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Abstract: This paper proposes an improved method for distributed consensus Kalman filtering (DCKF).
We introduce a minor modification to the consensus kalman filter proposed in (Olfati-Saber (2009)).
Namely an extra averaging term is introduced into the filter update equations. In this direction, we
propose a decentralized consensus gain that can be computed by each agent in the sensor network, and
depends only on local properties of the network, i.e., the number of neighbors of each sensor. Moreover
we prove that this scheme is stable for networks with time varying communication regime. Our results
are compared to other existing solutions in the literature with a numerical example.
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1. INTRODUCTION

Sensor networks comprise a group of agents equipped with
communicating and sensing capabilities, which enable them
to solve the problem of detecting a physical process utilizing
cooperative sensing and estimation. This complex problem has
been a major subject of interest in various research communities
due to its wide range of applications including agriculture
(Ojha et al. (2015)), security and surveillance (Wood et al.
(2006); Onur et al. (2007)), health monitoring (Milenković et al.
(2006)) and space research (Sun et al. (2005)).

Multi-agent cooperative estimation of some globally observ-
able process is one of the most fundamental challenges in sen-
sor networks (Bethke et al. (2007)). The networked system aims
to obtain an estimate that globally converges to the true process
state while considering constraints such as computational loads,
the amount of shared data, and the overall system performance.
A common solution for this challenge is that each agent in the
system activates, in a distributed manner, an estimator which
relies on local measurements of the process fused with the
estimates from other agents in the network.

The authors of (Garin and Schenato (2010)) developed a tool to
solve this problem by introducing a consensus-based term fused
with a classical state estimator structure. This simple yet effec-
tive mechanism allowed the consideration of neighboring in-
formation in the individual agent estimation process. For exam-
ple, the consensus H∞ estimator is discussed in (Ugrinovskii
(2011)), the consensus based distributed particle filtering as
presented in (Hlinka et al. (2014)), and a consensus Kalman
filter was formulated in (Olfati-Saber (2007); Alighanbari and
How (2008)).

Discussing the consensus Kalman filter, one can witness in-
creasing interest in recent years as new works are occupying
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different aspects of the filter. In (Deshmukh et al. (2017)),
the consensus Kalman estimator proposed in (Olfati-Saber
(2007)) was adapted, and they then derived the solution for
both Kalman and consensus gains that will minimize the lo-
cal mean squared error (MSE). Additionally, they compared
simulation results with the sub-optimal solution suggested in
(Olfati-Saber (2009)). The work (Wang et al. (2019)) utilized
the same sub-optimal solution to derive a consensus extended
Kalman filter in order to solve a spacecraft network relative
motion estimation problem. The authors in (Battilotti et al.
(2020)) made another variation on the sub-optimal consensus
Kalman filter discussed in (Olfati-Saber (2009)) to solve the
extended problem of networks with agents that have limited or
null measurement capabilities.

The building block for most of these recent papers are based
on the pioneering work conducted by Olfati-Saber in (Olfati-
Saber (2009)) where he suggested a Kalman-like estimator
with an additional consensus component. The consensus gain
proposed in (Olfati-Saber (2009)) has the property that it can
obtain very small values over time, rendering the consensus
term contribution (i.e., the cooperative component of the filter)
insignificant. In this case the estimator behaves more like a
non-cooperative local Kalman filter (NCLKF) (i.e., each agent
performs a Kalman filter with no additional information from
neighbors).

In this direction, we proposed in (Priel and Zelazo (2021))
an alternative method for determining the consensus gain for
the filter. With this method we derived for each time-step the
maximal value of the consensus gain factor for which stability
of the estimator is ensured. This guarantees that the consensus
term, encouraging the agreement of estimates between neigh-
boring agents, plays a nontrivial role in the estimator dynamics.
Additionally, we proposed a decentralized consensus gain filter
computation and proved stability for the homogeneous case
where all agents have the same measurement model and noise
characteristics.
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In this direction, we proposed in (Priel and Zelazo (2021))
an alternative method for determining the consensus gain for
the filter. With this method we derived for each time-step the
maximal value of the consensus gain factor for which stability
of the estimator is ensured. This guarantees that the consensus
term, encouraging the agreement of estimates between neigh-
boring agents, plays a nontrivial role in the estimator dynamics.
Additionally, we proposed a decentralized consensus gain filter
computation and proved stability for the homogeneous case
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The area of decentralized consensus Kalman filtering is rela-
tively new and has gained attention as there are few studies that
focus on this type of estimator. However, many of these studies,
such as (Kamal et al. (2013) and Battistelli et al. (2014)), have
imposed on the communication topology some strong restric-
tions such as time-invariant and connected data flow. These
restrictions are well described in Wang and Ren (2017).

Our contribution in this paper begins with proposing a decen-
tralized consensus Kalman filter scheme that provides an upper
bound on the error covariance estimation. In this architecture,
the consensus gain is based on local network properties and
thus can be implemented in systems with switching or time-
varying communication networks without requiring any manual
adaptation. Additionally, contrary to our earlier work (Priel
and Zelazo (2021)), we prove the stability of this filter for
the heterogeneous case where agents may not have the same
measurement model. Finally, we present, via numerical exam-
ple, superiority in performance of our proposed filter over the
NCLKF and other consensus Kalman estimators appearing in
the literature.

The paper is organized as follows. Section 2 provides an
overview of the consensus Kalman filter estimator. In Section
3, a decentralized consensus scheme is proposed along with its
stability analysis. In Section 4 simulation results are presented
and finally, concluding notes are made in Section 5.

Notations: Let R denote the set of real numbers, Rn the
n-dimensional Euclidean space and Rn×m the set of n ×
m real matrices. Let diag{mi}ni=1 denote the block diagonal
nd × nd matrix where the ith block is equal to mi ∈ Rd×d,
and col{mi}ni=1 denote the column stack of the vectors or
matrices mi. Let [M ]ij denote the ij-entry of the matrix M .
The maximal and minimal singular value of the matrix M
are denoted by λmax(M) and λmin(M), respectively. The
Frobenius norm of the matrix M is denoted as |M |F .

2. THE CONSENSUS KALMAN ESTIMATOR

In this section we review the basic setup for constructing
a distributed consensus Kalman filter along with reviewing
existing sub-optimal solutions from the literature. Consider a
network comprising N interacting agents where the interaction
topology can be described by a directed graph G = (V, E).
Here, V = {1, 2, . . . , N} denotes the set of agents and E ⊆ V×
V denotes the edge set indicating which agents can exchange
information with each other. The neighborhood of a node
v ∈ V is the set of agents incident to it, i.e., Nv = {u ∈
V | (u, v) ∈ E}. The graph can also be represented using the
symmetric Laplacian matrix, L ∈ RN×N (Anderson Jr and
Morley (1985)).

Each agent observes a linear discrete-time stochastic process
described by the dynamics

P : xk+1 = Axk +Bwk, (1)
where xk ∈ Rn is the state vector and wk is an additive white
Gaussian noise such that E [wkwl] = Qδkl, where δkl is the
Dirac Delta function.

Each agent is capable of measuring the process state using the
observation model

zik = Hixk + vik, (2)
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where zik ∈ Rmi is the measurement obtained by agent i,
Hi ∈ Rmi×n is the observation matrix, and vik ∈ Rmi is a
measurement noise assumed to also be additive white Gaussian
noise with E


vikv

i
l


= Riδkl. Additionally we assume that A

and Ri ∈ Rmi×mi are invertible and that [A,Hi] make an
observable pair for every agent such that the noiseless NCLKF
is asymptotically stable.

Olfati-Saber in (Olfati-Saber et al. (2007)) was the first to
propose the distributed Consensus Kalman estimator (DCKE):
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where Ki and Ci are the Kalman and consensus gains of the
ith agent, respectively, and x̂i

k and x̄i
k are the posteriori and a

priori state estimate of the ith agent, respectively. The Kalman-
Consensus estimator (3) is composed of a classic Kalman esti-
mator term and a consensus term based on neighbors estimates,
as illustrated in Figure 1.

In (Olfati-Saber (2009)), a distributed sub-optimal Kalman
scheme was derived, which utilizes only (one hop) neighboring
state estimates and discards any cross correlation terms that
would have been incorporated in the optimal solution (Desh-
mukh et al. (2017)). The distributed sub-optimal Kalman is
constructed as such:


Estimation

Ki
k = P i

kH
iT


Ri +HiP̄ i

kH
iT
−1

P̂ i
k = F i

kP̄
i
kF

iT

k +Ki
kR

iKiT

k

x̂i
k = x̄i

k +Ki
k

�
zik −Hix̄i

k


+ Ci

k


j∈Ni


x̄j
k − x̄i

k



Prediction
x̄i
k+1 = Ax̂i

k

P̄ i
k+1 = AP̂ i

kA
T +BQBT ,

(4)

here P̄ i
k is the ith agent a priori error covariance and P̄ j,i

k is the
ith and jth agent’s a priori cross correlation term, and F i

k = I−
Ki

kH
i. The omission of the consensus terms from the Kalman

gain and error covariance update equation is justified with the
assumption that the consensus gain is relatively small. We have
showed in (Priel and Zelazo (2021)) that special attention is
required while selecting a small consensus gain since this might
lead the consensus component to be negligible. We now wish to
explore an alternate sub-optimal CKF along with a consensus
gain which is computed in a distributed fashion.

3. DECENTRALIZED CONSENSUS
FILTER AND GAIN DETERMINATION

In our previous work (Priel and Zelazo (2021)), we presented
an approach for finding a consensus gain for the DCKE based
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on semi-definite programming. This calculation, however, must
be done in a centralized manner, and the gain should be im-
plemented for each agent in the sensor network. Note that any
changes in the network structure, noise properties, or other,
would require solving an SDP again, making this approach
fragile in large-scale networks. These points motivate an al-
ternative method for finding a suitable consensus factor that
does not require any centralized computation. In this direction,
we proposed in ((Priel and Zelazo (2021))) a decentralized
approach for finding a suitable consensus gain which depends
only on the local properties of the network for each agent. In
this way, we can handle time-varying graphs as well. However,
the stability of this solution was proven only for the homo-
geneous case where each agent holds the same observation
model as its neighbors. We now extend these results to deal
with heterogeneous sensing models for each agent.

Our solution begins with proposing a minor modification to
the sub-optimal consensus Kalman filter structure (4). First,
we assume the graph may be time-varying. We require no
additional assumptions on the graph such as joint connectivity
on finite time-intervals. An additional local averaging term is
added to the predicted error covariance update equation as
described here:


Estimation

Ki
k = P̄ i

kH
iT


Ri +HiP̄ i

kH
iT
−1

P̂ i
k = F i

kP̄
i
kF

iT

k +Ki
kR

iKiT

k

x̂i
k = x̄i

k +Ki
k

�
zik −Hix̄i

k


+ Ci

k


j∈Ni


x̄j
k − x̄i

k



Prediction
x̄i
k+1 = Ax̂i

k

P̄ i
k+1 =

1

|Ni,k|+ 1
A


j∈Ni,k∪{i}

P̂ j
kA

T +BQBT ,

(5)

where Ni,k denotes the neighborhood of agent i at time step
k. We consider the following choice of decentralized consensus
gain,

Ci
k =





1

|Ni,k|+ 1
F i
k |Ni,k| > 0

0 |Ni,k| = 0

, (6)

Note that if the neighborhood set of an agent is empty (non-
cooperative case) then the local filter is degraded into the classic
Kalman filter for which the stability of the error dynamics is
ensured.

Before proceeding to the stability analysis of (5), first let
us establish some basic principles. We modify the original
definition of uniform detectability as constructed in (Anderson
and Moore (1981)) to handle a network of estimators:
Definition 1 (Absolute Uniform Detectability). System (1) is
said to be absolutely uniformly detectable by a sensor network
modeled by the graph G = (V, E), if ∀i ∈ V there exist integers
m, t ≥ 0, and constants d, γi with 0 ≤ d < 1, 0 ≤ γi < ∞
such that whenever

||ϕk+t,kζ|| ≥ d||ζ|| (7)

for some ζ and k, then

ζTGi
k−m,kζ ≥ γiζT ζ, (8)

where

Gi
k−m,k =

k
l=k−m

ϕT
l,kH

iT (Ri)−1Hiϕl,k, (9)

with ϕk,k = In , ϕl,k = ϕl,l+1ϕl+1,l+2...ϕk−1,k and ϕk−1,k =

A−1
k−1 = A−1.

Additionally, for future development, we lay out the following
assumption and lemmas.
Assumption 1. For every i ∈ V there exist real positive
constants ā , a, h̄i , hi , q̄ , q, r̄i , ri ,b̄i , bi such that the
following bounds are fulfilled:

a2In ≤ AAT ≤ ā2In (10)

HiHiT ≤ (h̄i)2Imi
(11)

qIf ≤ Q ≤ q̄If (12)

riImi
≤ Ri ≤ r̄iImi

(13)

b2In ≤ BBT ≤ b̄2In. (14)

Assumption 1 shall be used later on to prove that the inverse
error covariance is lower bounded. From an application point
of view these assumption are reasonable as most problems deal
with bounded dynamics and noise properties.
Lemma 1. If there exists two positive scalars pi and p̄i such
that piIn ≤ P̂ i

k ≤ p̄iIn and P̂ i
k > 0, ∀i ∈ V , then there always

exists a strictly positive real number

αi
k =

pi

supj∈Ni
p̄j

,

such that
1

|Ni,k|+ 1


j∈Ni∪{i}

P̂ j
k ≤ 1

αi
k

P̂ i
k.

Proof. Given that error covariance for each agent is positive

definite, we have that P̂ j
k ≤ p̄j

pi
P̂ i
k, therefore

1

|Ni,k|+ 1


j∈Ni,k∪{i}

P̂ j
k ≤ 1

|Ni,k|+ 1


j∈Ni,k∪{i}

p̄j

pi
P̂ i
k

≤ 1

|Ni,k|+ 1

supj∈Ni
p̄j

pi


j∈Ni,k∪{i}

P̂ i
k

≤ 1

αi
k

P̂ i
k.

(15)
Lemma 2. [(Li et al. (2016))] Consider (5) under Assumption
1, then for every k > 0, there always exists a strictly positive
real number

ξ =


1 + b̄2q̄


r + b2qh̄2

a2rqb2

−1

< 1,

such that

(P̄ i
k+1)

−1 ≥ ξA−T


 1

|Ni,k|+ 1


j∈Ni,k∪{i}

P̂ j
k




−1

A−1, ∀i ∈ V.

(16)

We are now ready to present our main result with the following
theorem.
Theorem 1 (Decentralized DCKE Stability). Consider a group
of N agents interacting over a directed time-varying graph Gk.
Each agent observes the process model (1), which is assumed
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on semi-definite programming. This calculation, however, must
be done in a centralized manner, and the gain should be im-
plemented for each agent in the sensor network. Note that any
changes in the network structure, noise properties, or other,
would require solving an SDP again, making this approach
fragile in large-scale networks. These points motivate an al-
ternative method for finding a suitable consensus factor that
does not require any centralized computation. In this direction,
we proposed in ((Priel and Zelazo (2021))) a decentralized
approach for finding a suitable consensus gain which depends
only on the local properties of the network for each agent. In
this way, we can handle time-varying graphs as well. However,
the stability of this solution was proven only for the homo-
geneous case where each agent holds the same observation
model as its neighbors. We now extend these results to deal
with heterogeneous sensing models for each agent.

Our solution begins with proposing a minor modification to
the sub-optimal consensus Kalman filter structure (4). First,
we assume the graph may be time-varying. We require no
additional assumptions on the graph such as joint connectivity
on finite time-intervals. An additional local averaging term is
added to the predicted error covariance update equation as
described here:


Estimation

Ki
k = P̄ i

kH
iT


Ri +HiP̄ i

kH
iT
−1

P̂ i
k = F i

kP̄
i
kF

iT

k +Ki
kR

iKiT

k

x̂i
k = x̄i

k +Ki
k

�
zik −Hix̄i

k


+ Ci

k


j∈Ni


x̄j
k − x̄i

k



Prediction
x̄i
k+1 = Ax̂i

k

P̄ i
k+1 =

1

|Ni,k|+ 1
A


j∈Ni,k∪{i}

P̂ j
kA

T +BQBT ,

(5)

where Ni,k denotes the neighborhood of agent i at time step
k. We consider the following choice of decentralized consensus
gain,

Ci
k =





1

|Ni,k|+ 1
F i
k |Ni,k| > 0

0 |Ni,k| = 0

, (6)

Note that if the neighborhood set of an agent is empty (non-
cooperative case) then the local filter is degraded into the classic
Kalman filter for which the stability of the error dynamics is
ensured.

Before proceeding to the stability analysis of (5), first let
us establish some basic principles. We modify the original
definition of uniform detectability as constructed in (Anderson
and Moore (1981)) to handle a network of estimators:
Definition 1 (Absolute Uniform Detectability). System (1) is
said to be absolutely uniformly detectable by a sensor network
modeled by the graph G = (V, E), if ∀i ∈ V there exist integers
m, t ≥ 0, and constants d, γi with 0 ≤ d < 1, 0 ≤ γi < ∞
such that whenever

||ϕk+t,kζ|| ≥ d||ζ|| (7)

for some ζ and k, then

ζTGi
k−m,kζ ≥ γiζT ζ, (8)

where

Gi
k−m,k =

k
l=k−m

ϕT
l,kH

iT (Ri)−1Hiϕl,k, (9)

with ϕk,k = In , ϕl,k = ϕl,l+1ϕl+1,l+2...ϕk−1,k and ϕk−1,k =

A−1
k−1 = A−1.

Additionally, for future development, we lay out the following
assumption and lemmas.
Assumption 1. For every i ∈ V there exist real positive
constants ā , a, h̄i , hi , q̄ , q, r̄i , ri ,b̄i , bi such that the
following bounds are fulfilled:

a2In ≤ AAT ≤ ā2In (10)

HiHiT ≤ (h̄i)2Imi
(11)

qIf ≤ Q ≤ q̄If (12)

riImi
≤ Ri ≤ r̄iImi

(13)

b2In ≤ BBT ≤ b̄2In. (14)

Assumption 1 shall be used later on to prove that the inverse
error covariance is lower bounded. From an application point
of view these assumption are reasonable as most problems deal
with bounded dynamics and noise properties.
Lemma 1. If there exists two positive scalars pi and p̄i such
that piIn ≤ P̂ i

k ≤ p̄iIn and P̂ i
k > 0, ∀i ∈ V , then there always

exists a strictly positive real number

αi
k =

pi

supj∈Ni
p̄j

,

such that
1

|Ni,k|+ 1


j∈Ni∪{i}

P̂ j
k ≤ 1

αi
k

P̂ i
k.

Proof. Given that error covariance for each agent is positive

definite, we have that P̂ j
k ≤ p̄j

pi
P̂ i
k, therefore

1

|Ni,k|+ 1


j∈Ni,k∪{i}

P̂ j
k ≤ 1

|Ni,k|+ 1


j∈Ni,k∪{i}

p̄j

pi
P̂ i
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supj∈Ni
p̄j
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≤ 1
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(15)
Lemma 2. [(Li et al. (2016))] Consider (5) under Assumption
1, then for every k > 0, there always exists a strictly positive
real number

ξ =


1 + b̄2q̄


r + b2qh̄2

a2rqb2

−1

< 1,

such that

(P̄ i
k+1)

−1 ≥ ξA−T


 1

|Ni,k|+ 1


j∈Ni,k∪{i}

P̂ j
k




−1

A−1, ∀i ∈ V.

(16)

We are now ready to present our main result with the following
theorem.
Theorem 1 (Decentralized DCKE Stability). Consider a group
of N agents interacting over a directed time-varying graph Gk.
Each agent observes the process model (1), which is assumed

to be absolutely uniformly detectable. Each agent employs the
observation model (2). Then the noiseless error dynamics with
the consensus Kalman filter (5) and the choice of consensus
gain (6) are asymptotically stable.

Proof. We divide our proof into 2 parts where in the first, we
show that the error covariance estimate P̂ i

k is upper bounded us-
ing the observability Gramian. In the second part we construct
a Lyapunov function that is monotonically decreasing along the
system trajectories, and show that it is radially unbounded using
the error covariance estimate P̂ i

k.

By Lemma 2 we know that

(P̄ i
k+1)

−1 =


 1

|Ni,k|+ 1
A


j∈Ni,k∪{i}

P̂ i
kA

T +BQBT




−1

≥ ξA−T


 1

|Ni,k|+ 1


j∈Ni,k∪{i}

P̂ j
k




−1

A−1.

(17)

Additionally, by Lemma 1 it holds that
1

|Ni,k|+ 1


j∈Ni∪{i}

P̂ j
k−1 ≤ 1

αi
k

P̂ i
k−1

such that inequality (17) can be further simplified:

(P̄ i
k)

−1 ≥ αi
kξA

−T (P̂ i
k−1)

−1A−1. (18)

Using the Woodbury inversion lemma we have that

(P̂ i
k)

−1 = (F i
kP̄

i
k)

−1

= (P̄ i
k − P̄ i

kH
iT (HiP̄ i

kH
iT +Ri)−1P̄ i

k)
−1

= (P̄ i
k)

−1 +HiTRi−1

Hi.

(19)

Plugging (18) into (19) yields:

(P̂ i
k)

−1 ≥ αi
k−1ξA

−T (P̂ i
k−1)

−1A−1 +HiTRi−1

Hi

≥ αi
k−2α

i
k−1ξ

2A−TA−T (P̂ i
k−2)

−1A−1A−1

+ αi
k−1ξA

−THiTRi−1

HiA−1 +HiTRi−1

Hi

≥ ξkϕT
0,k(P̂

i
0)

−1ϕ0,k +

0
l=k−1

αi
lξ

k−lϕT
k,lH

iTRi−1

Hiϕk,l

> βiγiIn,
(20)

where βi = inf l∈1,2...k−1 α
i
lξ

k−l, thus it shown the inverse
error covariance is lower bounded. We now proceed to the
second part of the proof where we show that the error dynamics
is asymptotically stable. To this, first we formulate the local
error dynamics:

ηik = F i
kAη

i
k−1 +

1

|Ni,k|+ 1
F i
kA


j∈Nj,k


ηjk−1 − ηik−1



+Ki
kv

i
k + F i

kBωk

=
1

|Ni,k|+ 1
F i
kA


j∈Ni,k,i

ηjk−1 +Ki
kv

i
k + F i

kBωk,

(21)
and the augmented noiseless error dynamics are

ηk = diag{F i
kA}Ni=1

�
INn −

�
D−1

k Lk ⊗ In


ηk−1

= diag{F i
k}Ni=1((IN −D−1

k Lk)⊗A)ηk−1,
(22)

with Dk = diag{|Ni,k| + 1}Ni=1. For simplicity, we denote
F̃k = diag{F i

k}Ni=1 , Ã = (IN⊗A) and L̃k = (IN−D−1
k Lk)⊗

In such that the error dynamics can expressed as

ηk = F̃kÃL̃kηk−1. (23)
It is immediate that for the non-cooperative case, i.e, when
L̃k = INn we obtain the noiseless NCLKF error dynamics.

We continue with defining the following Lyapunov function,
Vk = ηTk Ξ

−1
k ηTk ,

Where Ξk is defined with the recursion,
Ξ0 =diag{P̂ i

0}Ni=1

Ξk =F̃kÃL̃kΞk−1L̃
T
k Ã

T F̃T
k + Q̃k.

(24)

It was shown in our previous work (Priel and Zelazo (2021))
that the step Lyapunov difference function is negative definite.
We are now left to show that the matrix Ξ−1

k is lower bounded.
To do so we construct the local error covariance:

E

ηikη

iT

k


=F i

kAE





j∈Ni∪{i} η
j
k−1


j∈Ni∪{i} η

j
k−1

T

(|Ni,k|+ 1)
2


ATF iT

k

+Ki
kE


vikv

iT

k


KiT

k + F i
kBE


wi

kw
iT

k


BTF iT

k .

(25)
We know that for any 2 vectors X,Y ∈ Rm the following
inequality holds:

XY T + Y XT ≤ XXT + Y Y T ,

then

E

ηikη

iT

k


≤F i

kAE





j∈Ni∪{i} η
j
k−1η

jT
k−1



|Ni,k|+ 1


ATF iT

k

+Ki
kE


vikv

iT

k


KiT

k + F i
kBE


wkw

T
k


BTF iT

k .

(26)
The augmented error covariance is

E

ηkη

T
k


=F̃kÃL̃kE


ηk−1η

T
k−1


L̃T
k Ã

T F̃T
k

+ diag{Ki
kR

iKiT

k + F i
kBQBTF iT

k }Ni=1

(27)

Therefore if in (24) we choose Q̃k = diag{Ki
kR

iKi
k +

BQBT }Ni=1, where recall that E [wkwl] = Qδkl. Then we
obtain Ξk = E


ηkη

T
k


and the inequality in (26) can be

rephrased as:

Ξii
k ≤F i

kA


j∈Ni∪{i} Ξ

jj
k−1

|Ni,k|+ 1
ATF iT

k + Q̃k, (28)

and since Ξ0 = P̂0, this yields:

Ξii
k ≤F i

kA


j∈Ni∪{i} P̂

j
k−1

|Ni,k|+ 1
ATF iT

k + Q̃k = P̂ i
k. (29)

To this point we have showed that the diagonal elements of the
matrix Ξk are upper bounded, which implies that trace (Ξk)
is upper bounded as well. For any symmetric positive definite
matrix P , the following holds,

λmax(P ) ≤
n

l=1

λl(P ) = trace (P ) , (30)

suggesting that Ξk is upper bounded (and Ξ−1
k is lower

bounded), this completes the proof.
Remark 1. While the requirement for [A,Hi] to form an ob-
servable pair for each agent may appear stringent, it enables
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the relaxation of conditions related to network connectivity. In
contrast, the authors of (Battistelli et al. (2014)) assumed col-
lective observability (i.e., [A, col{Hi}Ni=1] make an observable
pair), however they assumed a static and connected communi-
cation graph.

We have showed that the consensus Kalman filter (5) with the
choice of consensus gain (6) are stable for the networks which
may change over time. In contrast, (Sandell and Olfati-Saber
(2008)) proposed the following decentralized consensus gain,

Ci
k =

ϵ

1 + |P̂ i
k|F

P̂ i
k, (31)

where ϵ is some predetermined constant. The design constant
ϵ can be pre-calibrated, however no mid-run modification tech-
niques were provided for this constant in case of, for example,
a change in the graph structure.

4. SIMULATION RESULTS

The following numerical example was taken from (Olfati-
Saber et al. (2007)) with minor modifications. Consider a
robot performing a noisy “snail” trajectory with the following
dynamics,

xk+1 =

[
0.9996 −0.0283
0.0283 0.9996

]

︸ ︷︷ ︸
A

xk + 0.375 · I2︸ ︷︷ ︸
B

wk. (32)

The initial state vector and the covariance matrix for each
agent are set to be xi

0 = [15,−10]T , P i
0 = 10I, respectively.

Additionally, the process noise covariance is Q = I2. A
network of 20 sensors are randomly positioned in some field of
interest (see Figure 2a) where a communication link between
2 sensors exists only if their distance is below some threshold
(< 40 meters). Furthermore, each agent with an even number
measure the robot’s y-axis position while the agents with an
odd number measure its x-axis position such that:

Hi =

{
[1, 0] i ∈ {1, 3, ..., 19}
[0, 1] i ∈ {2, 4, ..., 20} . (33)

The measurement noise covariance for agent k is Rk =
√
k.

Although, [A,Hi] make an observable pair for each individ-
ual sensor, the observability is relatively weak for the non-
measured axis, i.e., while the robot is in transition between
quadrants one would expect a relatively large estimation error
since the position in one axis hardly vary while the position in
the other can vary significantly.

(a) A sensor network of 20 agents.

(b) Standard deviation of the agents’
state estimation for both axes, compar-
ison between 5 distributed state estima-
tors over 100 Monte-Carlo runs.

Fig. 2. Communication topology and state estimation standard
deviation.

We provide a comparison between 5 state estimators:

NCLKF: the non-cooperative local Kalman filter with null
consensus gain;

SOCKF: the sub-optimal consensus Kalman filter with a cen-
tralized consensus factor as presented in (Priel and Zelazo
(2021));

DSOCKF1: the decentralized sub-optimal consensus Kalman
filter with ϵ = 0.1 and consensus gain (31);

DSOCKF2: the decentralized sub-optimal consensus Kalman
filter (5) with consensus gain (6).

OCKF: the optimal consensus Kalman filter as derived in
(Deshmukh et al. (2017)).

The compared performance measures are twofold: the agents
state estimation standard deviation (Fig. 2b) calculated as

σx =
1

MC

MC∑
j=1

√√√√ 1

N − 1

N∑
i=1

(
[1 0] x̂i,j − 1

N
[1 0]

N∑
i=1

x̂i,j

)2

σy =
1

MC

MC∑
j=1

√√√√ 1

N − 1

N∑
i=1

(
[0 1] x̂i,j − 1

N
[0 1]

N∑
i=1

x̂i,j

)2

,

where MC denotes the number of Monte-Carlo runs and x̂i,j is
the ith agent state estimation for the jth run. The true averaged
root mean squared error (Fig. 3a) calculated as

RMSE =
1

MC

MC∑
j=1

√√√√ N∑
i=1

(E[(ηi,j)T ηi,j ]),

where ηi,j = x̂i,j − x .

In Figure 2b one can observe the agents rate of convergence and
stability of the agents’ estimation error for all 5 distributed state
estimators. As shown, all consensus Kalman filter obtain small
state estimation standard deviation with respect to the NCLKF.
Moreover, Figure 3a demonstrate the superiority in perfor-
mance of the DSOCKF2 over DSOCKF1 and as expected, the
OCKF outperformed all other estimators. What is perhaps most
astonishing, is that DSOCKF2 outperform SOCKF as well.
This result might be correlated to the similarity in structure
of DSOCKF2 gain to that of OCKF as discussed in (Priel and
Zelazo (2021)).

(a) Root mean squared error, com-
parison between 5 state estimators
over 100 Monte-Carlo runs.

(b) Trajectory of the true state and
the agents’ mean estimate utilizing
SOCKF2.

Fig. 3. Joint estimation performance.

Figure 3b illustrates the true and mean estimated trajectory
of the robot using SOCKF2. As shown, the proposed filter
provides good tracking results.

To conclude, we compare the robustness of the proposed de-
centralized consensus Kalman filter to the filter proposed in
(Sandell and Olfati-Saber (2008)). To do so, we simulate a
communication topology switch at each time instance by ran-
domizing the maximal distance between 2 nodes to have a
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the relaxation of conditions related to network connectivity. In
contrast, the authors of (Battistelli et al. (2014)) assumed col-
lective observability (i.e., [A, col{Hi}Ni=1] make an observable
pair), however they assumed a static and connected communi-
cation graph.

We have showed that the consensus Kalman filter (5) with the
choice of consensus gain (6) are stable for the networks which
may change over time. In contrast, (Sandell and Olfati-Saber
(2008)) proposed the following decentralized consensus gain,

Ci
k =

ϵ

1 + |P̂ i
k|F

P̂ i
k, (31)

where ϵ is some predetermined constant. The design constant
ϵ can be pre-calibrated, however no mid-run modification tech-
niques were provided for this constant in case of, for example,
a change in the graph structure.

4. SIMULATION RESULTS

The following numerical example was taken from (Olfati-
Saber et al. (2007)) with minor modifications. Consider a
robot performing a noisy “snail” trajectory with the following
dynamics,

xk+1 =

[
0.9996 −0.0283
0.0283 0.9996

]

︸ ︷︷ ︸
A

xk + 0.375 · I2︸ ︷︷ ︸
B

wk. (32)

The initial state vector and the covariance matrix for each
agent are set to be xi

0 = [15,−10]T , P i
0 = 10I, respectively.

Additionally, the process noise covariance is Q = I2. A
network of 20 sensors are randomly positioned in some field of
interest (see Figure 2a) where a communication link between
2 sensors exists only if their distance is below some threshold
(< 40 meters). Furthermore, each agent with an even number
measure the robot’s y-axis position while the agents with an
odd number measure its x-axis position such that:

Hi =

{
[1, 0] i ∈ {1, 3, ..., 19}
[0, 1] i ∈ {2, 4, ..., 20} . (33)

The measurement noise covariance for agent k is Rk =
√
k.

Although, [A,Hi] make an observable pair for each individ-
ual sensor, the observability is relatively weak for the non-
measured axis, i.e., while the robot is in transition between
quadrants one would expect a relatively large estimation error
since the position in one axis hardly vary while the position in
the other can vary significantly.

(a) A sensor network of 20 agents.

(b) Standard deviation of the agents’
state estimation for both axes, compar-
ison between 5 distributed state estima-
tors over 100 Monte-Carlo runs.

Fig. 2. Communication topology and state estimation standard
deviation.

We provide a comparison between 5 state estimators:

NCLKF: the non-cooperative local Kalman filter with null
consensus gain;

SOCKF: the sub-optimal consensus Kalman filter with a cen-
tralized consensus factor as presented in (Priel and Zelazo
(2021));

DSOCKF1: the decentralized sub-optimal consensus Kalman
filter with ϵ = 0.1 and consensus gain (31);

DSOCKF2: the decentralized sub-optimal consensus Kalman
filter (5) with consensus gain (6).

OCKF: the optimal consensus Kalman filter as derived in
(Deshmukh et al. (2017)).

The compared performance measures are twofold: the agents
state estimation standard deviation (Fig. 2b) calculated as

σx =
1

MC

MC∑
j=1

√√√√ 1

N − 1

N∑
i=1

(
[1 0] x̂i,j − 1

N
[1 0]

N∑
i=1

x̂i,j

)2

σy =
1

MC

MC∑
j=1

√√√√ 1

N − 1

N∑
i=1

(
[0 1] x̂i,j − 1

N
[0 1]

N∑
i=1

x̂i,j

)2

,

where MC denotes the number of Monte-Carlo runs and x̂i,j is
the ith agent state estimation for the jth run. The true averaged
root mean squared error (Fig. 3a) calculated as

RMSE =
1

MC

MC∑
j=1

√√√√ N∑
i=1

(E[(ηi,j)T ηi,j ]),

where ηi,j = x̂i,j − x .

In Figure 2b one can observe the agents rate of convergence and
stability of the agents’ estimation error for all 5 distributed state
estimators. As shown, all consensus Kalman filter obtain small
state estimation standard deviation with respect to the NCLKF.
Moreover, Figure 3a demonstrate the superiority in perfor-
mance of the DSOCKF2 over DSOCKF1 and as expected, the
OCKF outperformed all other estimators. What is perhaps most
astonishing, is that DSOCKF2 outperform SOCKF as well.
This result might be correlated to the similarity in structure
of DSOCKF2 gain to that of OCKF as discussed in (Priel and
Zelazo (2021)).

(a) Root mean squared error, com-
parison between 5 state estimators
over 100 Monte-Carlo runs.

(b) Trajectory of the true state and
the agents’ mean estimate utilizing
SOCKF2.

Fig. 3. Joint estimation performance.

Figure 3b illustrates the true and mean estimated trajectory
of the robot using SOCKF2. As shown, the proposed filter
provides good tracking results.

To conclude, we compare the robustness of the proposed de-
centralized consensus Kalman filter to the filter proposed in
(Sandell and Olfati-Saber (2008)). To do so, we simulate a
communication topology switch at each time instance by ran-
domizing the maximal distance between 2 nodes to have a

Fig. 4. Sum of all agents mean squared error for a constantly
graph switching network.

communication link. The sum of all agents MSE are pre-
sented in Figure 4, where we compare between 4 estimators:
NCLKF, DSOCKF1, and DSOCKF2 and OCKF. As shown, the
DSOCKF1 becomes unstable after the first couple of switches,
while the DSOCKF2 remains stable for the entire duration.

5. CONCLUSION

We have presented a widely common sub-optimal consensus
Kalman filter scheme and presented a novel modification to
the filter prediction formulation. This modification , paved way
for constructing a consensus gain with which the estimation
error stability is ensured. Moreover, the consensus gain is
constructed in a decentralized manner which does not require
global knowledge of graph properties. Finally we presented
performance superiority of the filter over existing solution in
the literature and over the non-cooperative local Kalman filter.
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