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Abstract— This paper proposes an improved design approach
for distributed consensus Kalman filtering (DCKF). We provide
an improved consensus gain factor compared to the sub-
optimal design proposed in [1]. This factor is derived from
an LMI appearing in the stability analysis of the DCKF and
can be computed using semi-definite programming. We also
propose a decentralized consensus gain that can be computed
by each agent in the sensor network, and depends only on local
properties of the network, i.e., the number of neighbors of each
sensor. We show in simulation that this approach holds even for
networks with time varying communication regime. Our results
are compared to other existing solutions in the literature with
a numerical example.

I. INTRODUCTION

Sensor networks comprise a group of agents equipped with
sensing devices and communicating capabilities in order to
solve some common task such as cooperative sensing and
estimation of a detectable physical process. This complex
problem has been a major subject of interest in various
research communities due to its wide range of applications
including agriculture [2], security and surveillance [3], [4],
health monitoring [5] and space research [6].

One of the fundamental challenges in sensor networks
deal with cooperative estimation of some globally observable
process [7], [8]. In this scenario, each agent in the system ac-
tivates, in a distributed fashion, an estimator which relies on
local measurements of the process fused with the estimates
from other agents in the network. The networked system
aims to globally converge to the true process state while
considering constraints such as computational loads, the
amount of shared data, and the overall system performance.

A recently developed tool to solve this problem is the
introduction of a consensus-based term fused with a classical
state estimator structure [9]. This provides a mechanism for
accounting for neighboring information. For example, the
consensus H∞ estimator is discussed in [10], the consensus
based distributed particle filtering as presented in [11], and
a consensus Kalman filter was formulated in [12], [13]. In
the consensus Kalman filter arena, one can witness increasing
interest in recent years as new works are occupying different
aspects of the filter. In [14], the consensus Kalman estimator
proposed in [12] was adapted, and they then derived the solu-
tion for both Kalman and consensus gains that will minimize
the local mean squared error (MSE). Additionally they have
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compared simulation results with the sub-optimal solution
suggested in [1]. The work [15] utilized the same sub-optimal
solution to derive a consensus extended Kalman filter in
order to solve a spacecraft network relative motion estimation
problem. The authors in [16] made another variation on the
sub-optimal consensus Kalman filter discussed in [1] to solve
the extended problem of networks with agents that have
limited or null measurement capabilities.

These recent papers are all built on the pioneering work
conducted by Olfati-Saber in [1] where he suggested a
Kalman-like estimator with an additional consensus compo-
nent. In this work, both optimal and sub-optimal consensus
filter gains were derived, while guaranteeing the stability of
the estimator. However, to our knowledge, no comparison
has been made between this approach and a non-cooperative
local Kalman filter (NCLKF), where each sensor implements
a Kalman filter without any exchange of information from
other sensors in the network. Furthermore, the selected
consensus gain derived in [1] might obtain small values
rendering the consensus term contribution insignificant. In
this case the estimator behaves more like a NCLKF without
agents reaching agreement on their estimates.

In this direction, our contribution begins with proposing
an alternative method for determining the consensus gain for
the filter. With this method, we derive for each time step
the maximal value of the consensus gain factor for which
stability of the estimator is ensured. This ensures that the
consensus term, encouraging the agreement of estimates be-
tween neighboring agents, plays a nontrivial role in the esti-
mator dynamics. Utilizing convex optimization techniques to
extract this aforementioned consensus factor, we demonstrate
through simulation examples the superiority in performance
over the NCLKF and others consensus gains found in the
literature. We also show the proposed estimator is mean
square error Lyapunov stable. Additionally, we propose a
decentralized consensus gain which is based on local network
properties and thus, can be implemented in systems with
switching or time-varying communication networks without
requiring any manual adaptation. Once more, superiority
in performance over the NCLKF and others are presented
through simulations results.

The paper is organized as follows. Section II provides
an overview of the consensus Kalman filter estimator. In
Section III, we derive a semi-definite program to determine a
stabilizing consensus gain factor. In addition, a decentralized
consensus gain is proposed. In Section IV simulation results
are presented and finally, concluding notes are made in
Section V.

Notations: Let R denote the set of real numbers, Rn
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the n-dimensional Euclidean space and Rn×m the set of
n × m real matrices. Let diag{M i}ni=1 denote the block
diagonal nd × nd matrix where the ith block is equal to
M i ∈ Rd×d, and let [M ]ij denote the ij-entry of the matrix
M . The maximal and minimal singular value of the matrix M
are denoted by λmax(M) and λmin(M), respectively, while
ρ(M) denotes the spectral radius of M . The Frobenius norm
of the matrix M is denoted as |M |F .

II. THE CONSENSUS KALMAN ESTIMATOR

In this section we review the basic setup for constructing
a distributed consensus Kalman filter along with reviewing
existing sub-optimal solutions from the literature. Consider
a network comprising N interacting agents where the inter-
action topology can be described by an undirected graph
G = (V, E). Here, V = {1, 2, ..., N} denotes the set of
agents and E ⊆ V × V denotes the edge set indicating
which agents can exchange information with each other. The
neighborhood of a node v ∈ V is the set of agents incident
to it, i.e., Nv = {u ∈ V | (u, v) ∈ E}. The graph can
also be represented using the symmetric Laplacian matrix,
L ∈ RN×N [17].

Each agent observes a linear discrete-time stochastic pro-
cess described by the dynamics

P : xk+1 = Axk +Bwk, (1)

where xk ∈ Rn is the state vector and wk is an additive
white Gaussian noise such that E [wkwl] = Qδkl, where δkl
is the Dirac Delta function.

Each agent is capable of measuring the process state using
the observation model

zik = Hixk + vik, (2)

where zik ∈ Rmi

is the measurement obtained by agent i,
Hi ∈ Rmi×n is the observation matrix, and vik ∈ Rmi

is a measurement noise assumed to also be additive white
Gaussian noise with E

[
vikv

i
l

]
= Riδkl. Additionally we

assume that Ri ∈ Rmi×mi

is invertible and that [A,Hi]
make an observable pair for every agent such that the
noiseless NCLKF is asymptotically stable.

The distributed Consensus Kalman estimator (DCKE) was
first proposed by [18] and is constructed as

x̂ik = x̄ik +Ki
k

(
zik −Hix̄k

)
+ Cik

∑
j∈Ni

(
x̄jk − x̄

i
k

)
, (3)

where Ki and Ci are the Kalman and consensus gains of
the ith agent, respectively, and x̂i and x̄i are the posteriori
and a priori state estimate of the ith agent, respectively.
The Kalman-Consensus estimator (3) is composed out of a
classic Kalman estimator term and a consensus term based
on neighbors estimates as illustrated in Figure 1.

In [1], a distributed optimal Kalman gain was derived by
minimizing the local MSE with respect to Ki

k. The optimal
gain was found to be

K
i
k =

P i
kH

iT
+ C

i
k

∑
j∈Ni

(
P̄

j,i
k − P̄ i

k

)
H

iT

(Ri
+H

i
P̄

i
kH

iT
)−1

,

(4)

Consensus
component

Measurement

Kalman
filter

Ni

Agent i

P
x̄ik

x̄jk

xk

x̂ik

zik

Fig. 1: DCKE structure for the ith agent.

where P̄ i is the ith agent a priori error covariance and
P̄ j,i is the ith and jth agent’s a priori cross correlation
term. The corresponding update equations incorporate two-
hop neighbors information exchange. For example, in a
complete graph this would mean that each agent would
retrieve N(N − 1) cross correlation terms at each step. The
latter served as the motivation to construct the following
sub-optimal distributed consensus Kalman filter (SOCKF)
which utilizes only (one hop) neighboring state estimates
and discards the consensus terms from the error covariance
and Kalman gain update equations:

Prediction
x̄ik = Ax̂ik−1

P̄ ik = AP̂ ik−1A
T +BQBT

Estimation

Ki
k = P ikH

iT
(
Ri +HiP̄ ikH

iT
)−1

P̂ ik = F ikP̄
i
kF

iT
k +Ki

kR
iKiT

k

x̂ik = x̄ik +Ki
k

(
zik −Hix̄ik

)
+ Cik

∑
j∈Ni

(
x̄jk − x̄

i
k

)
,

(5)

where F ik = I−Ki
kH

i. The omission of the consensus terms
from the Kalman gain and error covariance update equation
is justified with the assumption that the consensus gain is
relatively small. We would like to emphasize that one must
be careful while selecting a small consensus gain since this
might lead the consensus component in the DCKE to be
negligible. Nevertheless, in [1] it was shown that (5) has
stable estimator dynamics.

III. IMPROVED CONSENSUS GAIN SELECTION

In this section we explore both centralized and decentral-
ized approaches for designing the consensus gain term Cik
in (5).

A. Centralized Consensus Gain Determination

We propose a new consensus gain for the SOCKF update
scheme (5). We aim to extract the maximal consensus gain in
a manner that will ensure the stability of the local estimation
error (and thus, for the sum of all errors as well).

Theorem 1 (DCKE Stability). Consider a group of N agents
interacting over a connected graph G where each observes
the process (1) with observation model (2). The noiseless
estimation error with the Kalman consensus filter (5) and the
choice of consensus gain Cik = γkP

i
kF

iT−1

k is asymptotically
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stable for any γk ∈ [0, γ∗k ]∀ k. Furthermore, γ∗k can be
obtained as the maximum value for which

Kk(γk) = diag{P̂ i
−1

k−1 −ATF iTk P̂ i
−1

k F ikA}Ni=1

− γ2
k (L⊗A)

T
diag{F i

−1

k P̂ i
−1

k F iT
−1

k }Ni=1 (L⊗A)

+ 2γk
(
L⊗ATA

)
,

(6)

is positive semi-definite, and can be found using semi-definite
programming.

Proof. The proof for this theorem follows the same line as
presented in [1] with an additional section to establish the
range of consensus gains γk. First we choose a quadratic
Lyapunov function and show that for γk = 0, the Lyapunov
function is monotonically decreasing. We then prove that
there must be some γ∗k such that for any γk ∈ [0, γ∗k ], the
Lyapunov function is monotonically not increasing.

Let ηk = x̂k−xk and η̄k = x̄k−xk be the estimation and
prediction errors, respectively. The noiseless error dynamics
are

η̄ik = Aηik−1,

ηik = (I −Ki
kH

i)︸ ︷︷ ︸
Fk

η̄ik + Cik
∑
j∈Nj

(
η̄jk − η̄

i
k

)
.

Consider now the following Lyapunov function,

Vk =

N∑
i=1

ηiTk P̂ i
−1

k ηik. (7)

The Lyapunov step difference function along the system
trajectories is

δVk = Vk − Vk−1 =

N∑
i=1

ηiTk P̂ i
−1

k ηik −
N∑
i=1

ηiTk−1P̂
i−1

k−1η
i
k−1

=

N∑
i=1

(
F ikAη

i
k−1 + CikAu

i
k

)T
P̂ i
−1

k

(
F ikAη

i
k−1 + CikAu

i
k

)
− ηiTk−1P̂

i−1

k−1η
i
k−1

=

N∑
i=1

ηiTk−1

(
ATF iTk P̂ i

−1

k F ikA− P̂ i
−1

k−1

)
ηik−1

+ 2

N∑
i=1

η̄iTk F iTk P̂ i
−1

k Ciku
i
k +

N∑
i=1

uiTk C
iT
k P̂ i

−1

k Ciku
i
k,

where

uik =
∑
j∈Ni

(
x̄jk − x̄

i
k

)
=
∑
j∈Ni

(
η̄jk − η̄

i
k

)
. (8)

Let us consider only the term which is not dependent on the
consensus gain, Ψ ik = −P̂ i−1

k−1 + ATF iTk P̂ i
−1

k F ikA. Plugging
in (5) into this expression produces

Ψ ik = −P̂ i
−1

k−1 +ATF iTk (F ikAP̂
i
k−1A

TF iTk + Πi
k)−1F ikA,

(9)

where Πi
k = Ki

kR
iKiT

k + F ikQF
iT
k . Multiplying P̂ ik−1 on

both sides of (9) yields

P̂ ik−1Ψ
i
kP̂

i
k−1 =

P̂ ik−1A
TF iTk

(
F ikAP̂

i
k−1A

TF iTk + Πi
k

)−1

F ikAP̂
i
k−1 − P̂ ik−1.

Utilizing the Woodbury matrix identity [19] (inversion
lemma) and multiplying once more P̂ i

−1

k−1 on both sides gives

Ψ ik =− P̂ i
−1

k−1

(
P̂ i
−1

k−1 +ATF iTk Πi−1

k F ikA
)
P̂ i
−1

k−1. (10)

Since Πi−1

k and P̂ i
−1

k−1 are positive definite, Ψ ik is negative
definite. We are left to find a consensus gain such that δVk
shall always remain non-positive. Consider the consensus
gain structure proposed by [1] of

Cik = γkP̂
i
k

(
F iTk

)−1
= γkP̄

i
k. (11)

Implementing (11) into δVk produces

δVk =

N∑
i=1

ηiTk−1Ψ
i
kη
i
k−1 + 2γk

N∑
i=1

η̄iTk uik + γ2
k

N∑
i=1

uiTk Y
i
ku

i
k,

(12)

where Yk = FT
−1

k P̂kF
−1
k . The second term in (12) can be

simplified using the graph Laplacian and (8) as

2γk

N∑
i=1

η̄iTk uik = −2γkη
T
k−1

(
L⊗ATA

)
ηk−1, (13)

where ηk−1 is the augmented agents’ estimation error vector
at the k − 1 step. It is immediate that the third term in (12)
is positive semi definite:

γ2
k

N∑
i=1

uiTk Y
i
ku

i
k = γ2

kη
T
k−1 (L⊗A)

T
Yk (L⊗A) ηk−1,

with Yk = diag{Y ik}Ni=1. Therefore we can write:

δVk = −ηTk−1Kkηk−1, (14)

with

Kk =
(
−Ψk + 2γk

(
L⊗ATA

)
− γ2

k (L⊗A)
T
Yk (L⊗A)

)
,

(15)

and Ψk = diag{Ψ ik}Ni=1.
We showed in (10) that for γk = 0, corresponding to a

NCLKF, Kk is positive definite. We now show that there
must be a positive upper bound on γk for which Kk is
positive sem-definite. In this direction, we recall Sylvester’s
criteria [20], which states that a matrix is positive definite if
and only if its leading principle minors are all positive. In
this direction, let a1 = −[Ψk]11, a2 = [2

(
L⊗ATA

)
]11 and

a3 = −[(L⊗A)
T
Yk (L⊗A)]11. If a1 + a2γk + a3γ

2
k < 0

(the first leading principle minor of Kk is negative), then
Kk is not positive semi-definite. Therefore, there must be

some γ∗k satisfying 0 < γ∗k <
−a2−

√
a22−4a1a3

2a3
for which the

matrix Kk is positive semi-definite, and for any γk ∈ [0, γ∗k ],
Kk is positive definite and the noiseless error dynamic is
asymptotically stable.

The next step in our proof is to find a method for
extracting the consensus factor γ∗k . Here, we employ the
Schur complement lemma [21]. Let us consider the constraint
Kk(γk) � 0, and observe

Kk(γk) =(
Ψk + 2γk(L⊗ATA)

)
− (γk(L⊗A)T )Yk(γk(L⊗A)).
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Since [A,Hi] make an observable pair for all agents, the
matrix F ik is full rank. Additionally, we know that P̂ ik is
positive-definite, therefore Yk and its inverse are positive-
definite. Thus we can conclude that Kk(γk) � 0 if and only
if [

Ψk + 2γk(L⊗ATA) γk(L⊗A)T

γk(L⊗A) Y −1
k

]
� 0.

This is an LMI constraint in γk. We can then construct the
semi-definite program

max
γk

γk

s.t.

[
Ψk + 2γk(L⊗ATA) γk(L⊗A)T

γk(L⊗A) Y −1
k

]
� 0,

(16)

to obtain the largest value γk ensuring that Kk is positive
definite. This completes the proof.

We are now interested in comparing the consensus gain
found from (16) with the gain proposed in [1]. The gain
from [1] is given as

γk =

√
λmin (Ψk)

λmax ((L⊗A)Yk+1(L⊗A))
. (17)

Although this consensus factor selection holds, λmin (Ψk)
can obtain small values prior to convergence and thus the
contribution of the consensus component is mitigated pre-
maturely (before agreement was secured). This motivates
our reason for finding the largest possible consensus gain.
A larger gain will ensure the consensus term in the update
equation will provide a meaningful network-level contribu-
tion. We also demonstrate in Section IV that the DCKE with
the gain (16) out performs the gain proposed in [1].

B. Decentralized Consensus Gain Determination

In the previous sub-section, we presented an approach
for finding a consensus gain for the DCKE based on semi-
definite programming. This calculation, however, must be
done in a centralized manner, and the gain should be imple-
mented for each agent in the sensor network. Note that any
changes in the network structure, noise properties, or other,
would require solving the SDP in (16) again making this ap-
proach fragile in large-scale networks. These points motivate
an alternative method for finding a suitable consensus factor
that does not require any centralized computation.

In this direction, we propose a decentralized approach for
finding a suitable consensus gain that depends only on the
local properties of the network for each agent. In this way,
we can handle time-varying graphs as well.

Consider a group of N agents, interacting over a time-
varying graph Gk, which is assumed to be connected at
each time-instant k. Each sensor observes the process (1)
with observation model (2). Consider now the decentralized
consensus gain,

Cik =
1

|Ni,k|
F ik, (18)

where Ni,k denotes the neighborhood of agent i at time step
k. Then, the local noiseless error dynamics are

ηik = F ikAη
i
k−1 +

1

|Ni,k|
F ikA

∑
j∈Nj,k

[
ηjk−1 − η

i
k−1

]
=

1

|Ni,k|
FkA

∑
j∈Nj,k

ηjk−1,
(19)

and the augmented noiseless error dynamics are

ηk = diag{F ikA}Ni=1

(
INn −

(
D−1
k Lk ⊗ In

))
ηk−1

= diag{F ik}Ni=1((IN −D−1
k LK)⊗A)ηk−1, (20)

with Dk = diag{|Ni,k|}Ni=1. It is immediate that for the non-
cooperative case, i.e., when Lk = 0, we obtain the noiseless
NCLKF error dynamics. Under the case where each sensor
has the same observation of the process, we can arrive at the
following result.

Proposition 1. Assume that each sensor in the network
measures the process (1) using the same observation model

zik = Hxk + vik, i = 1, . . . , N,

where vik is the zero-mean Gaussian measurement noise
with E[vikv

i
l ] = Rδkl. Then the error dynamics (20) are

asymptotically stable.

Proof. In the case where each sensor uses the same mea-
surement model, it follows that F ik = F̄k for all agents. The
error dynamics can then be simplified to

ηk = diag{F ikA}Ni=1

(
INn −

(
D−1
k Lk ⊗ In

))
ηk−1

= (IN ⊗ F̄kA)((IN −
(
D−1
k Lk))⊗ In

)
ηk−1

=
(
(IN − (D−1

k Lk))⊗ F̄kA
)
ηk−1.

From the stability of the NCLKF, it follows that
lim
k→∞

(∏
k F̄kA

)
= 0.1 Furthermore, the matrix IN −(

D−1
k Lk

)
) is row stochastic at each time step k, and thus its

spectral radius is always unity, and in particular,

ρ

(
lim
k→∞

(∏
k

(IN − (D−1
k Lk)

))
= 1.

Therefore,

lim
k→∞

ηk = lim
k→∞

(∏
k

(IN − (D−1
k Lk)⊗

∏
k

F̄kA

)
η0 = 0.

The result of Proposition 1 may be restrictive, as we are
assuming each sensor has the same measurement model with
noise characteristics. On the other hand, such a model may
be useful when employing a homogeneous sensor network
and aiming for faster convergence of the estimate compared
to using a single sensor. Currently, we do not have a proof
for the general case of heterogeneous sensor measurements,
however we note that in numerical simulation, over a variety

1Here we use an abuse of conventional notation and define
∏n

k=1 Mk =
MnMn−1 · · ·M2M1.
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of random network properties, the heterogeneous case gives
promising results; we explore this in the next section.

The above proposition provides an extremely simple
method to find a consensus factor that works. In contrast,
[22] proposed the following decentralized consensus gain,

Cik =
ε

1 + |P̂ ik|F
P̂ ik, (21)

where ε is some predetermined constant. The design constant
ε can be pre-calibrated, however no mid-run modification
techniques were provided for this constant in case of, for
example, a change in the graph structure.

Remark 1. It should be noted that the consensus gain
structure in the centralized scheme of Theorem 1 is not the
same as the one proposed in (18). The centralized consensus
gain was chosen to ensure explicitly that the Lyapunov
function (7) decreases along the system trajectories. On the
other hand, the decentralized gain was chosen to simplify
the structure of the error dynamics.

Although not having the same structure, we would expect
that the centralized consensus gain found using (16) would
out perform the proposed decentralized consensus gain. This
is due to the fact that the centralized estimator employs
global network properties to compute the consensus gain,
whereas, in the decentralized scheme, only local network
properties are employed. For the numerical example pre-
sented in section IV we note that this is not the case, and in
fact the decentralized scheme show better results.

IV. SIMULATION RESULTS
The following numerical example was taken from [18]

with minor modifications. Consider a robot performing a
noisy “snail” trajectory with the following dynamics,

xk+1 =

[
0.9996 −0.0283
0.0283 0.9996

]
︸ ︷︷ ︸

A

xk + 0.375 · I2︸ ︷︷ ︸
B

wk. (22)

The initial state vector and the covariance matrix for each
agent are set to be xi0 = [15,−10]T , P i0 = 10I, respectively.
Additionally, the process noise covariance is Q = I2. A
network of 20 sensors are randomly positioned in some
field of interest (see Figure 2a) where a communication link
between 2 sensors exists only if their distance is below some
threshold (< 40 meters). Furthermore, each agent with an
even number measure the robot’s y-axis position while the
agents with an odd number measure its x-axis position such
that:

Hi =

{
[1, 0] i ∈ {1, 3, ..., 19}
[0, 1] i ∈ {2, 4, ..., 20}

. (23)

The measurement noise covariance for agent k is Rk =
√
k.

Although, [A,Hi] make an observable pair for each indi-
vidual sensor, the observability is relatively weak for the non-
measured axis, i.e., while the robot is in transition between
quadrants one would expect a relatively large estimation error
since the position in one axis hardly vary while the position
in the other can vary significantly.

(a) A sensor network of 20
agents.

(b) Standard deviation of the
agents’ state estimation.

Fig. 2: Communication topology and estimators STD.

We provide a comparison between 5 state estimators:
NCLKF: the non-cooperative local Kalman filter with null

consensus gain;
SOCKF1: the sub-optimal consensus Kalman filter with

consensus factor (17);
SOCKF2: the sub-optimal consensus Kalman filter with

consensus factor (16) (computed utilizing CVX toolbox
[23]);

DSOCKF1: the decentralized sub-optimal consensus
Kalman filter with ε = 0.1 and consensus gain (21);

DSOCKF2 the decentralized sub-optimal consensus
Kalman filter with consensus gain (18).

The compared performance measures are twofold: the
agents state estimation standard deviation (Figure 2b) and the
true sum of the agents mean squared error

∑N
i=1(E[ηiT ηi])

(Figure 3b).
In Figure 2b one can observe the agents rate of conver-

gence and stability of the agents’ estimation error for all 5
state estimators. As shown, the SOCKF2 converges with the
fastest rate among the centralized filters while maintaining a
relatively constant state estimation standard deviation (even
through quadrants transitions). Additionally, one can observe
the similarity between SOCKF1 to the NCLKF estimator.
This results due to the extremely small consensus factor
gain used by SOCKF1 which effectively ignores the effect
of the consensus component, thus turning SOCKF1 into a
NCLKF estimator. In the decentralized schemes we observe
superiority of the DSOCKF2 over DSOCKF1.

(a) Trajectory of the true state
and the agents’ mean estimate
utilizing SOCKF2.

(b) Sum of MSE for all agents,
comparison between 5 state es-
timators.

Fig. 3: Joint estimation performance.

Figure 3a illustrates the true and mean estimated trajectory
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of the robot using SOCKF2. As shown, the proposed filter
provides good tracking results. Figure 3b further demon-

Fig. 4: Sum of all agents mean squared error. The
communication graph switches at time step 50 and
150.

strates the superiority of SOCKF2 and DSOCK2 over the
others by presenting the lowest mean squared error. This
result is expected as there is more information for the agents
to process. Once more it is shown that for this specific graph
topology, the SOCKF1 shows an advantage over the NCLKF
estimator while DSOCKF1 does not show any advantage
over the NCLKF which means that its gain selection was
poorly randomized. What is perhaps most astonishing is that
these simulations indicate the decentralized consensus gain
selection out performs the centralized gain. Understanding
this performance improvement based on the different struc-
ture of the consensus gains is a subject of ongoing research.

To conclude, we compare the robustness of the proposed
decentralized consensus Kalman filter to the filter proposed
in [22]. To do so, we simulate a communication topology
switch at 2 time instants - step 50 and step 150. The sum of
all agents MSE are presented in Figure 4, where we compare
between 3 estimators: NCLKF, DSOCKF1, and DSOCKF2.
As shown, the DSOCKF1 becomes unstable after the first
switch, while the DSOCKF2 remains stable for the entire
duration.

V. CONCLUSIONS

We have presented a widely common sub-optimal consen-
sus Kalman filter scheme and presented new solutions for
determining the consensus gain. In the centralized scheme,
we proposed a semi-definite program for extracting an upper
bound on the consensus factor which does not affect the
state estimation error stability. Additionally, we proposed a
decentralized scheme which does not require global knowl-
edge of graph properties. Finally we presented performance
superiority of both schemes over existing solutions in the
literature and over the non-cooperative local Kalman filter.
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