
Heterogeneous Formation Control: a Bearing Rigidity Approach

Beniamino Pozzan, Giulia Michieletto, Angelo Cenedese and Daniel Zelazo

Abstract— This work proposes a formation control law for
multi-agent systems whose components are heterogeneous in
terms of actuation capabilities, but at the same time are all
able to retrieve bearing information w.r.t. some neighbors in
the group. The designed controller exploits the results of the
bearing rigidity theory deriving from the modeling of hetero-
geneous formations as generalized frameworks. The outlined
solution is compared with a leader-follower combination of
existing rigidity based homogeneous formation controllers in
order to highlight the easy tuning, the flexibility w.r.t. the
formation composition, and the increased efficiency of the new
proposed control approach. A sufficient condition ensuring the
convergence of the designed controller is also given.

I. INTRODUCTION

In a broad sense, bearing rigidity theory aims at investigat-
ing the stiffness properties of given multi-element systems
whose components are mutually constrained in terms of
relative orientation [1]. In the last years, the study of such
a theory has been deeply encouraged by the emergence
of multi-agent systems as an enabling paradigm in several
contexts. The bearing rigidity framework, indeed, suitably
fits for applications related to the estimation and control of
mobile agent formations wherein the involved devices are
aware of their orientation w.r.t. some neighbors in the group.
In this perspective, bearing constraints are virtual and the
rigidity property of the multi-element system relies on the
preservation of the agent interactions [2].

One of the aims of the bearing rigidity theory is the
identification of the conditions under which the geometric
pattern induced by a set of points in any metric space can
be uniquely determined by the bearing vectors between these
points [3]. Hence, bearing rigidity notions can be exploited in
the design of multi-agent formation control laws, especially
by accounting for the system rigidity as an architectural
requirement for the convergence of the agents to a desired
spatial configuration. Thus, recently, several bearing rigid
based formation stabilization approaches have been proposed
for multi-agent systems modeled as frameworks embedded in
SE(2), SE(3), and more generic smooth manifolds [4]–[7].
Most of the existing strategies apply to homogeneous for-
mations, intended for groups of agents characterized by the
same actuation capabilities. For instance, in [8], a distributed
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bearing-only formation control strategy is outlined for a
team of unmanned ground vehicles (UGVs), ensuring the
global asymptotic stability when the agents sensing interplay
is minimal to guarantee the bearing preservation only in
case of translations and scaling of the whole multi-robot
system. Similarly, in [9], a decentralized formation controller
is designed and tested on a group of quadrotors aiming
at steering the team of unmanned aerial vehicles (UAVs)
towards a formation defined in terms of desired bearings.

Motivated, instead, by the IoT perspective, encouraging
also the cooperation among devices with various actuation
capabilities, this work focuses on heterogeneous formations,
meant as multi-element systems whose components have
different degrees of freedom (dofs) as to controllable vari-
ables. Assuming all the involved agents to be characterized
by (local) communication and bearing sensing capabilities,
the given contribution consists in the design of a distributed
control law to stabilize a group of heterogeneous agents by
preserving the existing bearing measurements. In doing this,
the heterogeneous formations are modeled as generalized
frameworks, namely frameworks embedded in the differen-
tial manifold R3 × S3 which allows to describe the pose
(position and orientation) of a rigid body in the 3D space
by adopting the quaternion formalism [4], enriched with a
mathematical codification of the agents actuation capabilities.
The effectiveness of the proposed controller is confirmed by
both rigorous proof of convergence and numerical results of
an extensive simulations campaign. In particular, accounting
for a formation involving (fully actuated) aerial and ground
vehicles, the outlined solution is compared with an ad-hoc
designed leader-follower combination of the bearing rigidity
based controllers in [4] and [8] for the stabilization of planar
and (fully-actuated) aerial multi-agents systems, respectively.

The rest of the work is organized as follows. Sec. II is
devoted to the modeling of the heterogeneous formations.
The proposed distributed control solution is described in
Sec. III and its effectiveness is discussed in Sec. IV. Sec. V
summarize the principal strengths of the proposed approach
and Sec. VI draws the main conclusions.

II. HETEROGENEOUS FORMATION CHARACTERIZATION

This section provides a mathematical model for a het-
erogeneous formation composed of n ≥ 3 agents (with
some dofs) able to acquire bearing measurements w.r.t. its
neighbors in the group and to communicate with them.

A. Single Agent Model

Each i-th agent, i ∈ {1 . . . n}, in a heterogeneous forma-
tion can be modeled as a rigid body acting in 3D space. Thus,
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its spatial displacement can be characterized by introducing
the local frame Fi (body frame), having origin Oi coincident
with the agent center of mass and axes identified by the unit
vectors {e1, e2, e3} defining the canonical basis of R3, and
the inertial frame FW (world frame), fixed and common,
even if unknown, for all the formation components. Indeed,
given the vector pi ∈ R3 of the coordinates of Oi in FW and
the unit quaternion qi = [ηi ε

>
i ]> ∈ S3 defining the rotation

of Fi w.r.t. FW , the vector xi = [p>i q>i ]> belonging to the
differential manifold R3 × S3 identifies the i-th agent pose
in world frame, i.e., its time-varying configuration.

Introducing the linear velocity vi ∈ Vi ⊆ R3 of Oi w.r.t.
FW and the angular velocity ωi ∈ Ωi ⊆ R3 of Fi w.r.t. FW ,
both in body frame, the i-th agent kinematics is governed by

ṗi = Rivi, q̇i =
1

2
M(qi)ωi, (1)

where Ri ∈ SO(3) is the rotation matrix associated to qi and
the matrix M(qi) ∈ R4×3 maps the agent angular velocity
into the time derivative of its quaternion based orientation.

The linear and angular velocity in (1) can be interpreted as
the controllable variables of the i-th agent. When Vi = Ωi =
R3, the agent is fully-actuated: it can translate and rotate
in any direction of the 3D space having three translational
and three rotational controllable degrees of freedom (cdfos).
When Vi or Ωi ⊂ R3, instead, the agent is under-actuated
and its movement is constrained only in some directions,
having less than 6 cdofs. Indicating with ci ∈ {0 . . . 6}
the i-th agent cdofs, it is suitable to introduce the i-th
agent commands vector δi belonging to the i-th agent
instantaneous variation domain Ii ⊆ Rci , which specifies
the agent actuation capabilities through the selection map

Si : Ii → Vi × Ωi, δi 7→
[
v>i ω>i

]>
. (2)

Hereafter the following decoupling hypothesis is assumed
in regard to the agent translation and rotation movements,
nonetheless the control law described in Sec. III is valid also
when this is not in place, with minor suitable changes.

Assumption II.1. Any i-th agent can provide decoupled
translation and rotation commands, meaning that δi in (2)
is made up of two components that can be independently
assigned. Formally, δi = [δ>p,i, δ

>
o,i]
> ∈ Ii = Ip,i × Io,i

with δp,i and δo,i, respectively associated to the agent linear
and angular velocity, Ip,i and Io,i representing the i-th agent
instantaneous position and orientation variation domains.

Under Ass. II.1, the i-th agent total number of cdofs
results ci = ct,i + cr,i with ct,i = dim(Ip,i) = dim(Vi) and
cr,i = dim(Io,i) = dim(Ωi) denoting its translational and
rotational cdofs, respectively. Moreover, the selection map
Si in (2) can be split into the following terms,

Sp,i : Ip,i → Vi, δp,i 7→ vi (3a)
So,i : Io,i → Ωi, δo,i 7→ ωi, (3b)

with bijective Sp,i. In addition, accounting for real-world
scenarios, hereafter, the structure of the maps Sp,i, So,i is
assumed as follows.

xi
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Fig. 1: agents sensing interaction - magenta arrow indicates
the bearing measurement of i-th agent w.r.t. its j-th neighbor.

Assumption II.2. The maps Sp,i, So,i are linear, hence it is

vi = Sp,i(δp,i) = Sp,iδp,i Sp,i ∈ R3×cp,i , (4a)

ωi = So,i(δo,i) = So,iδo,i So,i ∈ R3×co,i . (4b)

The next example aims at clarifing the introduced model.

Example II.1. For a UGV that can can rotate only around
the z-axis of its body frame and translate on the (xy)-plane,
we have Vi = span{e1, e2} and Ωi = span{e3}, and thus
Ip,i = R2, Io,i = R, Sp,i = [e1 e2], and So,i = e3.

In this work, each agent is also assumed to be able to
gather bearing measurements w.r.t. some neighbors in the
group. Specifically, the bearing measurement recorded by the
i-th agent w.r.t. the j-th neighbor is supposed to be acquired
in Fi, however it can be expressed in terms of position and
orientation of the involved agents in FW as follows

bij = R>i p̄ij ∈ S2, p̄ij =
pj − pi

‖pj − pi‖
∈ S2. (5)

A graphical representation of the vector bij is given in Fig. 1.
Finally, each agent is also supposed to communicate

with its neighbors. In particular, it can share the retrived
measurements, allowing the sensed formation components
to estimate their relative orientation (see Appendix).

B. Networked System Model

Being a networked architecture, any formation can be
modeled according to the graph-based multi-agent system
representation. In particular, a heterogeneous formation made
up of n-agents fulfilling the assumptions of Sec. II-A can be
associated to a directed graph G = (V, E) where the node
vi ∈ V corresponds to the i-th agent, i ∈ {1 . . . n}, and
the directed edge ek = eij = (vi, vj) ∈ E indicates that
the i-th agent can measure the bearing w.r.t. j-th agent and
communicate with it. Note that agent sensing is not assumed
to be bidirectional: (vi, vj) ∈ E does not imply (vj , vi) ∈ E .

Stacking the position and orientation of all the formation
components into the vectors p = [p>1 . . .p

>
n ]> ∈ R3n and

q = [q>1 . . .q
>
n ]> ∈ S3n, respectively, the time-varying

configuration of the whole system is, thus, represented by
x = [p> q>]> ∈ R3n × S3n. Furthermore, introducing the
vector u = [v>1 . . .v

>
n , ω

>
1 . . .ω

>
n ]> ∈

∏n
i=1 Vi ×

∏n
i=1 Ωi

and accounting for (1), the evolution of the formation is
governed by

ẋ =

[
D1(q) 03n×3n
04n×3n D2(q)

]
u = D(q)u, (6)
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{ [
03×3(i−1) −ďijP(bij)Sp,i 03×3(j−i−1) ďijP(bij)R

>
i RjSp,j 03×3(n−j+i−1) [bij ]×So,i 03×3(n−i)

]
if i < j,[

03×3(j−1) ďijP(bij)R
>
i RjSp,j 03×3(i−j−1) −ďijP(bij)Sp,i 03×3(n−1) [bij ]×So,i 03×3(n−i)

]
if j > i,

(9)

where D1(q) = diag(Ri) ∈ R3n×3n and D2(q) =
diag( 1

2M(qi)) ∈ R4n×3n are diagonal block matrices. In de-
tail, under Ass. II.2, the relation (6) can be rewritten introduc-
ing the commands vector δ = [δ>p,1 . . . δ

>
p,n δ

>
o,1 . . . δ

>
o,n]>

belonging to the instantaneous variation domain Ī =∏n
i=1 Ip,i ×

∏n
i=1 Io,i having dimension c = ct + cr with

ct =
∑n

i=1 ct,i and cr =
∑n

i=1 cr,i. It holds that

ẋ = D(q)

[
Sp 0
0 So

]
δ = D(q)Sδ, (7)

with Sp = diag (Sp,i) ∈ R3n×ct ,So = diag (So,i) ∈ R3n×co .
Given these premises, any heterogeneous formation can

be modeled as a generalized framework whose dynamic
behavior is described by (7).

Definition II.1 (Generalized Framework). A generalized
framework is an ordered triple (G,x,H) consisting of a
connected graph G = (V, E) with |V| = n ≥ 3 and
|E| = m, a configuration x ∈ R3n × S3n, and a collection
of instantaneous variation domains H = {I1 . . . In}.

According to most of the rigidity literature, the graph G
modeling the formation is hereafter assumed to be fixed
over time: the agents can modify their pose in FW but
they preserve the interaction w.r.t. their neighbors. In this
scenario, the information on the available measurements can
be summarized through the introduction of the following
bearing function, which turns then out to be useful also to
identify the formation shape in terms of the bearings among
all the pairs of agents, represented by the directed complete
graph K associated to G.

Definition II.2 (Bearing Function). Given a formation mod-
eled as a generalized framework (G,x,H), the bearing func-
tion is the map associating the configuration x ∈ R3n× S3n

to the vector bG(x) = [b>1 . . .b
>
m]> ∈ S2m stacking all the

available bearing measurements.

Definition II.3 (Formation shape). Given a formation mod-
eled as a generalized framework (G,x,H), its shape is
characterized by the collection of all the possible bearing
measurements, namely, by the vector bK(x) ∈ S2n(n−1)

where K is the complete graph associated to G.

III. BEARING RIGIDITY BASED FORMATION CONTROL

The main contribution of this work consists in the design
of a distributed controller aiming at stabilizing any hetero-
geneous formation undergoing the characterization of Sec. II
through the solution of the following problem.

Problem III.1 ((Bearing Based) Formation Stabilization).
For a given heterogeneous formation modeled as a general-
ized framework subject to (7), consider a desired formation
shape described by b∗K ∈ S2n(n−1) which is feasible mean-
ing that it exists a configuration x∗ such that b∗K = bK(x∗).

The (bearing based) formation stabilization problem consists
in asymptotically zeroing the shape error eK(x) ∈ R3n(n−1)

defined as
eK(x) = bK(x)− b∗K. (8)

Prob. III.1 is here faced resting on the main notions of the
bearing rigidity theory, applied to heterogeneous formations.

A. Preliminaries on Bearing Rigidity Theory

As for the homogeneous case, the bearing rigidity matrix
associated to a heterogeneous multi-agent system describes
the relation between the command vector and the time
derivative of the bearing measurements vector.

Definition III.1 (Bearing Rigidity Matrix). Given a for-
mation modeled as a generalized framework (G,x,H), the
bearing rigidity matrix is the matrix BG(x) ∈ R3m×c that
satisfies the relation ḃG

(
x
)

= BG
(
x
)
δ.

Note that, based on (4), the expression of the k-th row
block of BG

(
x
)

results as in (9). Moreover, the computation
of such a matrix allows to investigate the configuration
variations that affect the formation shape, i.e., the generally
called formation infinitesimal bearing rigidity property.

Definition III.2 (Infinitesimal Bearing Rigidity). A forma-
tion modeled as a generalized framework (G,x,H) is said
to be infinitesimal bearing rigid (IBR) if ker

(
BK
(
x
))

=
ker
(
BG
(
x
))

, where BK
(
x
)

is the bearing rigidity matrix
associated to the complete graph K.

B. Stabilization Control Law

Inspired by [2], [4], [8], [9], the bearing rigidity matrix is
here exploited in the solution of Prob.III.1. Indeed, account-
ing for the bearing error eG(x)∈R3m as

eG(x) = bG(x)− bG(x∗) = bG(x)− b∗G , (10)

it is possible to prove that its dynamics ėG(x) = ḃG(x) =
BG(x)δ asymptotically converges to zero by selecting the
command vector as follows with kc > 0 be a tunable gain

δ = kcB
>
G (x)b∗G . (11)

Proposition III.1. Given a generalized framework (G,x,H)
subject to (7), and a feasible bearing measurements vector
b∗G ∈ S2m, it holds that eG(x) = 03m is an asymptotically
stable equilibrium point for the dynamics of the bearing
error (10) driven by the control law (11), namely for the
system ėG(x) = −kcBG(x)B>G (x)eG(x).

Proof. Let consider the positive definite Lyapunov function

V(eG(x)) =
1

2kc
eG(x)>eG(x), (12)

whose derivative V̇(eG(x)) = −eG(x)>BG(x)B>G (x)eG(x)
is negative semi-definite since the product BG(x)B>G (x) is
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a positive semi-definite matrix for any x ∈ R3n × S3n. It
follows that eG(x) = 03m is a simple stable equilibrium
point for the bearing error dynamics, which converges
to the set Z = {eG(x) | x ∈ U(x∗), V̇(eG(x)) = 0},
where U(x∗) is a neighborhood of x∗. Now, exploiting
the properties of the adjoint operator, the definition (10)
and the fact that B>G (x)bG(x) = 0c due to (9), one can
realize that the equilibrium condition V̇(eG(x)) = 0 implies
that B>G (x)bG(x∗) = 0c. Then, accounting for the Taylor’s
expansion given x∗ = x + dx, it follows that

B>G (x)bG(x + dx) ' B>G (x)
(
bG(x) +∇xbG(x)dx

)
,

= B>G (x)∇xbG(x)dx. (13)

Hence, according to (7), there exists δ ∈ Ī such that

B>G (x)eG(x) ' −B>G (x)>∇xbG(x)D(q)Sδ. (14)

On the other hand, exploiting the chain rule, the relation (7)
and the bearing matrix definition, one can observe that

∇xbG(x)D(q)S = BG(x), (15)

leading to the conclusion that the condition V̇(eG(x)) = 0
implies B>G (x)BG(x)δ = 0c. In the light of this fact, given
that ker(B>G (x)BG(x)) = ker (BG(x)), the elements in the
set Z are associated to δ ∈ ker (BG(x)). Hence, eG(x) =
bG(x)−

(
bG(x) + BG(x)δ

)
= 03m belongs to Z .

Given these premises, it is then possible to prove that the
infinitesimal rigidity property introduced in Def. III.2 is a
sufficient condition for the solution of Prob. III.1.

Proposition III.2. Consider a desired formation shape de-
fined by b∗K∈S2

n(n−1). For any IBR generalized framework
(G,x,H) whose corresponding configuration x is in the
neighborhood U(x∗) of x∗ such that b∗K = bK(x∗), the
control law (11) solves the formation stabilization problem.

Proof. For any IBR generalized framework (G,x,H) with
x ∈ U(x∗), bG(x) = bG(x∗) implies bK(x) = bK(x∗),
and viceversa [3]. Thus the shape error (8) asymptotically
converges to zero as long as the bearing error (10) asymp-
totically converges to zero. This concludes the proof in the
light of Prop. III.1.

Denoting with Ni the set of neighbors of any i-th agent,
i ∈ {1 . . . n}, the control law (11) can be rewritten in terms
of agent commands as follows revealing its distributed nature

δp,i = −kc
∑
j∈Ni

ďijSp,i
>P>(bij)b

∗
ij

+ kc
∑

j:i∈Nj

ďijSp,i
>R>i RjP

>(bji)b
∗
ji,

δo,i = kc
∑
j∈Ni

So,i
>[bij ]

>
×b
∗
ij .

(16)

According to (16), each agent computes its commands ex-
ploiting the recorded bearing measurements (Ni) and those
gathered from the agents it is sensed by (j : i ∈ Nj)1.

1Since the interaction graph is assumed to be directed, the commands
computation has to be preceded with the measurement communication.

IV. NUMERICAL RESULTS

In this section, the outlined stabilization control law is
compared with a hierarchical combination of existing rigidity
based controllers designed for homogeneous formations: the
intent is both to show the effectiveness of the proposed
solution and to highlight its intrinsic structural simplicity.

A. Preliminary Comparative Assessment

The attention is focused on a heterogeneous formation
composed of three fully-actuated UAVs and four fully-
actuated UGVs. As per Prob. III.1, the control goal consists
in the stabilization of the given formation toward a desired
shape: at the beginning all the agents are randomly placed
on the (x, y)-plane of FW ; whereas, in the final desired
shape the UGVs are required to be located on the corners
of a square, while the UAVs fly over them in a triangular
configuration with a specific alignment between the two
planar shapes, as shown in Fig. 2a.

The performance of the controller (16) is evaluated w.r.t.
an ad-hoc strategy that hierarchically solves Prob. III.1 by
focusing on the two homogeneous sub-formations composed
of only UAVs and only UGVs. Such a strategy envisages
to control them in a separate and parallel way and to
simultaneously act adjusting the relative displacement p̄ ∈
R3 between the centers of mass, the relative orientation
q̄ ∈ S3 between the local frames of a generic couple made
of a UGV and a UAV, and the whole formation scale factor
ρ ∈ R+. More specifically, the rigidity based distributed
controllers proposed in [4], [8] are employed to steer the two
sub-formations so that their components achieve the desired
poses. In doing this, the aerial and ground sub-formations are
modeled as (homogeneous) frameworks (GA,xA) embedded
in SE(3)3 and (GG,xG) embedded in SE(2)4, respectively.
It is possible to verify that both (GA,xA) and (GG,xG) are
IBR according to the general definition given in [3]. Concur-
rently to the sub-formations stabilization, a leader-follower
inspired strategy is employed to adjust the parameters of
the whole formation. In practice, the multi-UGVs system
acts as leader defining the desired values of p̄, q̄, ρ, and,
consequently, the (follower) multi-UAVs system performs
the necessary shape-invariant movements, consisting in the
translation, the coordinated rotation (namely, rotations of all
the agents jointly with the equal rotation of the entire group)
and the uniform scaling of the whole sub-formation in FW .
Hereafter, the described control strategy is referred as multi-
action (MA) controller, while the stabilization law (16) is
indicated as single-action (SA) controller.

Fig. 2b reports the trajectories followed by the agents
from their initial to final positions (grey and black dots,
respectively) thanks to the implementation of the SA con-
troller (16). From Fig. 2c, instead, one can observe that
the agents trajectories are more complicated when the MA
controller is employed. This is due to the fact that the UAVs
are required to simultaneously reach their desired poses
and to rearrange w.r.t. the whole desired formation shape.
Conversely, the SA controller aims at equally distribute the
effort among all the agents (based on the sensing graph G).
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(a) Desired formation shape (b) SA controller (c) MA controller

Fig. 2: heterogeneous formation stabilization. (a) Desired formation shape - UAVs are represented by circles, UGVs by
squares; red arrows and blue arrows refer to the edges of GA and GG, respectively, the dark green edge is the one exploited
by the leader-follower controller. (b) Performance of the SA controller, (c) performance of the MA controller - the trajectories
of the UAVs are depicted in blue, the ones of the UGVs in black.

B. Monte-Carlo Campaign Validation

A Monte-Carlo (MC) simulative campaign has also been
conducted accounting for N = 100 different realizations
of initial conditions of the given formation stabilization
problem. To approximate real-world behavior, all bearing
measurements have been corrupted with additive Gaussian
noise having zero mean and standard deviation σ = 0.5°. In
particular, two different MC tests (with N runs each) have
been considered, highlighting the intrinsic trade-off between
stabilization speed and control effort.

The first evaluated performance index consists in the
formation settling time ts > 0, corresponding to the average
time required to align the bearing measurements to the
given desired ones with a certain tolerance. Formally, ts
is computed as the average time required by the following
quantity α(t) = 1

m

∑m
i=1 arccos

(
b>i (x(t))b∗i

)
to go below

a certain threshold selected as ᾱ = 0.75°. Motivated by
the MC approach, the Empirical Cumulative Distribution
Function (ECDF) is considered. This is defined as

F̂ts(t) =
1

N

N∑
k=1

1ts,k(t), (17)

where, for each k-th trial, the indicator function 1ts,k(t) is
equal to one when t ≥ ts and zero otherwise. Conversely,
the control effort is investigated through the computation of
the ECDF of the input energy required to reach the settling
condition. Formally, this is computed as

F̂Es
(E) =

1

N

N∑
k=1

1Es,k(E), (18)

where the indicator function 1Es,k(E) accounts for the
number of trials where E ≥ Es with Es =

∫ ts
0
‖δ(s)‖ds.

In the first MC test, the tunable parameters of the SA and
MA controllers have been set so that the two solutions turn
out to be equivalent in terms of control effort. The results are
reported on the top of Fig. 3. Observe that the proposed SA
controller (blue line) outperforms the MA controller (orange
line) as concerns the selling time (left panel). The trend of the
ECDF (17) is reported (right panel) also accounting for the
stabilization of the aerial and ground sub-formations in the

MA scenario (yellow and purple dashed lines). Two observa-
tions are in place. First, the UAVs achieve their desired poses
ten times faster than the UGVs: this highlights the key role
played by the underlying topology. Then, the gap between
the ECDF computed in correspondence of the ground multi-
agent system stabilization and of the MA controller employ-
ment points out that the settling time strongly depends on the
alignment between the two sub-formations. In this direction,
the slower sub-formation stabilization performance can be
interpreted as a lower bound for the settling time in case of
MA controller adoption.

The results of the second MC test are reported on the
bottom of Fig. 3. In this case, the parameters of the SA and
MA controllers are tuned so that the two approaches exhibit
the same settling times. In these conditions, the SA approach
requires a lower control effort (right panel) implying that
the outlined formation controller is more energy-efficient as
compared to the MA one but not more effective in terms of
settling time (left panel).

The table on the left of Fig. 3 summarizes the main results,
specifying the average settling times and the average settling
energies for both the MC tests2, and confirming the overall
better performance for the heterogeneous SA controller.

V. DISCUSSION

In this section, the principal aspects of the designed
heterogeneous formation control are highlighted. First, note
that the proposed distributed approach (16) depends on
relative bearing information but also also on the inter-agent
distances and relative orientations. Nonetheless, these last
can be estimated through distributed consensus algorithms
without employing additional sensors [10].

Then, contrarily to most of the existing formation sta-
bilization schemes, the designed control law (11) is not a
classical gradient descent procedure, distinguishing w.r.t. the
standard bearing based rigid formation controllers [4], [8],
[9]. However, taking into account (15), one can observe

2These results are given only in terms of average because the wide range
of MC realizations yields high values of variance over the whole spectrum
of simulations.
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SA MA

same ts 22.1s 32.6s
ctrl effort Es 1220 1212

same ts 30.9s 31.5s
setl time Es 829 1447

Fig. 3: results of MC tests - the table reports the average value of settling time and required energy, the figures shown the
trend of the ECDFs (17) (left) and (18) (right) in correspondence to the fisrt (top) and second (bottom) MC test.

that the proposed controller can be interpreted as a gradi-
ent descent solution followed by a re-projection operation
necessary to guarantee that the configuration derived from
the application of (11) is in R3n×S3n . Such a re-projection
is mainly due to the adopted rotation representation.

Finally, the proposed controller presents a single parameter
to tune, having a simple structure if compared with the hier-
archical MA approach introduced in Sec. IV. This, indeed,
results to be structurally more complex involving multiple
controllers operating at different levels (each of them, then,
involves one or more parameters to tune) and more de-
manding in terms of agents interactions (sub-formations are
required to communicate in a bilateral manner).

VI. CONCLUSION AND FUTURE WORKS

In this work, bearing rigidity theory is applied to hetero-
geneous multi-agent systems, confirming to be a powerful
tool to address the formation problem. In particular, the
bearing rigidity properties of heterogeneous systems emerge
from the agents state and measurement domains and from
the constraints imposed by the feasibility of their actuation.
These elements can be combined into specific selection
maps that allow a generalized and unifying approach to the
design of stabilization controllers. Numerical simulations are
presented and discussed to assess the theoretical findings.

The research avenues that can stem from this work are
many and regard both theoretical developments and appli-
cation scenarios, among which it is worthwhile to mention
the exploration of dynamically redundant rigidity schemes
for heterogeneous formations, the persistence of formations
with directed measurements, split and rejoin strategies for
application oriented hierarchical formation control.

APPENDIX

Observe that the commands computation (16) requires that
i-th agent is aware about the relative orientation qji w.r.t. the
j-th agent able to sense it. Such a quantity can be determined,
assuming that a generic pair of agents in the the group are
able to measure their relative distance and that the whole
formation is IBR. Hereafter, a rigidity based state estimation
procedure is described: its solution corresponds to the real
configuration, in terms of shape, up to a translation and/or
coordinated rotation of the whole multi-agent system.

Let denote by x̂ ∈ R3n×S3n the state estimate driven by
˙̂x = D(q̂)S(δL + δ) + us, (19)

where the vector q̂ ∈ S3n stack the estimation of the
agent orientation performed extending the approach pre-
sented in [9], the matrices D(·) and S play the same role as
in (7) and δL ∈ Rc is the bearing-based estimator input. In
detail, this is selected as

δL = keB
>
G (x̂)bG(x) (20)

so that, in static conditions, the the estimated configuration x̂
converges to the real one. To take into account time-varying
configurations, in (19) the feedforward term δ ∈ Rc is added
to the scale-matching component us ∈ R7n. This latter en-
sures that the scale of the estimated formation approximates
the real one. In this direction, a possible solution relies on the
exploitation of the measured inter-agent distance and apply
a simple proportional controller.
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