/2, namely, if
�G represents the infimum for the values taken by ε−1 (we
recall that ε ∈ (0, 2/λL

n)). An example for such topologies
is the class of uniformly weighted regular bipartite networks.
Indeed, these networks are characterized by �G = wd = λL

n/2
(see [35]).

In addition to this, the main result obtained in Theorem 3
can be further simplified by means of the following corollary.

Corollary 2: Under all the assumptions adopted in
Theorem 3 and setting ε < �−1

G , the perturbed consensus
protocol (26) reaches robust agreement for all δθuv such that

∣
∣δθuv

∣
∣ < ξθuv := K−1

uv min
{
R−1

uv (G),
(
ε−1 −�G

)}
(33)

independently from the values taken by any codeword θ ∈ �.
In particular, condition (9) needs to be fulfilled solely to
guarantee consensus if ε is selected as follows:

ε ≤ ε�uv :=
(
�G + R−1

uv (G)
)−1

. (34)

Proof: Relation in (33) is the combined result of guarantee
in (9) and that one obtainable by imposing �G + Kuv|δθuv| <
ε−1 to satisfy (28), since φG(δθuv) can be upper bounded as
φG(δθuv) ≤ �G + Kuv|δθuv|. On the other hand, relation (34) is
derived by enforcing R−1

uv (G) ≤ ε−1 − �G to minimize ξθuv
and obtain ξθuv = ρθuv, as, in general, one has ξθuv ≤ ρθuv.

Corollary 2 highlights the fact that, in discrete time, robust-
ness margin ξθuv is not only determined by quantity ρθuv =
(KuvRuv(G))−1 but also strongly depends on the inversely pro-
portional relationship between ε and �G . The smaller �G w.r.t.
ε−1 the better robustness is achieved, up to the lower limit
dictated by R−1

uv (G). Indeed, margins ξθuv and ρθuv coincide
for ε ≤ ε�uv, namely, ξθuv is minimized, as ξθuv ≤ ρθuv holds.
This also suggests that discrete-time robust agreement may be
harder to be reached w.r.t. the continuous-time case. Finally,
from Corollary 2, it can be easily noticed that

ε ≤ ε� := min
(i,j)∈E

ε�ij =
(
�G + max

(i,j)∈E
R−1

ij (G)
)−1

(35)

is a sufficient choice to provide the exact robustness guarantees
as in the continuous-time framework, regardless the edge in
G being under attack. Hence, parameter ε can be set ahead
consensus protocol starts, according to (35) and without the
full knowledge of each encrypted edge weight being sent by
the network manager.

VII. NUMERICAL SIMULATIONS

Few numerical simulations are here provided to validate and
motivate the theoretical results debated so far.

A. Continuous-Time Example

We now briefly report on a numerical simulation illustrating
the main results of this work, within continuous-time frame-
work presented in Sections III–IV. Fig. 4(a) shows the network
topology analyzed. States xi, with i = 1, . . . , n, are assumed
to be in R, namely, D = 1. We suppose that a constant attack
δθuv strikes subcodeword θuv corresponding to the edge with the
lowest weight,7 i.e., (u, v) = (3, 4). The decoding functions
for this edge, depicted in Fig. 4(b), are chosen as

p0
uv(η) =

{
logβ(1 + η), η ≥ 0
η/ ln(β), η < 0; p1

uv(η) = η

ln(β)
(36)

and are designed to return wuv = 1 for the expected code-
word input θ (i.e., pγuv(θ) = wuv for γ = 0, 1). Moreover, in
this setup, we adopt decoding functions pij defined over the
entire real set for sake of simplicity. Further generalizations
may be implemented, as already suggested, by accounting for
perturbed subcodewords (θij + δθij) falling outside the decod-
ing function domains �ij and declaring them invalid. Once
received, these can then be used as alerts to signal a certain
ongoing threat.

According to (9), the maximum allowed perturbation in
magnitude is yielded by ρθuv � 3.0036, for β = 2, and
ρθuv � 4.7607, for β = 3. In Fig. 4(c), it is possible to see
that agreement takes place—by virtue of Theorem 1—only for
β = 3 and p0

uv, if δθuv = −4.7. Here, black curves denote free-
attack consensus trajectories (δθuv = 0). It is worth to note that
this attack leads to a negative perturbed weight on edge (u, v)
for both β = 2, 3; indeed, to obtain p0

uv(θuv) = wuv = 1, it is
required for the network manager to send θuv = β− 1, imply-
ing that p0

uv(θuv +δθuv) < p0
uv(β−3) = (β−3)/ ln(β) ≤ 0. The

latter simulation also highlights the tradeoff in Proposition 1
between encryption capability of p0

uv and p1
uv, in terms of

Lipschitz constant K(β)uv , and the robustness achieved w.r.t.
edge (u, v). Indeed, on the one hand, it is immediate to real-
ize that K(2)uv = 1/ ln(2) > K(3)uv = 1/ ln(3) implies that p0

uv,
β = 2, reaches a wider range of values compared to p0

uv,
β = 3—given the same interval Uθ

uv—thus leading to higher
encryption performances. On the other hand, it is worth to
notice that, in case of δθuv = −4.7, for β = 2 the network
does not even attain consensus but the opposite occurs if
β = 3. Furthermore, for p1

uv, Proposition 1 applies and the
effects of tradeoff in Proposition 1 become strict (see Fig. 4(d);
still, black curves denote free-attack consensus trajectories).
Indeed, for δθuv = −ρθuv, the well-known clustered consensus
phenomenon arises for β = 2, since the corresponding sta-
bility margin is nullified. Finally, it is also worth observing
that, for both p0

uv and p1
uv, agent trajectories for β = 3 have

a faster convergence rate w.r.t. those for β = 2, justifying the
possibility for a diverse edge weight choice by the network
manager.

B. Discrete-Time Example on Opinion Dynamics

In this last paragraph, we provide a numerical exam-
ple based on the opinion dynamics work proposed in [37].

7In other words, the attacker attempts to cut down the link with highest
network resistance.
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(a) (b) (c) (d)

Fig. 4. (a) Considered network topology and attack on edge (u, v) = (3, 4). (b) Decoding function in (36), Lipschitz constants K(β)uv = 1/ ln(β), β = 2, 3,
are highlighted (dashed lines). (c) and (d) Agent dynamics as objective coding and perturbation vary.

We consider the uniformly weighted opinion network Gα =
(V, E, {α}m

k=1), with α ∈ Qα = (0, 1/2), such that (V, E)
describes the same topology in Fig. 4(a). Assuming t ∈ N, let
us also define the time-varying ith opinion neighborhood as

Ni(t) = {
j ∈ V | ((i, j) ∈ E) ∧ (∣∣xi(t)− xj(t)

∣∣ ≤ �υ t)}

where � > 0 and υ ∈ (0, 1) are given. Each agent i ∈
{1, . . . , n} in the opinion network is then assigned with the
perturbed discrete-time opinion dynamics

xi(t+1) =
{

xi(t), if Ni(t) = ∅

xi(t)− 1
|Ni(t)|

∑
j∈Ni(t) wδ

θ

ij

(
xi(t)−xj(t)

)
, otherwise

(37)

where xi(t) ∈ R and each wδ
θ

ij = pij(θij + δθij) represents the
perturbed decoded value, with pij(θij) = α/ ln(2) ∀(i, j) ∈ E .
Despite (37) does not possess the exact same form of proto-
col (26), it is possible to provide a brief analysis of its behavior
when certain setups are fixed. Indeed, term ε(t) := |Ni(t)|−1

can be seen as a time-varying version of ε, upper bounded
by ε = 1. Since the maximum attainable node degree
dM = maxi∈{1,...,n} |Ni(t)| in Gα over time is dM = 3, one
has �Gα = dMα = 3α and, according to (28), inequality
�Gα < ε(t)−1 can be reduced to �Gα < ε−1, yielding the
design constraint α ∈ (0, 1/3) ⊂ Qα . Assuming, once again,
that edge (3, 4) is subject to an attack δθ34, parameter α can be
selected to maximize the r.h.s. of guarantee (33), by imposing
1 − 3α = 4α/3 and obtaining α = 3/13 ∈ (0, 1/3).

Fig. 5 shows the trajectories of opinion dynamics (37)
once initialized with � = 10, υ = 1 − 0.2α = 0.9538
and x(0) = [−3.2 − 1 3.3 3 − 4.3

]
. Remarkably,
within this setup, guarantee (33) is not conservative w.r.t. (28),
since each decoding function has the same Lipschitz constant
and edge (3, 4) is incident to node 4, which has the high-
est degree dM . This evidence and the fact that the topology
under analysis is bipartite and uniformly weighted imply that
inequality (33) may yield a sharp guarantee for the robust
consensus through certain choices of � and υ. Indeed, this
is the case for simulations in Fig. 5, in which it is possible
to appreciate that for δθ34 = 0 the system nominally con-
verges to consensus (green lines), forming one community,
i.e., V; while for δθ34 = −ξθuv = −0.21328, clustered con-
sensus phenomena arise for t ≤ 70 s (red lines). Afterward,
for t > 70 s, the five separated communities {1}, {2}, {3},

Fig. 5. Results obtained simulating system (37) subject to different
perturbations on edge (3, 4) in Gα , with α = 3/13.

{4}, and {5} merge because of the nonlinearities in the opin-
ion dynamics (37). Finally, it is also worth to observe that, if
δθ34 = −6ξθuv = −1.2797, the attack asymptotically prevents
consensus to be achieved (blue lines), causing the permanent
split into a couple of diverse communities, i.e., those consti-
tuted by nodes {1, 2, 4, 5} and {3}, as information exchange
stops flowing through edges (1, 3) and (3, 4). In other words,
the latter attack manages to isolate node 3 from the original
opinion network, leading to a completely different scenario
w.r.t. to the nominal, as t → ∞.

VIII. CONCLUSION AND FUTURE DIRECTIONS

This article devises novel methods to secure consensus
networks both in the continuous- and discrete-time domains,
providing small-gain-theorem-based stability guarantees and
a deep insight on a tradeoff between information hiding and
robust stability. Future works will involve extensions toward
other multiagent protocols, such as distance-based formation
control, and leader–follower or multiattack scenarios. The
security and estimation accuracy improvement of filtering
algorithms within multisensor networks is also envisaged.

APPENDIX

Proof of Proposition 2: From the eigenvalue equation
Mω = λω in the unknowns λ ∈ C and ω = [

ω

1 ω


2

]

,

with ω1, ω2 ∈ C
n, one obtains the system of equations

{
(KPL + αIn)ω1 − KILω2 = λω1
KILω1 = λω2.

(38)

The second equation in (38) suggests that relation
(sKIμ,ω1) = (λ, sω2), for some s ∈ C, characterizes
all the eigenpairs (μ, ω∗) ∈ (R≥0, 〈ω2〉) associated to the
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Laplacian L, except for some of the configurations described
by μ = 0 or ω2 = 0n. Substituting this into the first
equation of (38) multiplied by s at both sides one obtains
the second-order algebraic equation in the unknown s,
(KIμs2 − (α + KPμ)s + KIμ)ω1 = 0n. If ω1 = 0n, the only
acceptable value of s is given by s� = 0 with single algebraic
multiplicity. Otherwise, if ω1 �= 0n and μ �= 0, the solutions
are now given by s = s±, where

s± = α + KPμ±
√
(α + KPμ)

2 − 4(KIμ)
2

2KIμ
. (39)

Also, if μ = 0, a trivial solution is, again, s� = 0 with single
algebraic multiplicity, by solving αs = 0. Finally, substitut-
ing (39) into relation λ = sKIμ, it follows that the eigenvalues
of M are given by (15) and (16). In particular, the evaluation at
i = 1 for both j = 1, 2 in (15) requires λL

1 = 0, i.e., involving
case μ = 0. The arithmetic extension of (15) and (16) to this
peculiar instance is obtained as follows. Case i = 1 and j = 1
is trivial. Case i = 1 and j = 2, corresponding to λM

2 = α, can
be proven by selecting λ = λM

2 , ω1 ∈ 〈1n〉, and ω2 = 0n so
that system (38) holds true.

The final part of the statement in the proposition is proven
as follows. First, recall that λM

1 = 0 and λM
2 = α > 0. Second,

relation 	[λM
l ] > 0 for l = 3, . . . , 2n is a consequence of the

fact that if σi is purely imaginary then the thesis is guaran-
teed to hold, as ϕi > 0 ∀i = 2, . . . , n; otherwise, solving
	[λM

l ] > 0 for any l ∈ {3, . . . , 2n}, whenever σi ∈ R, leads to
the tautology λL

i > 0 for the corresponding i ∈ {2, . . . , n}.
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