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Abstract—This paper investigates the robustness of consensus protocols over weighted directed graphs using the Nyquist criterion
and small gain theorem for agents with single and double integrator dynamics. For single integrators, the linear consensus protocol,
described by the weighted Laplacian, is considered, while for double integrators a new consensus protocol is presented which also uses
the weighted Laplacian. For both single and double integrators, the allowable bound on a single edge weight perturbation, while consensus
among the agents can be achieved, is derived. Specific results are obtained for a directed acyclic graph and the directed cycle graph along
with their graph theoretic interpretations. For double integrators, a dual problem is formulated and solved, whereby it is shown that, subject
to certain conditions, perturbing a single edge weight may stabilize the consensus protocol. Simulations support the theoretical results.

Index Terms—Consensus protocol, algebraic graph theory, uncertainty, stability analysis, robustness

1 INTRODUCTION

N recent times, a number of researchers have looked

into networked systems whose underlying graphs con-
tain negative edge weights [1], [2], [3], [4], [5], [6]. These
could be in the context of finding an optimal solution to
obtain the fastest converging linear iteration in distributed
averaging, in studying the phenomenon of clustering, or to
model antagonistic interactions in a social network. In this
work the presence of negative weights is investigated in the
context of the consensus problem over weighted directed
graphs. Although negative couplings were considered in
[3], the focus was on achieving clustering behavior by build-
ing networks from subnetworks that were balanced and
strongly connected. However, this paper focuses on the
effect of negative edge weights on a consensus-seeking
system and clustering occurs as a transitional behavior
between consensus and lack thereof, in the system, at a criti-
cal value of the edge weight.

Consensus protocol occupies an important position in
the domain of multi-agent systems and has been investi-
gated from various perspectives [7]. One direction of
investigation has been the robustness of consensus over
weighted undirected graphs [8], [9] where concepts from
graph theory and robust control have been merged. These
analyses involve the application of small gain theorem to
the networked dynamic system described by the graph
Laplacian and the edge Laplacian matrices. Particularly, [9]
considered the possibility of negative edge weights. Further,
an interpretation of the allowable perturbation on an edge
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weight was provided in terms of equivalent graph resistances.
Reference [8] showed how the edge Laplacian assisted in
studying the roles of certain subgraphs such as cycles and
spanning trees, in the agreement problem, and laid the
foundations for robustness studies of the consensus prob-
lem over undirected graphs. For undirected graphs, whose
Laplacians are symmetric and therefore have special prop-
erties, such an analysis is feasible. But for a directed graph,
the Laplacians are not symmetric in general.

In works such as [10] and [11] the effects of delays and
dynamic uncertainties in the communication channel have
been investigated, but as in most of the related literature,
the focus has been on undirected topologies. Although
the present work also relies on a Nyquist based approach
for robustness studies over directed networks, [10] uses
Nyquist conditions to analyze the effects of time delays
in an undirected network. While the Integral Quadratic
Constraint (IQC) does provide a broad framework for the
study of uncertainties, [10] does not provide any graph
theoretic interpretation. In [11], the authors conclude that
their methods of analysis, being reliant on the symmetry
of the undirected network, cannot be extended to direc-
ted networks. The present work, in contrast, deals with
consensus over directed graphs. Some researchers have
looked into the robustness of linear consensus over uncer-
tain networks [11] for discrete time systems while others
have extended the notion of effective graph resistances to
directed graphs [12], [13]. However, it has been shown
that the notion of graph resistance cannot be exploited
in interpreting perturbation bounds on edge weights of
general digraphs [14].

Although most of the literature related to consensus
considers agents modeled as single integrators, some resear-
chers have also considered agents modeled as double inte-
grators. Some relevant stability results on consensus of
double integrators can be found in [15], [16], [17], [18], [19],
[20], [21], but they mostly consider undirected topology and
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do not consider perturbations on edge weights. As remarked
in [19], in many practical cases the agents such as aircrafts or
robots are described by double integrator dynamics. Hence,
the study of consensus in a system of double integrators is of
significant interest from a practical perspective. While the
consensus over single integrators depends directly on the
spectrum of the graph Laplacian matrix, for double integra-
tors too, several consensus protocols may be considered
which require explicit knowledge of the graph Laplacian
spectrum. But merely having the eigenvalues of the Laplacian
in the right half of the complex plane (rhp) may not necessar-
ily guarantee consensus of double integrators [16].

The contributions of this paper can be summarized as
follows. The networked system is transformed to edge vari-
ables, which denote the difference between the node states,
leading to a directed edge agreement protocol over weighted
digraphs. The directed edge Laplacian matrix [22], [23], [24]
is introduced along with its algebraic properties. Second,
the robust stability of directed and weighted edge agree-
ment protocol, where uncertainty is introduced in the
form of perturbations to edge weights, is considered. Third,
this work reveals that even in the absence of symmetric
Laplacians, robust stability analysis is possible for single
or double integrators over a weighted directed graph.
Fourthly, the robust stability result for single integrators
over a weighted digraph is derived using the Nyquist crite-
ria. Further analysis, along with graph-theoretic interpreta-
tions, are given for two specific classes of graphs: the
directed acyclic graph (DAG), and the directed cycle graph.
For the directed cycle, the perturbation bound on an edge
weight agrees with the one in the literature [25], [26]. Some
preliminary results are available in [27], although many
proofs, and the complete analysis for the cycle digraph are
not presented there. This work also discusses how the anal-
ysis of an edge weight perturbation on a consensus-seeking
system aids in determining whether multiple edge weight
perturbations of known magnitudes disrupt consensus or
not. Fifth, a new consensus protocol for double integrators
is presented and analyzed. An existing protocol [16] is a
special case of this new protocol. Finally, as a dual to the
analysis problem, the possibility of designing edge weights
of a consensus protocols for double integrators is discussed.
Consensus for double integrators is shown to be achievable
over a digraph by perturbing a suitably chosen edge weight
sufficiently, when the nominal system does not attain con-
sensus. Although transparent graph theoretic interpreta-
tions for edge weight perturbations are hard to obtain for
double integrators, except for a DAG, this work provides a
framework for analyzing robustness of consensus protocols.

Section 2 presents some mathematical background and
commonly used notation and then the edge Laplacian is
described for a weighted directed graph along with
some of its important properties. Thereafter, the consensus
protocols for single and double integrators are presented.
The corresponding consensus models with uncertainty are
next presented in Section 3. The robust stability of the uncer-
tain edge protocol over a weighted digraph is analyzed
in Section 4 for the presented protocols, and graph theoretic
interpretations are provided for single integrators over
two specific digraphs along with an algorithm to check if
consensus fails for multiple edge weight perturbations.

In Section 5, a method for designing edge weights for
consensus of double integrators is illustrated. Section 6
presents relevant simulations and Section 7 concludes the

paper.

2 DIGRAPHS AND CONSENSUS PROTOCOLS

2.1 Preliminaries

Some notions related to digraphs are reviewed in this
section, followed by some commonly used notation. Many
of these graph theoretic concepts can be found in [28].
A directed graph, G, consists of a vertex set, V, an edge set,
&, which is an ordered pair of distinct vertices of G, and
a diagonal matrix of edge weights, 1. When the weights
are all unity, the graph is represented by V' and & only.
Throughout this paper, it is assumed that |V|=n and
|€] = m. Two edges that are outbound from the same node
(parent node) are defined as sibling edges. A node v € V that
can be reached by a directed path from every other node
in a digraph G is termed a globally reachable node. For any
graph containing at least one globally reachable node, one
can define a spanning subgraph G, C G termed a rooted in-
branching, such that there exists a directed path from every
node to a globally reachable node (or root), and all nodes,
except this root, have out-degree equal to unity, while
the root has out-degree equal to zero in G,. For a digraph
with a rooted in-branching, another subgraph, G., with the
same vertex set, V, as G, is defined such that G, UG, = G.
The rooted in-branching, G., has n — 1 directed edges in the
edge set, £;, while the remaining m — n + 1 edges constitute
the edge set £, corresponding to G. (with £ =&, U&, and
ENE. =10). A signed path vector corresponding to an edge
e; € £ between nodes a and b in G is a signed path in G rep-
resented as a vector z € R""! such that the jth index of z
takes the value +1 if the edge ¢; € &; is traversed positively,
—1 if it is traversed negatively and 0 if the edge e; is not
used in the path. The graph and edge Laplacian matrices
are defined in terms of the incidence matrix, £(G) € R™"*"™.
The incidence matrix is defined such that [E(G)]; =1 if
edge ¢; is outgoing from vertex i, [E(G)];; = —1 if edge ¢; is
incoming at vertex 4, and [E(G)];; = 0 otherwise. The graph
Laplacian for a directed graph can be defined as L, =
A(G)E(9)", where A(G) € R™™ is such that [A(G)], =1
if the edge ¢, is outgoing from vertex i and is 0 otherwise
[22], [23], [24]. Similarly, L. = E(G)" A(G) is defined as the
directed edge Laplacian. Matrices F(G) and A(G) are also
denoted as £ and A for brevity. The weighted graph Lapla-
cian and the edge Laplacian are given by L, = A(G)WE(G)"
and L, = E(Q)T.A(Q)W, respectively, where, W € R™*" is
a diagonal matrix, whose diagonal entries are the weights
of the corresponding edges, that is Wj =w; > 0Vi.
The null space and range space of a matrix A are denoted
by M (A) and R(A), respectively. The vector of all-ones and
all-zeros in R” are denoted by 1, and 0,, respectively.
The matrix obtained by removing the jth column and ith
row of any matrix A is denoted as A; ;).
2.2 The Directed Edge Laplacian:

Algebraic Properties

The edge Laplacian plays an important role in consensus-
seeking systems over undirected graphs [8]. In [27] certain
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useful properties of the edge Laplacian were stated without
proof and used gainfully to analyze the robustness of single
integrators seeking consensus over a weighted digraph.
These properties are occasionally discussed here, while
their formal statements and proofs are in the Appendix,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TNSE.2018.
2866780. It will be shown in Section 4 that the edge
Laplacian for directed graphs provides the correct algebraic
construction to analyze the robustness of consensus proto-
cols over digraphs for both single and double integrators.
The following observation is relevant before some impor-
tant properties of L. are discussed. For a nonsingular W,
dim[N (A)] = dim[N (AW)] and R(A) = R(AW). Some key
properties of L. and L, are in the Appendix, in Lemmas Al
through A4, available in the online supplemental material.
From Lemma Al, available in the online supplemental
material, it follows that if 1, € R(A), then N(L.) #N
(AW). By Lemma A4, available in the online supplemental
material, a digraph with multiple globally reachable nodes
has a directed cycle among the globally reachable nodes.
Hence, every node has a positive out-degree. Combining
Lemmas Al and A4, available in the online supplemental
material, N'(L.) # N (AW) for cycle digraphs. This paper
considers only digraphs with at least a single globally reach-
able node, because consensus is achievable only in such
digraphs [29]. To understand the graph theoretic relation
between the edges in G, and G, and to characterize the latter
in terms of the former, the matrix F(G), and A(G) for some
special graphs, can be factorized in certain forms. These
factorizations aid in the subsequent analysis in Section 4
and are therefore presented here. The following labeling
helps in the subsequent factorizations.

Suppose that for a particular G, the edges in &, are
labeled e; through e,_; while their corresponding parent
nodes are labeled 1 through n — 1, respectively. Thus, the
node with zero out-degree in G;, corresponding to a globally
reachable node in G, is labeled n. The incidence matrix is

E(g) = [E(gr) E(gc)] = E(gr)[lrhl Tr} = E(gr)R7 (1)
where T, € R"~D*(m=7+1) may be given by
T: = (E(G.) E(G.))  E(G) E(G.). (2)

Matrices E(G,) and E(G.) capture the incidence relations in G,
and G,, respectively. The matrix E(G,)" e R has full
row rank and so its right inverse, E(G)(E(G)" EG.))™,
exists. Similarly, for a directed acyclic graph, G, that has a
unique globally reachable node so that every edge in &£, has a
sibling in &; (implying R(A(G.)) C R(A(G))),

A(G) = [A(G,) A(Go)] = A(G) (L1 Ty) = A(G)R,  (3)
where T, € R"~1*(m=n+1) s oiven by
T, = (A(G.)" A(G.)) " A(G.) T A(G,). (4)

The first n — 1 columns of R(G) and R(G), corresponding
to the edges in &£, contain the identity matrix. For R, the last
m — n + 1 columns (i.e., the columns of the matrix 7;) show
how the m —n + 1 edges in &, are represented in terms of

a

€1 d
# €y
b

rs=[0110 -1 —10]T

es

Fs =7 =[0100000]

Fig. 1. Dotted edge es (sibling to edge e,, with parent node b) encoded in
terms of the edges in the rooted in-branching.

the n — 1 edges in &; by a signed path vector [30], as shown
in Fig. 1. Denote the ith columns of R and R as 7 and r;,
respectively, with r;(k) being the kth entry of the vector r;.
In Fig. 1, es € & is encoded in terms of ey, e3, e, €5 € .
The corresponding entries in rg € R7, are non-zero with
the sign indicating the sense in which these edges are tra-
versed (rs(2) =7s(3) = +1, and r3(6) = rs(5) = —1) while
other entries are zero. Since every edge ¢, € &, is a sibling
to an edge e, € &;, the column in R corresponding to e, will
be identical to the that corresponding to its sibling edge, e,..
So, in Fig. 1, 73 =r73. Hence, with this labeling, for
n < i < m, there exists some j satisfying 1 < j <n — 1, such
that 7; = 7;, where, edge ¢; € €. and edge e; € &; are sibling

edges. Moreover,
+1, if e is traveled in the + sense,
ri(k) =< —1, if ey is traveled in the — sense, (5)
0, if e, is not traversed,

is the signed path for e;, for n —1 < i < m. Using these
factorizations, Lemmas A5 through A9, available in the
online supplemental material, present some key relations
between L, and L, which aid later analyses.

2.3 Consensus Protocols

Consensus protocols for single and double integrators will
be considered here. Thereafter, the uncertain models will be
presented for each of these cases.

2.3.1 Single Integrators

Consider the consensus dynamics over a weighted digraph
driven by

& = —Ly, (6)

where z € R" denotes the node states while L, is the
weighted graph Laplacian. To achieve consensus, the spec-
trum of L, must contain exactly one zero eigenvalue with
the remaining eigenvalues in the rhp. This is a necessary
and sufficient condition and leads to some conditions on the
underlying digraph in graph theoretic terms.

2.3.2 Double Integrators

A Generic Protocol. The consensus protocol for double inte-
grators is given by

m - ng fLJ m :‘I’M @
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where L,, = A(G)W,E(G)", and L,, = A(G)W,E(G)" with
W, and W, being the diagonal edge weight matrices for
the position and velocity digraphs, respectively. Here, the
system is required to achieve consensus in both position and
velocity. In the existing consensus protocols, the weighted
digraph over which the position and velocity are communi-
cated are assumed to be identical with corresponding
weights on the edges being scaled versions of each other.
However, in this work a more generic consensus protocol is
considered for the double integrators. Here, the edges and
their directions in the position and velocity digraphs are
identical, but the weights on the individual edges are differ-
ent for position and velocity digraphs. Only a detailed spec-
tral analysis of ¥ can determine the non-zero eigenvalues of
this consensus protocol. Even if both the position and veloc-
ity digraphs have positive weights, consensus is not guaran-
teed since the relation between the spectra of L, L,,, and ¥
is not apparent. However, for a weighted digraph with
a rooted in-branching and positive weights, similar argu-
ments as in Lemma 4.1 of [16] dictate that algebraic and
geometric multiplicities of the zero eigenvalue are 2 and 1,
respectively. Thus, if the 2n — 2 non-zero eigenvalues of ¥
are in the open rhp, consensus results. This is formally stated
below.

Theorem 1. The system of double integrator agents over a
weighted digraph having positive edge weights, and a rooted
in branching, given by (7), achieves consensus if and only if the
polynomial equation det[s*I + sLg, + Lg;) = 0 has all nonzero
roots with negative real parts.

This protocol offers more flexibility to the designer, since
it allows one to choose 2m decision variables (edge weights)
to assign the 2n — 2 non-zero eigenvalues of V.

Protocol for W, = yW, = yW. This is a special case of (7)
and is given by:

HE R 1R

where € R” and v € R" are the position and velocity vec-
tors of the agents, L, is the weighted graph Laplacian and
y € R, is a positive scalar. This model appears most com-
monly in the literature dealing with consensus of double
integrators since it was presented in [16]. The edge weights
in the position and velocity digraphs are such that the
weight on each edge of the velocity digraph is a scaled ver-
sion (the scaling factor being y) of the corresponding weight
on the position digraph. There are m + 1 decision variables:
m edge weights and a damping term, y.

The consensus of the system (8) depends on the proper-
ties of W € R™*". If L, has exactly one zero eigenvalue,
then ¥ has exactly two eigenvalues at the origin, but the
geometric multiplicity of this eigenvalue is unity, with cor-
responding eigenvector being [1,” 0,7] (Lemma 4.1, [16]).
Moreover, if all the remaining eigenvalues of —Eg are in the
open left half plane (Ihp), then there is a lower bound on y
that is guaranteed to result in consensus. The following is
a necessary and sufficient condition for consensus [31]:

2 > max [Im(p,g)]z 355 ()]
Re(ui) >0 | Re ()| (Im(pe;)]” + [Re(pi)]")

A le—

u(t) y(t)
M(s)

Fig. 2. Uncertain consensus protocol.

where u; is an eigenvalue of L,. The parameter y may
be chosen suitably with explicit knowledge of the spectrum
of L,

3 UNCERTAIN EDGE WEIGHTS

The notion of uncertainty is introduced through the edge
weights in the consensus protocols. Suppose the weights on
one of the m edges (or 2m edges for double integrators) is
uncertain. The perturbations are real, and bounded about
some nominal positive value. Mostly, perturbations on a
single edge weight are considered in this work. The uncer-
tainty on edge weight w; is an additive one, §; < 0, incorpo-
rated as w; + §;. The uncertainty is thus defined as

The perturbed model is expressed in M-A form as in Fig. 2.

3.1 Single Integrators

Upon pre-multiplying both sides of (6) by E(G)", it follows
that @, = —L.z, where, z, = E(G) 2z = RTE(Q,) r eR™
denotes the edge states. Choosing a transformation z =
V~lz,, where V is as described in the proof of Lemma A9,
available in the onhne supplemental material, it turns out
that Z= [((RRT RTE g‘f [ TE(gf) m— 7?+1]T‘
Thus, the first n — 1 components of z represent the edge
states of the rooted in-branching. Lemma A9, available in the
online supplemental material, suggests that for edge agree-
ment, it suffices to consider the edge dynamics in the rooted
in-branching, say -,

i = —E(G.)" A(G)WR" z,. (11)

Uncertain edge agreement protocol for single integrators is
i = —E(G.) AG)(W + PAP")R x, (12)

with uncertainty as in (10) and P € R is the ith standard
basis in R™ if the weight on edge ¢; is perturbed. Considering
was input and y as output, the system is given by

i = —E(G.)" A(QWR" 2z, — E(G.)" A(G)Pu

Y= PT'RYz,, w=APTR 2,

(13)
(14)

This closed loop model is depicted in Fig. 2 and the transfer
function, M(s), between y(s) and u(s) is

M(s) = —PTR"[sI + E(G.)" AWRT'E(G.)" AP.  (15)

Remark 1. From Lemmas A5-A9 and Remark A1, available
in the online supplemental material, it follows that
the eigenvalues of E(G,)" AWR” or E(G.)" A(G.)RWR"
are in the open rhp for positive edge weights. Thus, M(s)
is Hurwitz.
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3.2 Double Integrators

It is assumed that the nominal positive edge weights ensure
consensus in protocols (7), (8). The general consensus pro-
tocol for double integrators in (7) is first considered, with
uncertainties in the edge weights, followed by a similar
treatment of the special case (8). The following results aid in
deriving the uncertain model.

Lemma 1. For a weighted digraph G with positive weights and
a rooted in-branching, matrix W is similar to

o 4
_Ql' _Qv ’
where
Q :{ B(G) A(GW. R" onl}
TA(Q)WI.RT 0 |
and
Q. = {E(Gr)T (GW.RT 0, 1}
1,7 A(G)W,R" 0

Proof. Choosing S as in the proof of Lemma A8, available in
the online supplemental material, the similarity transfor-
mation (I, ® S)'W(I, ® S) proves the result. O

Lemma 2. For a weighted digraph G with positive weights and a
rooted in-branching, matrix W, is similar to

|: 0 ITIY. :|
7Qex *Qew ’

where
Qun = [E(GJTA@)WIRT E(@)TA(G)WINT}
“ O(m7n+1)><(n—l) O(rnfnntl)x(mfnJrl) ’
and
Qo = {E(QI)TA(GW,RT E(gf)TA@)m,NT}
“ O(Tnf'thl)X(nfl) O(mfn+l)><(m7n+1)

Proof. With V as in the proof of Lemma A9, available in the
online supplemental material, and similarity transforma-
tion (I, ® V) "W, (I, ® V), the result follows. ]

Consider the edgres states z. and v, given by z. = E(Q)Ta: €
R™ and v, = E(G) v € R™. As in case of single integrator
dynamics, the edge position states in (8), when transformed as
z = V~lx,., where V is as described in the proof of Lemma A9,
available in the online supplemental material, results in

2= [R'(RR")™ NJ'R'E(G.) w = [«"E(G.) 0f,_,...]".

Thus, the first n — 1 components of z represent the edge
position states of the rooted in-branching. Same result holds
for the edge velocities too. It follows from Lemma 2 that
to study the consensus problem, it suffices to ensure the
consensus of the n —1 edges in the rooted in-branching,
each representing a position and velocity state. This is tanta-
mount to 2(n—1) states represented by the vectors
Zer, Ver € R™1, s0 that the dynamics of interest are

:Z}ez _ 0 In—l Tetr | _ ) Ler
|:i)e1: :| N |:_Lessx _Lessv:| |:'Ue1: :| B \I,ef |: Ver :| ’ (16)

where Lessx = E(gr)TA(g)WTRT and Lessv = E(gr)TA(g)
W, RT. Both of these matrices are nonsingular and thus V.,
is also nonsingular. As before, the uncertainty is introduced
through real, bounded perturbations in the edge weights
as in (10). The edge could be in the position digraph or
the velocity digraph. Thus, an additive perturbation §; is
incorporated into an edge weight w;x or wjy, i =1,2,...,m.
The uncertain edge agreement protocol is

Be
—N—
i’cr _ \i, Ler 0 (17)
’[}EI a e Vet + _E(gr)TAP “
ych[jﬂ,u:% (18)

where C,=[PTRT 0] or C,=[0PTR?] depending on
whether the perturbation is on the ith edge of the position
or the velocity graph, respectively, and P is the same as in
(12). This is a single input-single output system and can be
analyzed using the Nyquist criterion. Hence, for a perturba-
tion on an edge weight of the position or velocity graph, the
transfer function M(s) in Fig. 2 is given by

M(s) = —PTRY[$*] 4 sLessy + Lessx] ' E(G:) AP or, (19)

M(s) = —sPTRT[$*] 4 $Lesey + Lessx] "E(G:) AP, (20)
respectively. Since the nominal positive weights are suitably
chosen to ensure consensus, M(s) is Hurwitz.

For the special case when W, = yW,, (8) may be rewrit-

ten in terms of the edge variables as

Te| | O L, Te | Ze
I R
which eventually leads to the following representation:
Ter o 0 I, Ler | _ Ler
|:i)er :| N |: _Less _]/Less :| |: Vet :| N qjer |:Uer :| ’ (22)

where L., = E(G.)" A(G)WRT as before.

The uncertainty is introduced through real, bounded per-
turbations in the edge weights. Here too a single edge
weight is perturbed as described in (10), but it affects both
the velocity and position variables associated with the per-
turbed edge. The uncertain edge agreement protocol is

|:x€t ]
Ver

Y

B

L 3 rap)
“ Ver 7E(gr)TAP 7VE(gr)TAP
PTRT 0 Zer A O

{ 0 PTRT}['UEJ’UZ{O A}y'

Cr

(23)

The system described above is thus a two input-two output
system. This is consistent with Fig. 2 as the transfer matrix
M(s) for the system (23) is given by

(24)

M(s) = Cy(sI —V,,) ' B,.
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4 ROBUST STABILITY OF UNCERTAIN
DIRECTED CONSENSUS

4.1 Single Integrators: Nyquist Stability Analysis
The uncertain system, described by (13), (14), is represented
in such a way that the uncertainty is separated from the
nominal plant, as illustrated in Fig. 2. This formulation
lends itself easily to a stability analysis using the Nyquist
criterion and the notion of gain margin.

The single input-single output transfer function, M(s), in
(15) does not have any pole at the origin because the system
matrix in (13) is of full rank. The uncertainty A is a scalar
and therefore a classical Nyquist analysis of the gain margin
will lead to results on robust stability.

Theorem 2. The consensus protocol, (6), over a weighted
digraph, G, (with positive weights) having a rooted in-branch-
ing, is robustly stable to all perturbations, 8;, on a single edge
weight w, satisfying

|6;] < GM[M(s)], (25)
where P is the ith standard basis in R™ and GM denotes the
gain margin for a transfer function.

Proof. Consider M (jw) in (15), as depicted in Fig. 2. Since
the transfer function is of type zero, the gain margin is
obtained by evaluating (15) at s = jw,. (which is the phase
crossover frequency). Now, from the Nyquist criterion,
stability dictates that [8;| < 1/|M (jwpe)|- ]

Remark 2. If the consensus protocol, (6), over a weighted
digraph G, as in Theorem 2, is subjected to multiple edge
weight perturbations, then a sufficient condition for con-
sensus can be derived using the small gain theorem. The
sufficiency (as opposed to both necessity and sufficiency
like in the case of single edge weight perturbations) stems
from the general conservatism associated with the small
gain theorem. The bound on the perturbation, A, on ¢
edges (¢ > 1) can be given by ||A|l, < 1/[|M(jo)||..,
where M(s), given by (15), is now a matrix with columns
of P € R"™*?indicating the perturbed edges.

Two special types of graphs are considered next: the
DAG, having exactly one globally reachable node, and a
directed cycle graph where every node is globally reachable.
A graph theoretic interpretation of (25) is provided for these
two special graphs.

4.1.1  Consensus over Uncertain Directed
Acyclic Graphs

For directed acyclic graphs with a rooted in-branching, (25)
has a significant graph theoretic interpretation. The factori-
zations of F and A, and the subsequent interpretations
of the columns of R and R (r; and 7 respectively, for
1 =1,...,m), presented in Section 2.2, along with the fol-
lowing results, aid in establishing this connection between
the robust stability result and its implications in graph theo-
retic terms. The edges and nodes are labeled as described in
Section 2.2.

Lemma 3. For a DAG, G, if 7 =7 =q;, 1 < j<n—1, then
7:(4) = +1, where q; is the jth standard basis for R" 1.

Proof. Now, 7; =g¢;, for 1 <j<n—1 follows from the
labeling. Now, 7; = 7; implies that i > n and ¢; € €. is a
sibling of e; € £;. Since there are no directed cycles in G,
so any edge ¢; emerging from a node, say node p, cannot
terminate at a node ¢ such that there is a directed path
from node t to p. Hence, the equivalent signed path, in G,
corresponding to the edge e;, must traverse its sibling
edge e; in the positive sense. Thus, 7;(j) = +1. m]

Lemma 4. Consider the DAG, G, having two edges es and e; in
E. that are siblings to edges e, and e, in &, respectively. If the
signed path of e, in G, involves traversal of e,, then the signed
path of e, in G, cannot include the edge e,,.

Proof. It suffices to prove that r,(q) = £1 implies r,(p) = 0.
From Lemma 3, r,(p) = +1. Suppose rs(q) = +1. Then
there is a directed path through e, to the globally reach-
able node with e, appearing after edge e, in the sequence.
Hence, any edge that is a sibling of e, (such as ¢;) in G can-
not be represented by a signed path that contains edge ¢,
as this will imply the existence of a directed cycle.
So r(p) = 0. Next, consider r4(¢) = —1. This means that
a sibling edge of ¢, is encoded by a path that involves
traversing e, in the opposite sense. Clearly, the directed
path through e, to the globally reachable node does not
include the edge e, and vice versa. Thus, any sibling edge
of e, cannot be represented by a signed path that involves
traversing e, in the positive sense either. So, r;(p) cannot
equal +1. Suppose r(p) = —1. But this means that there is
a directed path through e, and e;, back to the parent node
of e, and e, thereby completing a directed cycle. Thus,
r(p) = 0 is the only possibility. O

From (25), it is clear that an interpretation of the pertur-
bation bound involves an investigation of the structure
of [RWR™]™". Consider the matrix RWR" = W, + T,W,T"
(using (1) and (3)) where W, € R"Dx("=1 and W, €
R(m=ntD)x(m=n+1) " are diagonal matrices containing the
weights of the edges in £; and &, respectively. From (1), (2),
(3), (4), the columns of T; and TT are the columns n through
m of R and R, respectively. Thus, RWR! = W, + S
w,;f,;riT. Now, using the Sherman Morrison formula for
inverse of rank one updates [32] iteratively, D, 2 =
(RWRT)™" can be obtained as edges in &, are added one by
one to the rooted in-branching, G, with the initial value
D; = W, ! and the update rule given by

ST
W1 DiTpyimy i D;

Dy = D; (26)

_ = =
1+ Wnti—1T 41 Dityiit

It follows from (26) that for each additional edge e € &,
incorporated, the jth row, corresponding to its sibling edge
e;j € &, is updated. Moreover, only those entries of the jth
row which correspond to edges in G, that comprise the
equivalent signed path of e, are updated. For instance, in
Fig. 1, when eg is added, only [D;]y, [Dilys, [Dils; and [Dileg
in the second row will be updated. Besides, only rows that
have already been updated at earlier iterations can be
affected. This is a consequence of Lemma 4.

Further, due to Lemma 4, for a DAG the diagonal entry
[D;];; is only updated if a sibling edge corresponding to e; is
added to the graph at the i+ 1th step. The following
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theorem provides the graph theoretic interpretation of (25)
for a DAG.

Theorem 3. The consensus protocol over a DAG, G, with positive
weights and containing a rooted in-branching, is robustly stable
to all perturbations, §;, on an edge weight, w;, if the sum of the
out-degree weights of the parent node of edge e; is positive.

Proof. Consider a rooted in-branching, G., for the DAG, G.
Such a rooted in-branching will contain several branches,
b,, each terminating in a single globally reachable node,
labeled n. Suppose the labeling of the nodes on the
branches follow two rules. First, any two nodes i and j
along a branch b, are labeled so that in G, if [path length
from ¢ to n| > |path length from j to n|, then i < j.
Second, if an edge, e, € G, starts from a node ¢ in branch b,,
and terminates in a node j of branch b,, then i < j. These
two rules do not contradict each other unless there is a
directed cycle involving segments of branches b, and b,,,.

Further, consider a labeling such that the first n —1
edges in £ consist of the rooted in-branching such that
the parent node of edge ¢; is node ¢, for 1 <i <n—1.
It follows that with this labeling, any edge ¢; € £; termi-
nates at node j, where j > i. Let the edges in &, be
labeled so that for any two edges ey, e, € £, that are sib-
lings of e;,e; € &, respectively with ¢ < j, one has
f < g. This implies that the k& —n 4+ 1th column of T,
that is t_p1, corresponding to edge e, € &, will have
only one non-zero entry equal to 1 at the pth position
if e, € &; is a sibling of e;. Column t;_,41 of T3, corre-
sponding to signed path of edge e, € £, will be such that
ti—nt+1(p) = +1 (by Lemma 3) and ¢_,,+1(u) =0 foru < p
(by choice of labeling).

Now, T,W,TT = S " v, i1 uitit! is a weighted
sum of outer products and due to the structures of t; and
t; discussed above, is upper triangular. Consequently,
RWRT is also upper triangular with the ith diagonal
entry containing the sum of the out degrees of the parent
node of edge e¢; € &. Next, consider M(s) given by
M(s) = —PTRTK(s) ' E(G.)" A(G.)RP, where K(s)=
(sI + E(G.)" A(G:)RWRT). The matrix E(G,)" € R(*-1)xn
is such that [E(QT)T]Z.J- =0 for i > j, [E(Q,)T]ii =1, and
A(G,) = I, On,l]T. Hence, L, = E(G.)" A(G,), and con-
sequently K (s) are upper triangular. Moreover, [K (s)];

(s + 3 d(our;) and hence, [K(s)™"],, = m, where,

> doutyi = Wi + Zejis a sibling of ¢; Wi- Without loss of gener-

ality, suppose ¢y, the perturbed edge, is a sibling to e,, € &
(v may or may not be equal to k). Post-multiplication of
K(s)~' by RP picks out the uth column of the triangular
matrix K (s)”" whose entries below the uth component are
zero (due to triangularity of the matrix). Next, PT R” picks
out one row of R which corresponds to the perturbed
edge e;. Thus, PTRT =] and 7,(u) = +1 (Lemma 3).
Also, r(s) = 0if s < u.So, M(s) picks out its uth diagonal
entry due to triangularity and thus M(s) = - ——-——,
(54~ d(ouryi)

where ¢; € &, is a sibling of e;, (k may or may not be equal
to 7). Thisis a first order plant and the Nyquist plot of M (s)
has a phase crossover at @ = 0. The gain margin is thus
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| > diou)i|- Hence, a negative perturbation 8, = — > d(ou);
on edge e;, precludes consensus. O

Corollary 1. From Theorem 2, for a DAG the relations (3), (4)
hold, and the perturbation bound, 8;, on an edge weight, w;, is:

18| < ’(PTRT(RWRT)’IRP)_II. @7

Corollary 1 holds since using w,,. = 0 in (25), one has

(E(G:)"A(G.)RWR")™" = (RWR")""(E(G.)" A(G:)) "

Remark 3. The result of Theorem 3 may also be obtained by
observing that for a DAG there exists a labeling of nodes
such that L, is upper triangular with out-degree sums on
its diagonals.

4.1.2 Consensus over Uncertain Cycle Digraph

Theorem 3 deals with a graph having exactly one globally
reachable node. The cycle digraph, having exactly the same
number of edges as nodes (m = n), on the other has n glob-
ally reachable nodes. Removing any one of the edges from a
cycle digraph results in a rooted in-branching. Since the
cycle graph has multiple globally reachable nodes, (3), (4)
do not hold. However, the condition in (25) holds for the
consensus of a cycle digraph. Also, for the cycle digraph
A = I,,. The cycle digraph is also especially important as it
lies at the heart of the well known cyclic pursuit algorithm
[71, [25], [33], [34], [35], [36]. Some relevant results follow.

Lemma 5. The graph Laplacian for weighted cycle digraph,

_ Ty pT
Ly = AWE(G)" is similar to {E(g’)o Wk 8}

T
Proof. Choosing matrices S;! = [fT(g;)—l ] and

5 = le(Qz)(E(Qr)TWE(gz))l 1, (Zwi) ]

a

. TwRT
it follows that S7'L,S) = [E(gf) Wh O}

0 0]
Lemma 6. The edge Laplacian for weighted cycle digraph,

_ T T
L. = E(G)" AW is similar to {E(gf)o WR 8}

Proof. Consider the matrices S, =[RT W~!1,] and

R(GOWR(G) ) ' R(G)W
Syl = ((G:) (1/(;)1))1T (G) } It follows that S;!
-« _ [EG)"WRT 0
LCSQ = |: 0 0 . O

Lemma 7. For the weighted cycle digraph, the edge Laplacian is
similar to the graph Laplacian.

Proof. Using the transformation S~'L.S, with S =SS!
and S, S, defined as above, the result follows. O

Similar to (11), (12), the reduced edge version of cycle
digraph, in view of the Lemmas 5-7, can be written as

iy = —F(G.)"WR" z.. (28)
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Fig. 3. Four cases such that (a) A(jo) and (jo + w;)A(jw) are both in first and/or second quadrants (b) A(jw) and (jo + w;)A(jw) are both in third
and/or fourth quadrants (c) A(jw) is on second quadrant while (jw + w;)A(jw) is on third quadrant (d) A(jw) is in fourth quadrant while

(jo + w1)A(jo) is in first quadrant.

As in (12), considering a perturbation in edge weight w;,
the system may be described as

—E(G)" (W + PAP")R" ,, (29)

with the uncertainties belonging to the set given by (10)
and P e€R" is a {0,1} vector with O-entries everywhere
except at [P],. This is so chosen because in the cycle graph
every edge is equivalent and without loss of generality, the
perturbation may be considered in w;.

The following result aids in computing the perturbation
bound of an edge weight for a cycle digraph.

Lemma 8. The only finite phase crossover frequency for the
transfer function given by (15), for a cycle digraph with pertur-
bation on one edge weight, is wy. = 0.

Proof. After some algebraic manipulations, it transpires
that —M(s), as defined in (15) can be obtained as the
(1,1) entry of the matrix D, ', where, D,,_; is given by:

(s +wr) —wo 0 ... 0

0 (S + UJQ) —Wws oo 0

D, | = 0 0 (s +ws) ... 0
Wnp, Wp, W cee (5 + Wp—1 + wn)

(30)
for the cycle digraph. Now, det D,,_; is given by:
det D1 = (s +wy)det D,,_qq 1) +wapdet D,y _y39y.  (31)

Consider for the cyclic pursuit system,

det anl(l,l)
(54 wp)det Dy,_yq1) +wydet Dyy_y(19)

—M(s) =

Let A(s) = L1 (s + w;), and B = I, w;. Without loss
of generality assume that w; = 1, while all other gains w;,
i # 1 are scaled by a factor w;. This assumption does not
affect the stability analysis of consensus, since scaling
each edge weight by a constant factor only affects the rate
of consensus. Next, using (30), (31), —M(s) is given by:

N(s) A(s) — B

M) = 5 T G r e Al —mB

(32)

At phase crossover frequencies the phase functions of
N(jow) and D(jw) must differ by integral multiples of 27x.
Clearly, A(jw) and (jw+ w;)A(jo) differ by an angle
¢ = arctan (w/wy) < /2 while the argument of A(jw) is
0= L arctan (£). Since w; > 0, V%, 0 is a monotonically

increasing function of w for 0 < @ < oco. Further B > 0.
Define the angle between N (jw) and A(jw) as «. Based on
the different possibilities, four distinct cases are consid-
ered, as in Figs. 3a, 3b, 3¢, 3d. The numerator of —M (s) is
the sum of A(jw) and —B while the denominator is
the sum of (jo+ w;)A(jw) and —w;B. Furthermore,
|A(jw)| < |(jo + w1)A(jw)| since wy = 1.

Case 1: (Both A(jw) and (jo + wi)A(jw) are in the first
andfor second quadrants), The condition for phase crossover
in Fig. 3a may be given by ¢ 4+ 8 — a = 0. In other words, a
necessary condition would be tan (¢ + 8) = tana. Using
the following expressions:

tan g = (33)

w1y

|wy B sin (6 + ¢)

tan 8 = , (34)
P V? + wA(jw)| — |wy B| cos (0 + ¢)
it readily follows that
Al
tan (¢ + B) — tana = wlA(jo)l/w: (35)

|A(jw)| — |B| cos@”

Since |A(jw)| > |B] > 0, V0 < o < o0, and |A(jw)| —
00 as w — oo, it follows from (35) that tan (¢ + B) = tana
is only satisfied if @ = 0 or w — oo for this case.

Case 2: (Both A(jw) and (jo + wy)A(jw) are in the third
andfor fourth quadrants). Since w; = 1, —w; B = —B. Using
the fact that |A| < |A|\/®? +w? and the geometry of
Fig. 3b, it is obvious that N(jw) and D(jw) cannot
coincide. Hence, phase crossover is ruled out.

Case 3: (A(jw) is in second quadrant and (jo + wy)A(jo)
is in the third quadrant). Again, from the geometry in
Fig. 3¢, N(jw) and D(jw) lie in different quadrants and so
no phase crossover is possible.

Case 4: (A(jw) is in the fourth quadrant and (jo + wy)
A(jw) is in the first quadrant). As in Case 3, from Fig. 3d
N(jw) and D(jo) lie in different quadrants, hence no phase
crossover.

Thus, the necessary condition for a non-zero finite
phase crossover frequency of —M(s) is not satisfied
under any circumstances. Hence, the only finite phase
crossover frequency for —M (s) is w,e = 0. O

M(0) is explicitly computed to be

Xiou;

MO0) = ———=1—.
O 1"’“’12?:2%%
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Applying Nyquist criteria, the following expression results:

1 - -
T <d=w +8> —

1
Do > 12_,

Thus, the robust stability of cyclic pursuit may be ensured
by the following theorem and it agrees with [25].

(36)

—wy —

Theorem 4. Given a perturbation on a single edge, say edge e;
(nominal weight w;), the heterogeneous cyclic pursuit system
([25]) is stable for all perturbations greater than § given by:

_ 1

5 > —wj; — T (37)

>
=1 w;

Corollary 2. In any weighted digraph, G, having a rooted in-
branching, if there exists a directed cycle, C, C G, comprising
all r globally reachable nodes, then the bound on the perturba-
tion on any edge of this cycle, C,, can be computed by applying
Theorem 4 on the directed cycle, C,.

Proof. It is clear that the Laplacian, L(G), for the digraph,
G, containing a directed cycle, C,, comprising all the r
globally reachable nodes can be written as

F G
L =
(g) |:0’I‘><(7L—’l‘) H:| ’

where H € R™" completely captures the dynamics of

the nodes in C,, for a suitable permutation of the nodes in

G. Thus, Theorem 4 can be applied to C,. ]

Remark 4. The reciprocal of the edge weight is the resis-
tance corresponding to an edge. For a cycle digraph,
the bound on ﬁ is the equivalent resistance between
the nodes j and j + 1 with the edge e; removed. Now, for
consensus over an undirected graph, a perturbed edge
weight can have negative values so long as this negative
value is greater than a lower bound [9] that is equal to the
negative of the equivalent resistance (with the correspond-
ing edge removed) between the nodes that the perturbed
edge joins. The same interpretation is also valid for the
cycle digraph.

Remark 5. So far, single edge perturbations are considered.
However, graph theoretic interpretations, for a cycle
digraph and a DAG, provide a broader perspective on
the robustness bounds. For the DAG, if the sum of the out-
degrees of each node is positive, multiple negative edge
weights do not disrupt consensus. Similarly, a graph resis-
tance based interpretation holds for the cycle digraph.

4.1.3 Multiple Edge Weight Perturbations:
A Perspective

This work mostly uses Nyquist criterion which deals
with single input-single output (SISO) systems. Thus, exact
bounds on perturbations are obtained for a single edge
weight perturbation, resulting in a SISO system in Fig. 2.
But for multiple negative valued edge weight perturbations,
owing to ‘attacks’ or disruptive elements, the method
outlined here is still useful. These attacks are broadly of two
types: attacks of known magnitudes, and those of unknown
magnitudes. If it is required to determine whether attacks
of known magnitudes on a set of g out of m edge weights

will disrupt consensus or not, it suffices to employ the
Nyquist criterion based results on perturbation bound ¢
times. Assume a labeling of the edges such that edges labeled
1 through ¢ are perturbed, with negative edge weight pertur-
bations, §; < 0,i=1,...,q, stacked as §=[8;...5,] € RY,
and P, is the ith standard basis in R™. The Algorithm 1
answers whether consensus is disrupted or not for any per-
turbation § > §, where > denotes element-wise comparison
between two vectors.

Algorithm 1. Negative Perturbations on ¢ Edges
i=1,j=0.

: begin loop

: Evaluate M, (s) with P = P;, using (15).

: Obtain GM[M;(s)].

CIE 18] < GMIM;(s)], j=j+ 1.

W =W +§PP.

t=1+ 1

1 Ifi < ¢+ 1goto3.

: end loop

: If 7 = g, “Consensus’; else ‘No consensus’

—_

The following example illustrates the algorithm. Consider
5 agents connected by a cycle digraph. The nominal edge
weights are [1 2 3 4 5] and suppose perturbations of magni-
tudes —0.5 and —5.4 occur on edges 1 and 5, respectively.
The sequence in which these perturbations are considered
for analysis purpose does not affect the overall qualitative
conclusion about whether consensus occurs or not. First
consider the perturbation on edge 1. A perturbation of
—0.5 does not disrupt consensus and the modified edge
weights are now [0.52 3 4 5]. Now, upon calculation the
tolerable perturbation on edge 5 is —5.324 which is
exceeded by the given perturbation. Thus, consensus
fails. Alternately, now consider first the perturbation on
edge 5. The bound on the perturbation is —5.48 and so
this perturbation passes the test. Next, the perturbation
on edge 1 with modified edge weights [1234 —0.4] is
bounded by —0.294, which is exceeded by the given per-
turbation. It may thus be concluded again that consensus
fails. In the two analyses, the overall conclusion about
whether or not consensus occurs is invariant. However,
the perturbation bounds computed during the two pro-
cesses are different.

On the other hand, if the perturbations on the edge
weights are unknown and it is required to determine how
much perturbation a set of ¢ edge weights can tolerate, one
needs to apply a small gain theorem based approach, as
indicated in Remark 2. But the conservatism of small gain
theorem will only lead to sufficiency conditions.

4.2 Double Integrators: Robust Stability Analysis
4.2.1 General Protocol for Double Integrators

Assume that the consensus protocol (7) has suitably chosen
positive edge weights so that consensus results. As with
single integrators, here too the existence of a rooted in-
branching, and all edges positive weights are assumed.
Similar reasoning as in Theorem 2 leads to the following.

Theorem 5. If the consensus protocol (7) achieves consensus over
a weighted digraph, G, (with different positive weights for

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:54:19 UTC from IEEE Xplore. Restrictions apply.



666 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL.6, NO.4, OCTOBER-DECEMBER 2019

position and velocity) having a rooted in-branching, then it is
robustly stable to all perturbations §; on a single edge weight
w; or w; corresponding to position or velocity, satisfying

18i] < GM[=PTRT[$*T + $Lessy + Lese] " E(Gr) AP,
or
‘51| < GM[—SPTRT[SQI+ 8Lessy + Lessx]ilE(gr)T-APL
(38)

where P is the ith standard basis in R™ and G M denotes the
gain margin for a transfer function.

Remark 6. Though the nominal graph is assumed to have
all weights positive throughout this work, it is not strictly
necessary. If all the non-zero eigenvalues of the nominal
graph Laplacian have positive real parts, the results in
this paper hold even if some of the edge weights are nega-
tive. The positive nominal weights are sufficient (due to
Gershgorin’s theorem) for the nominal L, to have all its
non-zero eigenvalues in the open rhp.

4.2.2 Special Case: W, = yW,

In this case, L, has one eigenvalue at the origin and the
remaining eigenvalues are in the open lhp due to the exis-
tence of a rooted in branching. Additionally, it will be
assumed y satisfies the constraint (9). Thus, the nominal sys-
tem (8) will achieve consensus if the underlying graph has a
rooted in-branching and all the edge weights are positive.

Using block matrix inversion, it follows that for (23),

sI— W, )l = Y 1/f12]
(s <) [%1 Voo |’

where ¥y =11 —1(82] + ysLegs + Less) ' Less, Y1y = (s21 +
VSLQSS + Less)71/ 1/,21 = 7(32] + )/SLP,SS + Less)ilLess and
Yoo = 5(521 + y8Less + Lm)fl. Now, using the above rela-
tions in (24), it immediately follows that

(39)

(40)
-5 —sy

M) = 9| T 7
where H(s) = PTRY($*I 4 ysLess + Less) " E(G.)" AP. The
robust stability result may now be stated.

Theorem 6. The consensus protocol over a weighted digraph
having positive weights and a rooted in-branching, for double
integrator agents, given by (8) is robustly stable to all perturba-
tions 8; on a single edge weight w; satisfying

1
< )
max,[\/1 4 y*V1+ | H(jo)|]

where P is the ith standard basis in R™.

| (41)

Proof. Using the relations (10) and (40) in conjunction with
the small gain theorem, it follows that the system in Fig. 2
is robustly stable if it satisfies ||M(jw)|||8;] < 1. Further,
using some algebraic manipulations, it is at once apparent
that the maximum singular value of M(jw) for a given @

is /1 + y?V1 + w?|H(jw)|. Hence the proof. 0
Note that H(s) = fJW(y::Z 7)/(vs 4 1), where M(s) is given

by (15). In other words, H(s) is obtained by replacing s with

§2

= in the expression for M(s) given by (15) and dividing the
resultant by (ys + 1). This also shows that M(s) in (15), being
strictly proper (since it is the transfer function corresponding
to a state space representation that has no feedforward),
implies H(s) has a relative degree of at least 2 in s. Hence,
V1+ o?|H(jw)| is at least of relative degree 1 in w and is low
pass. Therefore, the maxima in (41) exists.

Remark 7. The robust stability condition in Theorem 6 is a
sufficient one because of the application of the small gain
theorem to arrive at (41).

Corollary 3. For a DAG, if W,, = W, the consensus protocol (7)
is robustly stable to any perturbation, 8;, on an edge e; of either
the wvelocity or position graph, so long as the sum of the
out-degree weights of the parent node of e; is positive.

Proof. The relevant transfer functions for double integra-
tors, —M(5%7)/(s+1) and —sM(z:7)/(s+ 1), obtained
from M(s) as in (15), over a DAG (see proof of Theorem 3
for an expression of M(s) corresponding to a DAG), are

DY d(uuziﬁz (out)i and - P4y d(oul)’:s+2 dout)i’ respec
tively for perturbed position and velocity graphs. Now,
the gain margins for both these transfer functions are
>~ d(ou)i and hence any negative perturbation whose mag-
nitude is smaller than  _ d(,,); will not disrupt consensus. 0

5 DESIGNING GAINS FOR DOUBLE
INTEGRATOR CONSENSUS

So far, the robustness study is presented as an analysis of
the stability margin in terms of a single edge weight pertur-
bation. However, the present framework may serve as a
design tool for the consensus protocol given by (7), in case
the nominal edge weights do not result in consensus.

Problem 1. For the consensus protocol (7), given a nominal set
of positive edge weights which does not lead to consensus, find
a perturbation on any edge weight so as to guarantee consensus.

Remark 8. The above problem is to be solved without
explicit knowledge about the spectrum of the Laplacian.

There are 2m edge weights to choose, in this problem. If
these 2m decision variables are assigned arbitrary positive
values, it may result in instability of the system matrix in
(7), implying no consensus. Moreover, arbitrarily choosing
an edge weight for an arbitrary amount of perturbation will
not ensure consensus. Therefore, a design procedure is
needed to decide which edge weight to perturb and by how
much, without explicit eigenvalue computations.

Remark 9. The number of zeros, z,, and the number of
poles, py, of M(s), as in (19), (20), in the rhp can be
checked by using Routh array for the numerator polyno-
mial and the denominator polynomial of M(s), respec-
tively, without any pole zero cancellation. The number of
zeros of det[s’] + sLessy + Lessx] in thp is also p,. Thus,
evaluating p,; and z, does not involve explicit knowledge
of the Laplacian spectrum.

Define the discrete set ), for an edge ¢, as Q, =

{w: Im[M(jw)] = 0 and Re[M (jw)] > 0}, where M(s) is as
defined in (19), (20) for edge e,. Suppose |€),| = T. The set
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Fig. 4. Intervals where each point is encircled p,; times counterclockwise
for a typical M (s).

), contains frequencies at which the Nyquist plot of M(s)
crosses the positive real axis of the M (jw) plane either encir-
cling the origin in a clockwise or in a counterclockwise
direction. Sort the frequencies w; € (), such that i > k
implies Re[M (jw;)] > Re[M (jwy)]. Clearly, there are non
intersecting intervals of the form Z, = (M (jw;), M (jwit1)),
i=1,....,T—1 and Z, = (0, M(jw,)) on the positive real
axis of the M(jw)-plane. For any point on interval Z;, the
number of net counterclockwise encirclements can be
counted by checking the direction of encirclements corre-
sponding to frequencies w;; through wr.

Definition 1. For a Nyquist plot of M(s), as defined in (19),
(20), if an interval Z;, 1 = 0, ..., T — 1 is such that the number
of net counterclockwise encirclements about any point in Z; is
Do, then the interval Z; is said to be a safe interval.

Assumption 1. The weighted digraph G over which the consen-
sus protocol (7) runs has at least one edge for which the Nyquist
plot of the transfer function M(s) in (19), (20) has at least one
non-empty safe interval.

Assumption 1 would ensure that the Nyquist plot of the
transfer function M(s) in (19) or (20) for some edge encircles
a set of points in an interval on the positive real axis of the
M (jw) plane p, times in the counterclockwise direction.

Theorem 7. The consensus protocol (7) over a weighted digraph
G having a rooted in branching, positive edge weights on all
edges, and satisfying the Assumption 1 can be stabilized by per-
turbing a single edge weight.

Proof. The polynomial det[s?] + $Lessy + Lessx] has po; zeros
in the rhp and is the denominator of both M(s) and
1 — AM(s). Hence, if the Nyquist plot of M (s)A encircles
the point (1, 0) py times in the counterclockwise direction,
the M-A structure is stable. Since Assumption 1 holds for
an edge, ¢,, the Nyquist plot for M(s) in (19) or (20), cor-
responding to the edge ¢, will encircle all points in some
safe interval p, times in the counterclockwise direction.
This is illustrated in Fig. 4, where any point in the two
safe intervals is encircled p, = 1 times. There may be mul-
tiple such safe intervals, Z;, ¢ =0,...,7 — 1. This implies
that there are ranges of positive gains (perturbations to
edge weights are the feedback gain in the closed loop)
which will stabilize the M-A structure. So, by perturbing
one edge weight suitably within these ranges, consensus
can be achieved in (7). o

Remark 10. The existence of an edge which satisfies
Assumption 1 implies that the edge state corresponding to
this particular edge, when chosen as an output variable,

w5 = 0.5 7

Fig. 5. Chosen weights on position digraph.

ensures that the consensus system is stabilizable and
detectable. This means that all the unstable modes of the
consensus system are reflected in this edge state. This may
serve as further motivation for a study of observability
and controllability of consensus systems in particular, and
networked systems modeled by weighted directed graphs
in general, in future.

Example 1. Consider the digraph in Fig. 5 with only the
bold edges, and vertices 1 through 9. The weights corre-
spond to the position digraph. Each nominal weight is
positive and there is a rooted in-branching. Hence, L, has
one zero eigenvalue while the rest are in the open rhp.
Suppose each weight on the velocity graph is y times
the corresponding edge weight on the position graph.
Now, the lower bound on y can be computed from (9)
using explicit knowledge about the spectrum of L,. Here
y = 0.1 is chosen arbitrarily and explicit computations,
using (9), reveal that no consensus results from this choice.
Suppose it is required to perturb the edge weights on the
velocity graph independently, that is, instead of altering y,
which would alter all the weights on the velocity graph by
the same factor, only one of the edge weights is perturbed.
It may be verified, by Routh array, that for M(s) corre-
sponding to edge e3 of the velocity graph (nominal weight
wy3 = 0.03), 2,y =0, and py,; = 2. The Nyquist plot of this
M(s) is shown in Fig. 6a, from which it is clear that a non-
empty safe interval, T, exists. Hence, about any point in 7
there are 2 net counterclockwise encirclements. So
Assumption 1 holds. A positive perturbation on the edge
may be applied, akin to a positive feedback, so that the
point (1, 0) is encircled twice, and the closed loop system
is stable. This is because both M(s) and 1 — AM(s) then
have two poles and no zeros in the rhp. In this example, a
minimum perturbation of 1.9531 on w3 ensures this.

Remark 11. In Example 1, a perturbation on ws ensures
consensus. However, this is not be true in general. Several
situations may arise, mainly from rhp pole-zero cancella-
tions of M(s) leading to loss of stabilizability and/or
detectability. Here, for instance, no positive perturbation
on ws will ensure consensus, as is apparent from Fig. 6b
(no safe interval). Same holds for ws and ws.

6 SIMULATION RESULTS

Consider the weighted directed graph, g, in Fig. 5 (bold and
dashed portions together), with 10 nodes and 13 edges. The
nodes 7, 8, 9, and 10 are globally reachable and are part of a
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directed cycle within the network. The nominal positive
edge weights are marked on the corresponding edges. Sup-
pose edge e, 5 is perturbed from its nominal value. The ini-
tial node states are [123456 —4 —5 —2 — 3]. In Fig. 7a,
the perturbation on the edge weight is —.50 so the perturbed
weight is 0.50, while the tolerable bound on perturbation is
—2.4995. It may be seen that consensus is achieved. In Fig. 7b,
the perturbation on edge e; 5 is exactly equal to the bound, that
is —1.2667 (computed from (25)), so that the perturbed weight
is —0.5667 and the nodes form clusters. Typical Nyquist plots
of M(s)A for convergent, clustering, and divergent behaviors
are shown in Fig. 8 with perturbation on edge e 5.

For a perturbation of —1 on the edge eg 19 (the bound is
—1.4614) Fig. 7c shows that consensus is achieved. Although
the graph in Fig. 5 is not a directed cycle, yet the bound on
the perturbation on edge ey can be calculated by simply
considering the nominal weights on edges ers, es9, €910,
and ejp7 and applying Theorem 4. This is not true of any
arbitrary cycle in a digraph having a rooted in-branching,
but holds in case the cycle comprises all globally reachable
nodes as stated in Corollary 2.

Next, consider the graph in Fig. 5 with only the 10 bold
edges, and nodes 1 through 9. Agents with double integra-
tor dynamics are considered with control law (7), as in
Example 1. The two simulations in Figs. 9a and 9b show
the agent states without and with a positive perturbation
of magnitude 2.50 on edge e5; of the velocity graph (with
nominal weight w,, = 0.03), respectively. The perturbation
results in consensus, which is consistent with the results in
Example 1, based on the Nyquist plot in Fig. 6a.

7 CONCLUSIONS

This paper considered consensus-seeking systems compris-
ing single or double integrators and presented an analysis
of the robustness margins for edge weights of a weighted
directed graph having a rooted in-branching. Although
only one weight is perturbed at a time, the framework is
also suitable for analysis of multiple uncertain edge weights
by employing small gain theorem, even for single integra-
tors. Further, the proposed Nyquist based method is capa-
ble of answering whether consensus is disrupted when

Nyquist Diagram
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Fig. 8. Nyquist plots of M(s)A for the perturbed edge weight on e, 5
exhibiting three types of behavior.
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multiple edge weights are perturbed by known amounts of
perturbations. For double integrators, the results obtained
for an existing protocol, though conservative, are the best
robustness margins that can be analytically obtained. More-
over, based on the results, for any directed graph, the most
vulnerable may be determined. That is, if an ‘external party’
wants to interrupt the consensus protocol by manipulating
edge weights, the results here can help in choosing the edge
weight that needs to be perturbed by the least amount.
Also, the present set-up enables the graphical computation
of the stability margin of the consensus protocol without
explicit knowledge of the Laplacian spectrum.

For single integrators, graph theoretic interpretations of
the robustness margins for a DAG and a directed cycle
graph provide further insights and serve as an encourage-
ment to interpret the result for more general graphs.
A newly proposed consensus protocol for double integra-
tors has been presented and a method for deciding the
edge weights, from a designer’s perspective, based on the
Nyquist criterion, is outlined. It is shown that, subject to
certain conditions, perturbing a single edge weight suitably
can lead to consensus in a nominally unstable system.
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