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Abstract— This paper considers the robust design of sparse
relative sensing networks subject to a given H∞-performance
constraint. The topology design considers heterogenous agents
over weighted graphs. We develop a robust counterpart to
the uncertain optimization problem and formulate the sparsity
constraint via a convex ℓ1-relaxation. We also demonstrate how
this relaxation can be used to embed additional performance
criteria, such as the maximization of the algebraic connectivity
of the relative sensing network.

Index Terms— relative sensing networks, robust H∞-
performance, ℓ0-minimization, topology design

I. INTRODUCTION

The ability of a single agent using available sensors

to measure state information of an entire network can be

limited by spatial constraints such as orientation, range and

power requirements [8], [19]. Applications for distributed

sensor networks relying on relative sensing range from

environmental surveillance, modeling and localization to

collaborative information processing [1], [16]. Additionally,

such systems are relevant in formation flying applications

where distributed sensing is employed to measure inter-agent

distances [18], [23].

In this work, we focus on single agents that rely on

relative sensing to achieve a common mission. Such systems

are called relative sensing networks (RSN). While in other

multi-agent systems, the network is often coupled at state

level, this is not the case for relative sensing networks.

Here, the underlying sensing topology couples the agents at

their outputs and therefore introduces an implicit ’network’.

In recent years, increasing interest was given on how the

underlying graph topology affects system theoretic notions

and the behavior of the system. Closed loop properties of

multi-agent systems and relation to the graph Laplacian are

studied in e.g. [12] and performance bounds of consensus

systems are given in [25].

The analysis and synthesis of relative sensing networks

was recently considered in [26] with respect to H2- and

H∞-performance and with respect to sparsity constraints in

[21]. Strong results exist for unweighted homogenous graphs

relating network properties with the H∞-performance of the

network. However, the dynamics of a single agent influences

the performance of the network and the links between the

agents differ in importance or fidelity. The agent dynamic can
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be interpreted as a node weight on the graph, whereas the link

dynamic (or static gain) is an edge weight. Unfortunately,

there not many analytical results considering node and edge

weighted graphs. Another important topic when dealing with

networks of dynamic systems is robustness to uncertainties.

The network should retain certain properties such as the

connectivity of the graph or H∞-performance even though

parts of the network topology is unknown. Robustness of

network topologies is also considered in the area of surviv-

able network design [11], [15], but there, control theoretic

aspects are often not taken into account. This leads to the

main contribution of the current paper. We present a first

step towards the design of robust relative sensing networks.

We develop an optimization algorithm for determining the

optimal robust topology for relative sensing networks with

pre-specified properties when edge and node weights are

present. We are especially interested in graphs with a sparse

topology, i.e. graphs fulfilling the required properties with as

few edges as possible, in the presence of uncertainties in the

edge weights.

By combining control theoretic insight with results from

compressed sensing (see e.g. [6], [9]) we systematically

achieve sparse relative sensing networks with guaranteed

system theoretic properties, such as algebraic connectivity

of the graph and robustness against network uncertainties.

This paper extends our previous work [21] on sparse design

of relative sensing network to uncertainties in the topology

of the network. First, a combinatorial optimization problem

is proposed. This optimization algorithm seeks a sparse

topology guaranteeing (maximal) algebraic connectivity and

pre-specified H∞-performance of the network in the face of

uncertain edge weights. This non-convex formulation is then

relaxed by using a robust counterpart and a convex weighted

ℓ1-minimization, and the resulting problem can be tackled by

finding a solution of iterative convex optimization problems.

Sparsity promoting optimization by ℓ1-minimization was also

recently considered for decentralized controller design in

[20].

The remainder of the paper is organized as follows:

Section II introduces the mathematical preliminaries and

notation of the paper. In Section III the model of the relative

sensing network is described and Section IV deals with the

synthesis problem of sparse RSN that are robust against

edge weight uncertainties and an optimization algorithm

for topology design is presented. The paper concludes with

an example in Section V and a summary and outlook in

Section VI.
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II. MATHEMATICAL PRELIMINARIES

The 0-norm of a vector x ∈ R
n is defined as

‖x‖0 = {# xi|xi 6= 0},

and corresponds to the number of non-zero entries in x.

Despite not being a true norm, it is often referred to in the

literature as one. A vector is called sparse if its 0-norm is

small compared to the dimension of the vector, i.e., if most

of its entries are zero.

We use the H∞-norm to analyze the performance of an

RSN in this paper. The L2-induced norm (or L2-gain) of a

dynamical system H : Ln
2 → Lm

2 is defined as

‖H‖L2−ind = sup
w∈L2\{0}

‖Hw‖L2

‖w‖L2

,

and corresponds for a linear system H to the H∞-norm

‖H(s)‖∞ = supω{σ̄(H(jω)}, where H(s) = C(sI −
A)−1B +D is a transfer function of the dynamical system

H and σ̄(H(jω)) denotes the largest singular value of H at

a fixed frequency ω.

Graphs and the matrices associated with them will be

widely used in this paper. An in-depth treatment of graph

theory is given in e.g. [14]. An undirected (simple) graph

G is specified by a vertex set V and a node set E whose

elements characterize the incidence relation between distinct

pairs of V . Two vertices i and j are called adjacent (or

neighbors) when {i, j} ∈ E . For this work, the |V| × |E|
incidence matrix E(G) for a graph with arbitrary orientation

is of importance. The incidence matrix is a {0,±1}-matrix

with rows and columns indexed by the vertices and edge of

G such that [E(G)]ik has the value ’+1’ if node i is the

initial node of edge ek, ’−1’ if it is the terminal node, and

’0’ otherwise.

The (graph) Laplacian of G ,

L(G) := E(G)E(G)T ,

is a positive semi-definite matrix. The eigenvalues of the

graph Laplacian are real and will be ordered and denoted

as 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λ|V|(G). Furthermore,

the eigenvector corresponding to λ1 is [1 . . . 1]T , henceforth

written as 1. Similar to [22] we define the node- and edge-

weighted graph Laplacian

Lw(G) := Q−1E(G)WE(G)T ,

where Q is a positive-definite and W a positive semi-definite

diagonal matrix representing the weights associated to the

nodes and edges of the graph, respectively.

III. MODEL OF THE RELATIVE SENSING NETWORK

In this section we introduce the model of the RSN and

present the theoretical background for the optimization algo-

rithm presented in Section IV. Consider a group of g linear

time-invariant dynamical systems (agents)

Σi =

{

ẋi(t) = Aixi(t) +Biwi(t)
yi(t) = Cix(t),

(1)

A B

C D

∫

G
w(t) yG(t)

Fig. 1. Global RSN layer block diagram; the feedback connection
represents an upper fractional transformation [10].

where each agent is indexed by the script i. Here, xi(t) ∈
R

ni represents the state, wi(t) ∈ R
ri the exogenous input

and yi(t) ∈ R
qi the measured output. We denote the transfer-

function representation of Σi as Hi with

Hi := Ci(sI −Ai)
−1Bi. (2)

We assume compatible output for all agents, e.g. system

outputs will correspond to the same physical quantity. It

should be noted, that in a heterogeneous RSN, the dimension

of each agent can be different.

The parallel interconnection of all agents can be expressed

by a concatenation of the corresponding system states, inputs,

and outputs, and through the block diagonal aggregation

of each agent’s state-space matrices. We use bold-phase

notation to denote the expanded state-space, e.g. x(t) =
[x1(t)

T , . . . , xg(t)
T ]T and A = diag(A1, . . . , Ag).

The sensed output of the RSN is the vector yG(t) contain-

ing relative state information of each agent and its neighbors

and is motivated by the relative sensing problem discussed in

Section I. The incidence matrix of a graph naturally captures

state differences and will be the algebraic construct used to

define the relative outputs of RSNs, i.e.

yG(t) = (WE(Gc)
T ⊗ I)y(t). (3)

Here Gc is the complete graph and the topology is defined

by the diagonal weighting matrix W = diag(w1, . . . , w|E|),
with wi ∈ R

+
0 and the node set given as V = {1, . . . , g}.

Note that edge i does not exist if and only if wi = 0.

Furthermore, we denote the vector containing all weighs as

w = [w1, . . . , w|E|]
T . The weights wi in this setup can be

seen as the gains of the sensor used to sense the relative

state. They might be used to capture the fidelity of a relative

measurement. The global layer is visualized in the block

diagram shown in Figure 1.

Using the above notations, we can express the heteroge-

neous RSN in a compact form

Σhet(G)







ẋ(t) = Ax(t) +Bw(t)
y(t) = Cx(t)

yG(t) = (WE(Gc)
T ⊗ I)y(t).

(4)

The transfer function representation of Σhet(G) is denoted as

Σ̂het(G) and is defined as in (2). As in the state space model,

bold faced transfer functions denote the block diagonal

aggregation of each agent’s corresponding transfer function,

e.g. H(s) = diag(H1(s), . . . , Hg(s)). We denote Tw 7→G
het as
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Tw 7→G W0

∆

Σ

w(t) yG(t)

Fig. 2. Multiplicative uncertainty for the RSN.

the map from exogenous inputs to the RSN sensed output

Tw 7→G
het = (WE(Gc)

T ⊗ Iq)H . We will now state some facts

for RSNs used later on.

Theorem 1 ([26]): The H∞ norm of a heterogeneous

RSN is bounded from above by

‖Tw 7→G
het ‖∞ ≤ ‖WE(Gc)

TQ‖2

where Q = diag(‖H1‖∞, . . . , ‖Hg‖∞).
Theorem 1 shows that the topology of the underlying graph

is of significant influence to the performance of the rela-

tive sensing network. Furthermore, the dynamic difference

between agents is an important factor in the performance of

the overall system, since the matrix Q captures the dynamics

of the single agents and acts as a weighting on the matrix

norm.

We are especially interested in the robustness of certain

topologies in face of uncertainties in the network. In the

following, we assume that the agent dynamics are known

exactly, whereas for the edge weight, only a nominal weight

is known. We assume that the edge weights in (4) are given

as W = W0+∆, where ∆ ∈ ∆w is a structured uncertainty

on each edge weight. This can be considered as an output-

multiplicative uncertainty. The uncertainty set is defined as

∆w = {diag(δ1, . . . , δ|E|) : δ ∈ R
|E|, ‖δ‖2 ≤ 1} (5)

For the synthesis of robust RSN, we will use the term of

robust connectivity defined next.

Definition 1 (Robust Connectivity): A graph is called ro-

bustly connected under the uncertainty set ∆w , if and only

if the graph remains connected for all ∆ ∈ ∆w .

In the next section, we use Theorem 1 to synthesize robust

RSNs.

IV. ROBUST SYNTHESIS OF SPARSE RELATIVE SENSING

NETWORKS

In this section, we present the main result of the current pa-

per. We focus on the robust design of sparse relative sensing

networks that fulfill certain pre-specified network properties

such as algebraic connectivity and H∞-performance with as

few edges as possible. At the same time, we consider uncer-

tainties in the network topology. First, a problem formulation

is derived that incorporates the sparsity requirements into

the network design. This leads to an uncertain optimization

problem. A robust counterpart is formulated and the numer-

ically exhaustive combinatorial exact solution caused by the

sparsity constraint is relaxed by a weighted ℓ1-minimization.

This results in an iterative solution of convex optimization

problems to design graphs with sparse topology.

A. Problem Formulation

We consider the network as given in (4) with edge weight

uncertainties as in (5). Designing the topology for this

network can be formulated as follows:

Problem 1 (H∞-optimal design of RSN [26]): Given a

network consisting of g agents which are coupled as given

in (4) with edge weight uncertainties as given in (5), find

nominal edge weights w0i ≥ 0, such that the

min
w0i

≥0
max

‖δ‖2≤1
‖QE(Gc)W‖2

subject to G is robustly connected.

As shown in [26], this problem can be formulated as a

convex optimization problem using robust optimization tech-

niques. However, the solution to this optimization problem is

in general not sparse, i.e. all weights w0i are non-zero. This

is not a desired solution, since it requires the implementation

of a complete graph. Instead, it is more desirable to search

for a graph topology that is sparse and only requires the

implementation of a few non-zero edges. To take this into

account, we now state the sparse relative sensing network

design problem with edge weight uncertainties:

Problem 2 (Sparse Topology Design for RSN): Given

a network consisting of g agents which are coupled as

given in (4), edge weight uncertainty as given in (5) and a

predefined H∞-performance γ. Find a sparse distribution

of the nominal weights w0i ≥ 0, such that the network is

connected and the H∞-performance is less than γ, i.e.

min
w0i

≥0
max

‖δ‖2≤1
‖w0‖0 (6)

subject to ‖Tw 7→G
het ‖∞ < γ

G is robustly connected.

The problem formulation implies that the network remains

connected and that the H∞ performance of the relative

sensing network does not exceed γ in the presence of edge

weight uncertainties. Recall, that the 0-norm of a vector is

a measure of its sparsity. In this way, minimizing ‖w‖0
attempts to maximize the number of zero elements in the

edge weight vector w and therefore minimizes the number

of actually used edge weights.

As show in [26] Theorem 1 can be formulated as a

uncertain LMI
[

γ2I QE1(W0 +∆)
(W0 +∆)ETQ I

]

≥ 0. (7)

The algebraic connectivity of the graph can be expressed

as the following uncertain LMI [4]

PTE(W0 +∆)ETP > 0, (8)

1To simplify notation, we use E instead of E(Gc) from now on.
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with P = Im(1⊥). Combining equation (7) and (8) leads to

the following robust optimization problem

min
w0

max
‖δ‖2≤1

‖w0‖0 (9a)

subject to

[

γ2I QE(W0 +∆)
(W0 +∆)ETQ I

]

≥ 0 (9b)

PTE(W0 +∆)ETP > 0 (9c)

wi ≥ 0. (9d)

If there is an additional constraint on the maximum weight

on each edge, equation (9d) can be replaced by

0 ≤ w0i ≤ w0i,max. (9e)

Additionally, one is often not only interested in connec-

tivity of a graph, but in the maximization of the connectivity

of the graph. Since the H∞-norm of the single agents qi =
‖Hyw

i ‖∞ can be interpreted as node weights, maximization

of the weighted algebraic connectivity of a graph can be

formulated as (see [22])

max
w0,µ

max
‖δ‖2≤1

µ (10)

subject to PT (E(W0 +∆)ET − µQ)P > 0.

To achieve a sparse topology while simultaneously maxi-

mizing the connectivity of the graph, we combine the two

objective functions (9a) and (10) to a convex sum

min
w0,µ

max
‖δ‖2≤1

(1− α)‖w0‖0 − αµ, α ∈ (0, 1) (11a)

subject to (9) (11b)

The weighting factor α ∈ (0, 1) is a tuning paramter for the

relative emphasis on each term in the objective function.

The optimization problem in (11) cannot directly be solved

as a semidefinite program, due to two reasons. The 0-norm

is a non-convex objective function and the constraints lead

to an infinite-dimensional problem. In the following, we will

show, how both, the objective function and the constraints

can relaxed. For the constraints, a robust counterpart [3] can

be formulated. To apply these results, the constraints in (11)

must be rewritten in the following form

F j(w, δ) = F j
0 +

|E|
∑

i

δiF
j
i (w), j = 1, 2

where

F 1
0 =

[

γ2I QEW0

W0E
TQ I

]

F 1
i =

[

0 QEMi

MiE
TQ 0

]

[M i
kl] =

{

1, k = l = i
0, otherwise,

and

F 2
0 = PT (EW0E

T − µQ)P

F 2
i = PT eie

T
i P.

The above expressions can now be applied to the results in

[3] to obtain the following robust counterpart

min
w,µ,T j ,Sj

(1− α)‖w0‖0 − αµ, α ∈ (0, 1) (12a)

subject to













Sj F j
1 . . . F j

|E|

F j
1 T j

...
. . .

F j

|E| T j













≥ 0, j = 1, 2

(12b)

Sj + T j ≤ 2F j
0 , j = 1, 2 (12c)

wi ≥ 0. (12d)

Remark 1: It is also possible to consider ‖δ‖∞ ≤ 1, but

this would increase the number of decision variables in the

semidefinite program (12) even more. Therefore, we follow

the slightly stricter assumption of ‖δ‖2 ≤ 1.

B. Optimization Algorithm

The minimization of the 0-norm is a non-convex optimiza-

tion problem and requires a combinatorial search. Therefore,

Problem 2 cannot be formulated as a convex optimization

problem as easily as Problem 1. Inspired by the field of

compressed sensing [2], [6], [9], we show how Problem 2

can be approximated by a numerically tractable convex

optimization problem.

With the introduction of the cost function ‖w0‖0, we

impose a sparsity requirement on w0i to design sparse RSNs.

While this is a common sense approach, it is of little practical

use. The optimization problem is non-convex and NP-hard

as its solution requires a combinatorial search which grows

faster than polynomial as |E| grows [5]. It is well known, that

ℓ1-minimization leads to sparse results. This is also motivated

by the fact that the 1-norm is the convex envelope of the

0-norm, and therefore its best convex relaxation [13]. As

described in [7], re-weighted ℓ1-minimization can be used

to improve the results of the minimization. In this direction,

ℓ1-weights mi > 0 can be assigned to each edge w0i as

n
∑

i=1

miw0i .

where m1,m2, . . . ,mn are non-negative weights. For the de-

scribed design problem, the ℓ1-weights are free parameters.

They counteract the influence of the signal magnitude on

the ℓ1-penalty function. If mi = 1 for all i, the weighted

ℓ1-norm reduces to the regular ℓ1-norm. If the ℓ1-weights

mi are chosen to be inversely proportional to the magnitude

of wi {

mi = 1/|wi|, wi 6= 0
mi = ∞, wi = 0,

(13)

then the weighted ℓ1-norm and the ℓ0-norm coincide.

Additionally, in the context of Problem 2, a certain a-

priori choice of ℓ1-weights can be used to force the solution

towards certain network topologies. This is especially im-

portant if we want to promote certain sub-graphs (e.g. path

graphs or star graphs). Assigning a large initial ℓ1-weight to
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specific edges has the interpretation that those edges are not

desirable, while small ℓ1-weights make it more likely that

those edges appear in the graph.

With this, we can now state the convex optimization

problem

max
‖δ‖2≤1

min
w0,µ

(1− α)

n
∑

i=1

miw0i − αµ, α ∈ (0, 1) (14a)

subject to constraints in (12) (14b)

The weighting as in (13) cannot be applied directly, since

it requires the solution of the optimization problem in (14).

Therefore, we propose an optimization algorithm to seek the

optimal weights mi:

Algorithm 1 Sparse Robust Topology Design Algorithm

1) Set h = 0 and choose m
(0)
i for i = 1, . . . , |E| and

ν > 0.

2) Solve the minimization problem (14) to find the opti-

mal solution w
(h)
i .

3) Update the weights

m
(h+1)
i = (w

(h)
i + ν)−1

4) Terminate on convergence, solve the optimization

problem (14) with the fixed structure obtained in

Step 3. Otherwise set h = h+ 1 and go to Step 2.

Remark 2: Due to the auxiliary variables introduced by

the robust counterpart in (12), the size of the problems grows

very fast with the number of nodes. Even though interior-

point methods offer polynomial-time algorithms, solving the

optimization problem (12) for very large problems might lead

to numerical issues.

V. EXAMPLE

To illustrate the previous results, we design the topology

of relative sensing networks with heterogenous agents. The

presented algorithm was implemented in Matlab using Se-

DuMi [24] and Yalmip [17]. First, we consider an RSN with

g=10 heterogeneous SISO systems, randomly generated in

Matlab with ‖Hi‖∞ ∈ [0.17, 7.48]. Using the optimization

algorithm presented in [26], the minimum H∞−performance

of the RSN is γnom = 19.2. The graph with the optimal

performance is a complete graph with 45 non-zero edge

weights. Next, we allow a slightly larger H∞-performance

and apply Algorithm 1, with µ = 0 and wmax = 2 and

four iteration steps. For γ = 19.34, we can reduce the graph

to 34 non-zero edges, and for γ = 19.45 to 29 edges. The

results are also depicted in Fig. 3. Darker lines correspond to

larger edge weights (note that the lines are only comparable

within on graph, not between different graphs). The number

of non-zero edges can be reduced by 35% by only allowing

a performance degradation of 1.3%.

The second example shows the tradeoff between sparsity

and weighted connectivity. Seven heterogenous SISO sys-

tems were randomly generated in Matlab with ‖Hi‖∞ ∈

connectivity
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Fig. 4. Non-zero edge weights for increasing connectivity level. Each
column depicts the non-zero edge weights for the corresponding connectivity
levels in Figure 5.
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Fig. 5. Number of non-zero edge weights for increasing weighted
connectivity for γ = 10.

[0.44, 3.88]. The H∞-performance of the RSN was specified

as γ = 10 and for varying α a tradeoff between sparsity

and weighted connectivity was computed. As can be seen in

Figure 4, for increasing sparsity of the RSN, the weighted

connectivity decreases. In Figure 4 each column corresponds

to a bar in Figure 5 with the corresponding weighted

connectivity. Note, that if we would solve Problem 2 as a

combinatorial problem, we would have to check 1.86 Mio

possibilities of connected graph topologies. Here, we can

clearly see the advantages of the weighted ℓ1-minimization.

VI. SUMMARY AND OUTLOOK

This paper is a first step towards the design of sparse

robust relative sensing networks subject to an H∞-bound

on the performance. This problem is closely related to the

problem of edge weight design for node and edge weighted

1864

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:50 UTC from IEEE Xplore.  Restrictions apply. 



1 0.35

2

0.27

3

1.85

4

0.43

5

1.64

6

1.24

7

7.48

8

0.17

9

2.93

10

2.81

.5

(a) γ = 19.2, 45 edges (no sparsity con-
straints).
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(b) γ = 19.39, 34 edges.
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(c) γ = 19.45, 29 edges.

Fig. 3. Increasing sparsity for increasing performance level γ (wmax = 2).

graphs. The problem was formulated as an optimization

problem with special emphasis on the sparsity of the de-

livered graphs and robustness against edge weight uncertain-

ties. A robust counterpart was formulated to deal with the

uncertain optimization problem. Sparsity of the graph was

achieved by 0-minimization of the edge weight vector. For

the resulting combinatorial optimization problem, computa-

tionally tractable convex relaxations have been provided by

means of ℓ1-minimization. Additional performance criteria

such as the maximization of the algebraic connectivity can

be embedded into the resulting optimization problem. With

the resulting convex optimization problem a tradeoff between

sparsity and algebraic connectivity can be achieved while at

the same time robustness against edge weight uncertainties

is guaranteed.

Future work will try to reduce the additional variables

introduced by the robust counterpart to allow for larger prob-

lem sizes. Additionally, uncertainties in the agent dynamics

will be considered.
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