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Abstract— This paper considers the problem of designing
sparse relative sensing networks (RSN) subject to a given
H∞-performance constraint. The topology design considers
homogeneous and heterogeneous agents over weighted graphs.
We develop a computationally efficient formulation of the sparse
topology design via a convex ℓ1-relaxation. This makes the
proposed algorithm attractive for practical applications. We
also demonstrate how this relaxation can be used to embed
additional performance criteria, such as maximization of the
algebraic connectivity of the RSN.

Index Terms— relative sensing networks, H∞-performance,
ℓ0-minimization, topology design

I. INTRODUCTION

The analysis and control of interconnected systems is one

of the great challenges of modern engineering science [21].

Most often the single systems are spatially distributed and

have an inherently distributed sensing architecture. The abil-

ity of a single agent using available sensors to measure state

information of the entire network can be limited by spatial

constraints such as orientation, range and power requirements

[9], [17], [23]. Applications for distributed sensor networks

relying on relative sensing range from environmental surveil-

lance, modeling and localization to collaborative information

processing [1], [3], [22], [18].

This work focuses on single agents that rely on relative

sensing to achieve their mission objectives which are called

relative sensing networks (RSN). Relative sensing networks,

in their most general form, are a collection of autonomous

systems that use sensed relative state information to achieve

higher level objectives. Note that this type of model is in

contrast to other multi-agent systems where the network

coupling is introduced at the state level. In RSNs, a sensing

topology (or graph) is induced by the spatial orientation

of the agents and the capabilities of the relative sensor. In

this way, the underlying sensing topology couples the agents

at their outputs and an implicit ‘network’ is present. Such

systems are relevant in formation flying applications where

relative sensing is employed to measure inter-agent distances

[20], [26]. The exchange of information between each agent

in an RSN describes the underlying connection topology.

Studying system-theoretic notions from the perspective of the

underlying topology can lead to interpretations that explicitly

characterize the effects of the network on the behavior of the

system. Recent examples of analysis and synthesis from a

graph-theoretic point of view studied closed-loop properties
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of multi-agent systems and the relation to the graph Lapla-

cian [13] or graph-theoretic analysis and performance bounds

for consensus systems [8], [28].

The analysis and synthesis of relative sensing networks

was recently considered in [29] with respect to H2 and H∞-

performance. While there exists strong results for unweighted

graphs relating network properties with the H∞-performance

of a graph, there are no corresponding results for node- and

edge- weighted graphs. This leads to the main contribution

of the current paper. We develop an optimization algorithm

for determining the optimal topology for relative sensing

networks with pre-specified properties when edge- and node-

weights are present. We are especially interested in graphs

with a sparse topology, i.e. graphs fulfilling the required

properties with as few edges as possible. Different scenarios

are considered and it is also possible to promote desired sub-

graphs.

We combine control theoretic insight with results from

compressed sensing (see e.g. [6], [10]) to systematically

achieve sparse relative sensing networks with guaranteed

system theoretic properties by computationally efficient

algorithms. First, a combinatorial optimization problem

is proposed. This optimization algorithm seeks a sparse

topology guaranteeing maximal algebraic connectivity and

pre-specified H∞-performance of the network. This non-

convex structure optimization is then relaxed using a convex

weighted ℓ1-minimization, and the resulting problem can

be tackled by finding a solution of iterative convex opti-

mization problems. Sparsity promoting optimization by ℓ1-

minimization was also recently considered for decentralized

controller design in [12], [24].

The remainder of this paper is organized as follows. After

introducing the mathematical preliminaries in Section II,

the model of the relative sensing network is described in

Section III. Section IV is devoted to the synthesis problem

of sparse RSNs and an optimization algorithm for RSNs

networks is presented. The paper concludes with illustrative

examples for homogeneous and heterogeneous RSNs in

Section V and a summary and outlook in Section VI.

II. MATHEMATICAL PRELIMINARIES

The 0-norm of a vector x ∈ R
n is defined as

‖x‖0 = {# xi|xi 6= 0},

and corresponds to the number of non-zero entries in x.

Despite not being a true norm, it is often referred to in the

literature as one. A vector is called sparse if its 0-norm is

small compared to the dimension of the vector, i.e., if most
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of its entries are zero. The 0-norm is used in the present

context to achieve sparse graph topologies.

Performance is specified in this paper by the H∞-norm.

The L2-induced norm (or L2-gain) of a dynamical system

H : Ln
2 → Lm

2 is defined as

‖H‖L2−ind = sup
w∈L2\{0}

‖Hw‖L2

‖w‖L2

,

and corresponds for a linear system H to the H∞-norm

‖H(s)‖∞ = supω{σ̄(H(jω)}, where H(s) = C(sI −
A)−1B +D is a transfer function of the dynamical system

H and σ̄(H(jω)) denotes the largest singular value of H at

a fixed frequency ω.

Graphs and the matrices associated with them will be

widely used in this paper. For an in-depth treatment of graph

theory, the reader is referred to [16]. An undirected (simple)

graph G is specified by a vertex set V and a node set E whose

elements characterize the incidence relation between distinct

pairs of V . Two vertices i and j are called adjacent (or

neighbors) when {i, j} ∈ E . An orientation of an undirected

graph G is the assignment of directions to its edges, i.e.

an edge ek is an ordered pair (i, j) such that i and j are,

respectively, the initial and the terminal nodes of ek.

For this work, the |V| × |E| incidence matrix E(G) for

a graph with arbitrary orientation is of importance. The

incidence matrix is a {0,±1}-matrix with rows and columns

indexed by the vertices and edge of G such that [E(G)]ik has

the value ’+1’ if node i is the initial node of edge ek, ’−1’

if it is the terminal node, and ’0’ otherwise.

The (graph) Laplacian of G

L(G) := E(G)E(G)T

is a rank deficient positive semi-definite matrix. The eigen-

values of the graph Laplacian are real and will be ordered

and denoted as 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λ|V|(G).
Furthermore, the eigenvector corresponding to the eigenvalue

at zero is [1 . . . 1]T , henceforth written as 1. Similar to [25]

we define the node- and edge- weighted graph Laplacian

Lw(G) := Q−1E(G)WE(G)T ,

where Q is a positive and W a non-negative diagonal matrix

representing the weights associated to the nodes and edges

of the graph, respectively.

Notational specifications as used in the paper are given

next. A symmetric and positive definite (resp. positive semi-

definite) matrix M is written as M > 0 (resp. M ≥ 0); MT

and M−1 denote the transpose and inverse of a matrix M . A

diagonal matrix with elements m1, . . . ,mn on the diagonal is

abbreviated as diag(m1, . . . ,mn) or simply diag(mi). The

Kronecker product between two matrices is denoted by ⊗.

III. MODEL OF THE RELATIVE SENSING NETWORK

This section introduces the model of the RSN considered

in this paper and presents the theoretical background used

for the optimization algorithm later on. Consider a group of

g linear time-invariant dynamical systems (agents)

Σi =

{

ẋi(t) = Aixi(t) +Biwi(t)
yi(t) = Cix(t),

(1)

where each agent in indexed by the script i. Here, xi(t) ∈
R

ni represents the state, wi(t) ∈ R
ri the exogenous input

and yi(t) ∈ R
qi the measured output. We denote the transfer-

function representation of Σi as Hi with

Hi := Ci(sI −Ai)
−1Bi. (2)

We assume a minimal realization for each agent and compat-

ible output for all agents, e.g. system outputs will correspond

to the same physical quantity. In the homogeneous case, it

is assumed that each agent in the RSN possesses the same

dynamics and is described by the same state-space realization

(e.g. Σi = Σj for all i, j). It should be noted, that in a

heterogeneous RSN, the dimension of each agent can be

different; however, using a padding argument’, it can be

assumed, that all agents have identical dimensions for the

respective state space (e.g. ni = nj = n for all i, j).

The parallel interconnection of all agents can be expressed

by a concatenation of the corresponding system states, inputs,

and outputs, and through the block diagonal aggregation

of each agent’s state-space matrices. We use bold-phase

notation to denote the expanded state-space, e.g. x(t) =
[x1(t)

T , . . . , xg(t)
T ]T and A = diag(A1, . . . , Ag).

The sensed output of the RSN is the vector yG(t) contain-

ing relative state information of each agent and its neighbors

and is motivated by the relative sensing problem discussed in

Section I. The incidence matrix of a graph naturally captures

state differences and will be the algebraic construct used

to define the relative outputs of RSNs. In this paper, we

will especially consider that the relative output of the RSN

corresponds to a relative position’ measurement between

each agents as

yG(t) = (WE(Gc)
T ⊗ I)y(t). (3)

Here Gc is the complete graph and the topology is defined

by the diagonal weighting matrix W = diag(w1, . . . , w|E|),
with wi ∈ R

+
0 and the node set given as V = {1, . . . , g}.

Note that edge i does not exist if and only if wi = 0.

Furthermore, we denote the vector containing all weighs as

w = [w1, . . . , w|E|]
T . The weights wi in this setup can be

seen as the gains of the sensor used to sense the relative

state. They might be used to capture the fidelity of a relative

measurement. The global layer is visualized in the block

diagram shown in Figure 1.

Using the above notations, we can express the heteroge-

neous RSN in a compact form

Σhet(G)







ẋ(t) = Ax(t) +Bw(t)
y(t) = Cx(t)

yG(t) = (WE(Gc)
T ⊗ I)y(t).

(4)

The homogeneous RSN, Σhom(G), can be expressed using

Kronecker products, for example A = Ig ⊗ A. The transfer

function representation of Σhet is denoted as Σ̂het and is
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C D

∫

G
w(t) yG(t)

Fig. 1. Global RSN layer block diagram; the feedback connection
represents an upper fractional transformation [11].

defined as in (2). As in the state space model, bold faced

transfer functions denote the block diagonal aggregation of

each agent’s corresponding transfer function, e.g. H(s) =
diag(H1(s), . . . , Hg(s)). The homogeneous system Σ̂hom

can also be written using Kronecker products in a similar

manner as described above. We denote Tw 7→G
het and Tw 7→G

hom as

the map from exogenous inputs to the RSN sensed output for

homogeneous and heterogeneous systems respectively, e.g.

Tw 7→G
het = (E(G)T ⊗ Iq)H and Tw 7→G

hom = E(G)T ⊗H(s).

We will now state some facts for homogeneous and

heterogeneous RSNs used later on.

Theorem 1 ([29]): The H∞ norm of a homogeneous RSN

is given as

‖Tw 7→G
hom ‖∞ = ‖WE(G)‖‖H‖∞.

Theorem 1 states that the overall L2-gain of the system is

proportional to the matrix 2-norm of the weighted incidence

matrix. For heterogeneous RSNs, only upper bounds can be

given.

Theorem 2 ([29]): The H∞ norm of a heterogeneous

RSN is bounded as

‖Tw 7→G
het ‖∞ ≤ ‖WE(G)TQ‖

where Q = diag(‖H1‖∞, . . . , ‖Hg‖∞).

Both, Theorem 1 and Theorem 2 show that the topology

of the underlying graph is of significant influence to the

performance of the relative sensing network. Furthermore,

for heterogeneous agents, the dynamic difference between

agents is an important factor in the performance of the overall

system.

IV. SYNTHESIS OF SPARSE RELATIVE SENSING

NETWORKS

This section presents the main results of the current

paper. We discuss different scenarios for the synthesis of

homogeneous and heterogeneous relative sensing networks.

The special focus is on the design of sparse RSNs, i.e.

networks that fulfill certain pre-specified properties with as

few edges as possible. First, a problem formulation is derived

that incorporates the sparsity requirements into the network

design. Then, we use a weighted ℓ1-minimization to relax

the numerically exhaustive combinatorial exact solution of

the original problem. Graphs with sparse topologies can then

be found by the iterative solution of convex optimization

problems.

A. Problem Formulation

The synthesis problem for (4), i.e. designing the topology

of a RSN can be formulated as follows:

Problem 1 (H∞-optimal design of RSN [29]): Given

a network consisting of g agents which are coupled as

given in (4), find edge weights wi ≥ 0, such that the

H∞-performance of the RSN is optimal, i.e.

minimize ‖Tw 7→G
het/hom‖∞

subject to G is connected.

As shown in [29], this problem can be formulated as a

convex optimization problem. However, the solution to this

optimization problem is in general not sparse, i.e. all weights

wi are non-zero. This is not a desired solution, since it

requires the implementation of a complete graph. Instead,

one searches for a graph topology, where most of the edge

weights are zero and only very few are non-zero and have

to be implemented. Therefore, in the following, we state the

problem of sparse relative sensing network design.

Problem 2 (Sparse Topology Design for RSN): Given a

network consisting of g agents which are coupled as given

in (4) and a predefined H∞-performance γ. Find a sparse

distribution of weights wi ≥ 0, such that the network is

connected and the H∞-performance is less than γ, i.e.

minimize ‖w‖0 (5)

subject to ‖Tw 7→G
het/hom‖∞ < γ

G is connected.

The problem formulation implies that the H∞ performance

of the relative sensing network does not exceed γ. Recall,

that the 0-norm of a vector is a measure of its sparsity. In

this way, minimizing ‖w‖0 attempts to maximize the number

of zero elements in the edge weight vector w and therefore

minimizes the number of actually used edge weights.

However, the minimization of the 0-norm is a non-

convex problem and requires a combinatorial search (see

[5]). Therefore, Problem 2 cannot be formulated as a convex

optimization problem as easily as Problem 1. Inspired by

the field of compressed sensing [2], [6], [10], we show how

Problem 2 can be approximated by a numerically tractable

convex optimization problem.

B. Optimization Algorithm

As stated before, to design sparse relative sensing net-

works, we impose sparsity requirements on the edge weights

wi with ‖w‖0. This is a common sense approach which

simply seeks the sparsest w satisfying the constraints. How-

ever, such an approach is of little practical use, since the

optimization problem is non-convex and NP-hard as its

solution requires a combinatorial search which grows faster

than polynomial as |E| grows [5]. Similar to the convex

relaxation for rank minimization in [15], we will use the

convex envelope of ‖w‖0 defined next.

Let f : X → R, where X ⊆ R
n. The convex envelope of

f (on X) is defined as the point wise largest convex function

g such that g(x) ≤ f(x) for all x ∈ X.
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Lemma 1 ([14]): The convex envelope of the function

f = ‖x‖0 =
∑n

i=1 |sign(xi)| on X = {x ∈ R
n|‖x‖∞ ≤ 1}

is fenv(x) = ‖x‖1 =
∑n

i=1 |xi|.

With this, we can relax the non-convex ℓ0-minimization in

(5) by the convex ℓ1-minimization ‖w‖1; note that this can

be solved using linear programming. Additionally, this is

the best possible convex relaxation since the ℓ1-norm is the

convex envelope of the ℓ0-norm.

As described in [7], re-weighted ℓ1-minimization can be

used to improve the results of the minimization. In this

direction, ℓ1-weights mi > 0 can be assigned to each edge

wi as
n
∑

i=1

miwi.

where m1,m2, . . . ,mn are non-negative weights. For the de-

scribed design problem, the ℓ1-weights are free parameters.

They counteract the influence of the signal magnitude on

the ℓ1-penalty function. If mi = 1 for all i, the weighted

ℓ1-norm reduces to the regular ℓ1-norm. If the ℓ1-weights

mi are chosen to be inversely proportional to the magnitude

of wi {

mi = 1/|wi|, wi 6= 0
mi = ∞, wi = 0,

(6)

then the weighted ℓ1-norm and the ℓ0-norm coincide.

Additionally, in the context of Problem 2, a certain a-

priori choice of ℓ1-weights can be used to force the solution

towards certain network topologies. This is especially im-

portant if we want to promote certain sub-graphs (e.g. path

graphs or star graphs). Assigning a large initial ℓ1-weight to

specific edges has the interpretation that those edges are not

desirable, while small ℓ1-weights make it more likely that

those edges appear in the graph.

As show in [29] Theorem 2 can be formulated into an

LMI
[

γ2I QE(G)W
WE(G)TQ I

]

≥ 0. (7)

The algebraic connectivity of the graph can be expressed

as the following LMI [4]

PTEWETP > 0, (8)

with P = Im(1⊥). Combining equation (7) and (8) with the

relaxations of the 0-norm derived in (6) leads to the following

convex optimization problem

minimize

n
∑

i=1

miwi (9a)

subject to

[

γ2I QE(G)W
WE(G)TQ I

]

≥ 0 (9b)

PTEWETP > 0 (9c)

wi ≥ 0. (9d)

If there is an additional constraint on the maximum weight

on each edge, equation (9d) can be replaced by

0 ≤ wi ≤ wi,max. (9e)

Additionally, one is often not only interested in connectivity

of a graph, but in the maximization of the connectivity of

the graph. Since the H∞-norm of the single agents qi =
‖Hyw

i ‖∞ can be interpreted as node weights, maximization

of the weighted algebraic connectivity of a graph can be

formulated as (see [25]).

maximize µ (10)

subject to PT (EWET − µQ)P > 0.

Note that this definition slightly differs from the classical

definition of the connectivity and is associated with the node-

and edge- weighted graph Laplacian. To achieve a sparse

topology while simultaneously maximizing the weighted

connectivity of the graph, we combine the two objective

functions (9a) and (10) to a convex sum

minimize (1− α)

n
∑

i=1

miwi − αµ, α ∈ (0, 1) (11a)

subject to

[

γ2I QE(G)W
WE(G)TQ I

]

≥ 0 (11b)

PT (EWET − µQ)P > 0 (11c)

wi ≥ 0. (11d)

The weighting factor α ∈ [0, 1] is a tuning parameter for the

relative emphasis on each term in the objective function. The

weighting scheme described in (6) cannot be implemented

directly. Therefore, we use the algorithm according to [7].

Algorithm 1 Sparse Topology Design Algorithm

1) Set h = 0 and choose m
(0)
i for i = 1, . . . , |E| and

ν > 0.

2) Solve the minimization problem (9) (or (11)) to find

the optimal solution w
(h)
i .

3) Update the weights

m
(h+1)
i = (w

(h)
i + ν)−1

4) Terminate on convergence, otherwise set h = h + 1
and go to Step 2.

Remark 1: We introduce a small positive number ν to

ensure that all weights are well defined when m
(h)
i = 0.

Remark 2: As discussed earlier, the first step of the algo-

rithm, e.g. the initial choice of ℓ1 weights, greatly influences

the solution. From a design standpoint, this is preferable,

since the initial weights themselves can implicitly include

additional constraints such as the economic cost of adding a

certain edge. The authors further noticed that the influence of

the initial ℓ1-weights is larger when homogeneous RSNs are

considered, while for heterogeneous RSNs the node weights

seem to be more important.

Algorithm 1 provides a computationally tractable solution

to the original problem of sparse relative sensing network

design proposed in Problem 2. The exhaustive combinatorial

search of the 0-norm to achieve a sparse structure of the

controller was relaxed by the computationally attractive
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weighted ℓ1-minimization. In the next section, we will apply

our results to an illustrative example.

V. EXAMPLE

To illustrate the previous results, we design the topology

of homogeneous and heterogeneous agents. Algorithm 1 was

solved using SeDuMi [27] and YALMIP [19] in Matlab.

First, we consider a network of g = 10 homogeneous agents.

In this example, we show how an initial choice of ℓ1-weights

influences the topology of the graph and therefore, how a

sub-graph can be promoted. Here, we wanted to promote a

path graph as a sub-graph. Therefore, the initial ℓ1-weights of

the edges associated with a path were chosen to mi = 1e−4,

while other initial ℓ1-weights were set to mj = 1. The edges

corresponding to the path graph are the edges 1, 3, 6, 10, 15,

21, 28, 36 and 45. The predefined H∞-performance was set

to γ = 10. Figure 2 shows the number of non-zero weights

and their corresponding weighted connectivity. As can be

seen, for decreasing sparsity, the weighted connectivity is

increasing. In Figure 3 each column corresponds to a bar

in Figure 2 with the corresponding weighted connectivity.

As can be seen, the path as a subgraph is present for all

weighted connectivity levels, while for increasing weighted

connectivity, additional edges are added.

As a second example, we consider an RSN with g =
10 heterogeneous SISO systems (generated randomly in

MATLAB) with H∞-performance ‖Hi‖∞ ∈ [0.17, 7.48].
The H∞-performance of the RSN was specified as γ = 10
and for varying α a tradeoff between sparsity and weighted

connectivity was computed. As can be seen in Figure 4, for

increasing sparsity of the RSN, the weighted connectivity

decreases. Furthermore, compared to the tree (nine edges),

the weighed connectivity increases by more than 100%,

when allowing 16 edges instead, while there is almost no

improvement of weighted connectivity when allowing 37
edges instead of only 23. Figure 5(a), 5(b), 5(c) show the

graphs for weighted connectivity level of 0.21, 0.48 and

0.84, respectively. The numbers beside the nodes correspond

to the H∞-norm of the single agent and represent the node

weight. The darker the edge, the higher the edge weight.

Note that the color of the edges only relate within one

figure and are not comparable between figures. As can be

seen in Figure 5(a), the tree is actually a star graph where

the node with the highest node weight is the center node.

For increasing weighted connectivity (see Figure 5(b) and

Figure 5(c)), the edges connecting the next larger nodes are

added.

VI. SUMMARY AND OUTLOOK

This paper considers the design of sparse relative sensing

networks subject to an H∞-bound on the performance. This

problem is closely related to the problem of edge weight

design for node and edge weighted graphs. While there exist

theoretical results for H∞-performance and connectivity for

certain topologies of unweighted graphs, such results do

not exist for weighted graphs. To overcome this, the syn-

thesis problem was formulated in terms of an optimization
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(b) 16 edges, µ = 0.48, 0.13 ≤ wi ≤ 0.65.
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(c) 23 edges , µ = 0.84, 0.29 ≤ wi ≤ 1.53.

Fig. 5. Graphs with increasing number of edges and increasing connectivity wiht γ = 10.

problem. Special emphasis was put on the sparsity of the

delivered graphs, i.e. graphs with as few edges as possible

that fulfill certain pre-specified properties. Sparsity of the

graph was achieved by 0-minimization of the edge weight

vector. For the resulting combinatorial optimization problem,

computationally tractable convex relaxations have been pro-

vided. The provided relaxation can also be used to embed

additional performance criteria, such as the maximization of

the algebraic connectivity of the relative sensing network.

With the resulting convex optimization problem a tradeoff

between sparsity and algebraic connectivity can be achieved.

Future work considers the design of robust relative sensing

networks, with possible uncertainties in the edge weights as

well as in the node weights.
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dynamic output-feedback controllers for interconnected systems,” Int.

J. of Control, vol. 84, no. 12, pp. 2081–2091, 2011.
[25] S. Y. Shafi, M. Arcak, and L. E. Ghaoui, “Designing node and

edge weights of a graph to meet Laplacian eigenvalue constraints,”
48th Annual Allerton Conference on Communication, Control, and

Computing, pp. 1016–1023, 2010.
[26] R. S. Smith and F. Hadaegh, “Control of Deep-Space Formation-Flying

Spacecraft; Relative Sensing and Switched Information,” Journal of

Guidance, Control, and Dynamics, vol. 28, no. 1, pp. 106–114, 2005.
[27] J. F. Sturm, “Using SeDuMi,” Optimization Methods and Software,

vol. 11–12, no. 1–4, pp. 625–653, 1999.
[28] D. Zelazo and M. Mesbahi, “Edge Agreement : Graph-Theoretic

Performance Bounds and Passivity Analysis,” IEEE Trans. Automat.

Control, vol. 56, no. 3, pp. 544–555, 2011.
[29] ——, “Graph-Theoretic Analysis and Synthesis of Relative Sensing

Networks,” IEEE Trans. Automat. Control, vol. 56, no. 5, pp. 971–
982, 2011.

2754

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on July 07,2024 at 05:10:55 UTC from IEEE Xplore.  Restrictions apply. 


