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Solutions to the Fermat–Weber
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Abstract—The pointing consensus problem asks each
agent in a multiagent system to agree on their headings to-
ward a common target. This paper proposes a decentralized
approach to the pointing consensus problem by simultane-
ously solving three smaller problems: bearing-only mea-
surement based network localization, target decision, and
heading coordination. The proposed solution guarantees
that all agents’ headings almost globally asymptotically tar-
get any weighted centroid of the agents’ positions. Further-
more, based on this approach, two decentralized solutions
for the Fermat–Weber location problem are proposed and
analyzed. Simulation results are also provided to support
the analysis.

Index Terms—Bearing-only measurements, decentral-
ized control, Fermat–Weber location problem (FWLP), mul-
tiagent systems, network localization.

I. INTRODUCTION

IN RECENT years, a lot of research interest has focused on
multiagent systems thanks to their ubiquitous applications

in civilian and military defenses. In this scheme, the consensus
algorithm [1] has been extensively studied as a decentralized
solution to coordinate a group of multiple agents. Given n agents
having different initial state values, by exchanging and updating
the states based on the weighted sum of differences, all agents’
states eventually reach the same value [1], [2]. The states of the
agents could be auxiliary variables used for decision and control
tasks [3], [4], or physical variables such as positions, velocities,
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and attitudes in the formation control or attitude synchronization
problem [5]–[7].

Unlike the usual consensus problem, the pointing consensus
(or concurrent targeting) problem requires all agents in a group
to direct their heading vectors toward a common point in space.
This problem found applications in satellite formations [8], an-
tenna arrays [9], and camera networks. For instance, pointing
consensus is important in coordinating multiple collectors and
combiner spacecrafts in synthetic aperture radars for space mis-
sions such as earth observation and studying evolution of black
holes or other planets [10], [11]. Furthermore, the operation of
large RF telescope arrays also require concurrence of individual
telescopes’ headings [12]. Finally, in smart camera networks,
pointing consensus can be used for monitoring or surveillance
purposes.

There have not been many works in the literature studying
the pointing consensus as a cooperative control problem. In an
earlier work, Zhang et al. [13] considered a concurrent targeting
problem where all agents are positioned along a straight line,
and there are two agents (leaders) with their heading vectors
pointed already to the target. The decentralized control law in
[13] is based on the geometric property of intersection angles
and is able to guide all headings to match with the intersection of
two leaders’ heading vectors. The pointing consensus protocol in
[14] relaxed the collinearity assumption on the agents’ positions.
However, the agents in [14] still need some pieces of a priori
information on the common target, given as a desired heading
vector for one leader agent and several subtended angles for the
other agents. Thus, even in the two-dimensional (2-D) space,
the pointing consensus problem has not been completely solved
in [13] and [14]. As observed in [14], a main challenge of
this problem is that the agents cannot consent their heading
vectors without some knowledge on their (relative) positions in
the space.

In this paper, we provide a decentralized solution to the
weighted centroid pointing consensus problem in the 3-D space.
We assume that each agent in the group has additional informa-
tion on some bearing vectors toward its neighbors. This assump-
tion is feasible for camera networks since the bearing vectors can
be obtained from the camera. From the bearing vector measure-
ments, the agents can estimate their positions in the network
up to a translation and a scaling if the framework defined by
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the bearing measurement graph and their positions is infinites-
imally bearing rigid (IBR) [15]. Next, for any given target in
the space, by considering the target as a special agent, it will be
shown that the target-and-n-agent framework is also IBR. Thus,
although the agents do not know their exact positions, if they
can obtain the estimated positions of itself and the target up to a
translation and a scaling, they can find the exact heading vectors
toward the target and control their heading vectors correspond-
ingly. Based on this argument, we propose a group’s centroid
pointing consensus strategy by solving three smaller problems,
namely, bearing-based network localization, target decision, and
heading coordination. For each subproblem, we propose a cor-
responding control law and show that the combination of these
control laws asymptotically directs all agents’ headings toward
the group centroid from almost all initial conditions. By employ-
ing this strategy, we achieve solutions of both the bearing-based
network localization and the concurrent targeting problems. As
formation control and network localization are dual problems, it
is worth mentioning that formation control with point tracking
objectives has been studied [16]–[18]. However, the work [16]
focused on forming a formation around a source in 2-D space
and the communication between the agents is restricted to be
a ring graph. In [17], the agents can achieve a target formation
and track the formation’s centroid simultaneously. However, the
work [17] assumed that the interagent distance measurements
are available and thus it is different from the bearing-based setup
in this paper. Also, the work [18] considered the task of building
a formation around a target point using only bearing measure-
ments. However, the control law in [18] only guarantees the
target formation to be locally achieved.

Next, we provide further discussions on the set of common
targets. It is shown that the set of constraints to determine the
common target should be invariant with respect to a transla-
tion and a scaling of the whole framework and is corresponding
to the set of weighted centroids of the positions of the agents.
By this argument, we modified our pointing consensus algo-
rithm so that the agents can target any weighted centroid of
their positions. Furthermore, we formulate a decentralized ver-
sion of the Fermat–Weber location problem (FWLP) [19] based
on our pointing consensus framework. The FWLP asks to find
the point that minimizes a weighted distance sum to a set of
n noncollocated points in the space. As an important problem
in operations research, the FWLP was extensively studied in a
centralized manner [19]–[21]. Differently from existing works
in the literature, we propose two decentralized solutions for
solving the FWLP based on a combination of the bearing-based
localization and finite-time consensus algorithms [22]. The two
proposed solutions are inspired from the Weiszfeld algorithm
and the gradient-descent algorithm, respectively [23], [24]. As-
suming the bearing-based network localization dynamics has
been at a steady state, in both proposed algorithms, the agents
run some finite-time consensus dynamics in a given time span
to calculate some auxiliary variables for updating an estima-
tion of the Fermat–Weber point. After updating the estimation,
each agent reinitializes the consensus dynamics with regard to
the new estimate of the Fermat–Weber point. Iterating these
processes, all agents asymptotically find the directions to the

precise solution of the FWLP. We note that in different discrete-
time formulations, this type of iterative algorithm has been stud-
ied, for example, in [4], [25]–[27]. A hybrid updating strategy
for distributed observers has also been proposed in [28] for lin-
ear systems. However, the approach and convergence result in
[28] are based on properties of linear systems. In contrast, the
proposed algorithms in this paper hinge on finite-time stability
theory [29].

We summarize the main theoretical contributions of this paper
as follows. The first contribution is a strategy to solve the point-
ing consensus problem for any weighted centroid of n agents’
positions. In solving the pointing consensus problem, an esti-
mation law for the bearing-based network localization problem
is proposed, the connection between bearing rigidity theory and
the pointing consensus problem is exploited, and the invariant
property of the constraints imposed on the common target is
also discussed. The second contribution is a decentralized for-
mulation and two bearing-based solutions of the FWLP. As far
as we know, decentralized solutions of the FWLP have not yet
been studied in the literature.

The rest of this paper is organized as follows. In Section II,
we formulate the problem and recall some background on bear-
ing rigidity theory. Next, in Section III, we propose a strategy
for the pointing consensus problem and study the system un-
der the proposed strategy. Then, we formulate and provide two
decentralized solutions to the FWLP in Section IV. Section V
contains the simulation results, and Section VI concludes the
paper.

Notations: The d-dimensional space is denoted by
Rd . Let y = [y1 , . . . , yd ]T be a vector in Rd . We denote
|y|α = [|y|α1 , . . . , |y|αd ]T, sig(y)α = [sgn(y1)|y1 |α , . . . , sgn
(yd)|yd |α ]T, and sgn(y) = [sgn(y1), . . . , sgn(yd)]T. The n× n
identity matrix is denoted by In . The n× 1 vector of all ones
is denoted by 1n . For a matrix A, we use N (A), R(A), and
r(A) to denote the nullspace, column space, and rank of A,
respectively. The orthogonal projection matrix corresponding to
a nonzero vector x ∈ R3 is defined as P x � I3 − xxT/‖x‖2 .
The matrix P x ∈ R3×3 is symmetric, positive semidefinite,
and idempotent (P x = P T

x = P 2
x ≥ 0). The nullspace of P x

is spanned by x, or, i.e., N (P x) = R(x).

II. PROBLEM FORMULATION

Consider an n-agent system (n ≥ 4) in a 3-D ambient space.
The location of each agent is unknown to itself and other agents.
However, these agents have information about a common global
reference frame. Information about the common global refer-
ence frame can be obtained distributedly by, for example, em-
ploying an orientation estimation strategy as in [30] and [31].
Let pi ∈ R3 , i ∈ I � {1, . . . , n}, be the fixed position vector
of the ith agent (ṗi(t) = 0).1

1The assumption on stationary agents is reasonable to model a camera
network. For a group of agents moving with the same linear velocity, i.e.,
ṗi = v, ∀i ∈ I, the analysis will not be different after making changes of vari-

ables with regard to the common velocity, e.g., p̃i = pi −
∫ t

0
vdτ and study

p̃i instead of pi [18].
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Fig. 1. Agent i does not know its position pi but can reference its
heading vector bi in a global coordinate frame. The rotational motion of
agent i’s heading vector along axis ai with rotational speed Ωi can be
equivalently represented as the linear velocity ṗ′i = Pbi

ui of the head
point p′i .

Let each agent i have a heading direction given by a unit
vector bi ∈ R3 , ‖bi‖ = 1, as depicted in Fig. 1. Suppose that
the agent can fully control its heading direction by rotating
the heading around the point pi . Defining p′i = pi + bi , the
rotational motion of bi is equivalent to the motion of the point
p′i around the sphere of length 1 centered at pi .

The orthogonal projection matrix corresponding to bi is given
as P bi

= I3 − bib
T
i . Using the projection matrix, we can write

the dynamics of the heading direction as

ṗ′i = P bi
ui (1)

where ui ∈ R3 is the control input to be designed. Then

ḃi =
d

dt

(
p′i − pi

‖p′i − pi‖
)

= P bi
ui (2)

where we have used the fact that ṗi = 0 in (2). Note that
the control input ui to change bi is introduced for design
and analysis purposes. The rotational motion of bi can be
equivalently found from (2) as follows: ḃi = ai ∧ bi , where
ai = bi ∧ P bi

ui , and “∧” denotes the cross product. The vec-
tor ai specifies the rotation plane and the angular velocity
‖ai‖ = ‖P bi

ui‖ = |Ωi |‖bi‖ = |Ωi |, as shown in Fig. 1. Also,
dynamics (2) can be considered as a single-integrator model
subjected to a motion constraint [32].

In many applications, we would like all agents’ headings to
target a common point in space. The common point may be a
target object[10], the centroid of all agents, or a location that
minimizes a logistic function. The pointing consensus problem
without position information has been shown to be a hard prob-
lem [13], [14]. In this paper, to remedy the lack of position
information, we assume that each agent can measure the direc-
tional information (or the bearing vectors) with regard to a few
neighboring agents. We will now formulate a pointing consen-
sus problem, in which all agents’ headings are desired to target
the weighted average of the agents’ positions.

A fixed, undirected graph G = (V, E) characterizes the
bearing sensing and information exchange graph between n
agents, with the vertex set V = {vi |i ∈ I} of |V| = n ver-
tices and the edge set E = {eij = (vi, vj )|i, j ∈ I × I, i �= j}
of |E| = m edges. Consider an arbitrary indexing of all edges

E = {e1 , . . . , em}, we use the following equivalent notations
for the same edge eki j

≡ ek ≡ eij . For a given orientation of
the edges, the incidence matrix H = [Hki ] ∈ Rm×n character-
izes the relationship between the vertices and the edges in G and
is defined such that Hki = −1 if the edge ek ∈ E leaves vi , 1 if
it enters vertex vi , and 0 otherwise [33].

If there is an edge eij ∈ E , two agents i and j can sense the
bearing vector and exchange information (i.e., with communi-
cation) with regard to each other. The bearing vector from agent
i to agent j is defined as

gij �
pj − pi

‖pj − pi‖
=

zij

‖zij‖ (3)

where zij � pj − pi is the displacement vector. It is easy to see
that gij ∈ R3 is a unit vector. Obviously, to define the bearing
vector gij , we require that two agents i and j are not col-
located, i.e., pi �= pj ,∀i, j ∈ I. Let p = [pT

1 , . . . ,pT
n ]T ∈ R3n

be the stacked vector of all agents’ position vectors. We call
p a configuration of the graph G, and G(p) a framework in
R3 . Let g = [. . . , gT

ki j
, . . .]T = [gT

1 , . . . , gT
m ]T ∈ R3m be the

stacked bearing vector. The bearing rigidity matrix is defined
by [15]

R(p) � ∂g

∂p
= diag

(
P gk

‖zk‖
)

(H ⊗ I3) ∈ R3m×3n . (4)

We assume that the framework G(p) is IBR [15], that is, the rank
of the bearing rigidity matrix is r(R(p)) = 3n− 4. Intuitively,
an IBR framework can be uniquely determined up to a transla-
tion and a scale factor from a set of bearing vectors {gij}(i,j )∈E .
For an IBR framework, the nullspace of R(p) is

N (R(p))=R([1n ⊗ I3 ,p])=R([1n ⊗ I3 ,p− 1n ⊗ pc ])

where pc �
∑n

i=1 pi/n is the group’s centroid.
Let the positions of the agents span R3 , i.e.,

R([p1 , . . . ,pn ]) = R3 . The convex hull [34], [35] of a set of n
points {p1 , . . . ,pn} contains all points satisfying

S =

{
n∑

i=1

ζipi

∣
∣
∣
∣
∣
ζi ≥ 0, and

n∑

i=1

ζi = 1

}

.

We will refer to a point in S such that ζi > 0,∀i ∈ I, as a
weighted centroid of {p1 , . . . ,pn} [17]. The positive number
ζi > 0 can be interpreted as the weight of agent’s i opinion in
deciding the common target of the pointing consensus problem.

Before stating the main problem, we list all main assumptions
as follows.

Assumption 2.1: The agents have knowledge about a
global reference frame. The time clocks of the agents are
synchronized.2 Each agent can control its heading vector ac-
cording to (2).

Assumption 2.2: The communication graph G of n agents
is fixed and undirected. The agents exchange their estimate
variables over the graph G. The framework G(p) is IBR.

2Note that it is important for the agents’ clocks to be synchronized. Although
this assumption is often preassumed in the literature, we emphasize this assump-
tion since timing is important in both pointing consensus and our later proposed
algorithms to the FWLP.
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Fig. 2. Example: A six-agent system and a common target. (a) Agents consent their heading directions into a common point p7 . The communication
links between six agents are denoted by black lines. (b) Information graph G. (c) Pointing graph (objective graph). (d) Union graph Ḡ.

The following section focuses on studying the following prob-
lem.

Problem 2.1: Given an n-agent system embedded in a 3-D
ambient space satisfying Assumptions 2.1 and 2.2, design a
decentralized control law for each agent using the bearing mea-
surements such that all agents’ headings asymptotically target a
weighted centroid of {p1 , . . . ,pn}.

III. DECENTRALIZED STRATEGY FOR WEIGHTED CENTROID

POINTING CONSENSUS

In this section, we study the Problem 2.1. We first show that
if the n-agent framework is IBR, then so is the union framework
of n agents and the target. Second, we propose a control strategy
comprised of three parts: 1) a bearing-based position estimation,
2) target determination, and 3) heading coordination to direct
all the agents’ headings toward the group’s centroid pc , which
is a specific weighted centroid of {p1 , . . . ,pn}. We provide a
mathematical analysis to support the effectiveness of our con-
trol strategy. It will be proven that the proposed strategy almost
globally asymptotically solves Problem 2.1 when the common
target is the group centroid. Finally, we provide further analysis
and show that the proposed centroid pointing consensus strat-
egy can be modified to solve the weighted centroid pointing
consensus problem in the 3-D space, or, i.e., Problem 2.1.

A. Bearing Rigidity and the Pointing Consensus Problem

Consider the n-agent system (n ≥ 4) with a correspond-
ing framework G(p) embedded in R3 . Let pn+1 be the de-
sired point that all agents’ headings should point toward. De-
fine the pointing graph P with the vertex set V̄ = V ∪ {vn+1}
and the edge set E(P) = {(vi, vn+1)|i ∈ I}. The pointing
graph P describes the group’s objective, that is, each edge
(vi, vn+1) implies that agent i needs to point toward the tar-
get point pn+1 . Further, we define the graph Ḡ = {V̄, Ē}, where
Ē = E ∪ E(P) = E ∪ {(vi, vn+1)|i ∈ I} as depicted in Fig. 2.
Also, let p̄ = [pT,pT

n+1]
T. Observe that Ḡ is a union graph

of the bearing measurement graph G and the pointing graph.
Since the agents have access to only the relative bearing vectors
{gij}ei j ∈E ≡ {gk}k=1,...,m , we can at best estimate the agents’
positions up to translations and scales. We have the following
result on the union framework Ḡ(p̄).

Fig. 3. Example: A six-agent system and a common target. (a) Con-
figuration of the union framework Ḡ(p̄). The configuration p̄ after (b) a
translation and (c) a dilation. For both cases (b) and (c), the agents’
headings still target a point (yellow).

Lemma 3.1: Suppose that G(p) is IBR. Then, the union
framework Ḡ(p̄) is IBR.

Proof: Note that we can treat the heading vectors
{bk}k=1,...,n and the bearing vectors {gk}k=1,...,m in the union
framework Ḡ(p̄) similarly since they are both unit vectors.
The construction of Ḡ can be decomposed into two steps. The
first step is constructing G1 by a Henneberg vertex addition
operation, that is, by adding the vertex vn+1 to the graph
G, together with edges connecting it to two previously exist-
ing vertices vi, vj ∈ V, i �= j so that pi ,pj , and pn+1 are not
collinear.3 It was shown in [36] that such an operation pre-
serves the IBR property. The second step adds n− 2 edges
(vk , vn+1), k ∈ I \ {i, j} to G1 to generate Ḡ. Then, it follows
from [36, Th. 2 and Lemma 6 ] that the framework Ḡ(p̄) is
IBR. �

Intuitively, Lemma 3.1 shows that by adding to an IBR graph
a vertex that is fully connected to all the original vertices does
not change the IBR property. Based on this lemma, if all agents’
heading vectors are pointing to a common point, their heading
vectors maintain pointing toward another common point when
the union framework Ḡ(p̄) is translated or scaled. This argu-
ment is illustrated in Fig. 3. Thus, if the agents can somehow
estimate their positions up to a translation and a scaling from
the bearing measurements, they can control their heading vec-
tors toward a common point determined by some distributed

3We can always find vi , vj to satisfy this condition because otherwise
p1 , . . . , pn are all collinear and thus G(p) cannot be IBR.
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Fig. 4. Suppose that the vector ĥi is fixed, the control law (7) rotates
bi to align with ĥi exponentially fast.

protocols between them, and the pointing consensus problem is
solved.

Note that the bearing-based network localization problem
has been studied in [37] and [38]. In [38], Zhao and Zelazo
assumed that there are several beacon nodes that have access
to their absolute locations and proposed a network localization
algorithm. Due to the existence of the beacon nodes, all other
nodes can estimate their precise locations under the proposed
algorithm in [38]. In the setup of this paper, since we assume no
beacon node, the agents can only estimate their positions up to
a translation and a scaling. It will be shown later that the agents
do not need their absolute positions to solve Problem 2.1.

Remark 3.1: In many existing works in the literature, rigid-
ity is important to the network localization or formation control
task and is often studied separately from other objectives. For
examples, the ideas of adding vertices and edges to an existing
rigid framework to build a larger rigid one for studying for-
mation control/network localization were presented in [33] and
[36]. The result in this section shows that rigidity is important
to both network localization and pointing consensus objectives.
Further, the two objectives can be combined and considered
simultaneously.

B. Centroid Pointing Consensus Strategy

Let agent i ∈ I in the system maintain an estimation of its
position in p̂i ∈ R3 . By communicating through the information
graph G, the agents exchange the current estimations with their
neighbors. Based on the exchanged estimations and bearing
measurements, the agent i updates its position estimation under
the following bearing-based estimation dynamics:

˙̂pi(t) = −
∑

j∈Ni

P ĝi j
gij

−
∑

j∈Ni

‖ĝij − gij‖P ĝi j
(sgn(P ĝi j

gij ) + nij ). (5)

Note that in (5), ẑij = p̂j − p̂i , ĝij = ẑij /‖ẑij‖, and

P ĝi j
= I3 − ĝij ĝ

T
ij can be calculated by agent i from its es-

timation and its neighbors’ estimations, while gij is measured
from agent i. The perturbation term nij (t) = [nij1 , nij2 , nij3 ]T

is a continuous time-varying vector satisfying ‖nij (t)‖ = ρ <
1, and nij = −nj i , ∀eij ∈ E .

The bearing-based estimation law (5) consists of two parts:
the first part −∑j∈Ni

P ĝi j
gij is the dual control law of the

Fig. 5. Example 3.1: A four-agent system under the strategy (5)–(7).
The true configuration p = [pT

1 , . . . , pT
4 ]T is different from the final es-

timated configuration p̂∗ = [p̂∗T1 , . . . , p̂∗T4 ]T only in a translation and a
scaling factor.

formation control law introduced in [15], and the remaining
part is an adjustment term introduced to guarantee a global
convergence of the estimation to the desired value. Note that
if there is no error between the sensed and estimated bearing
vectors ‖ĝij − gij‖ = 0,∀j ∈ Ni , this term vanishes.

Remark 3.2: The adjustment term nij (t) has been intro-
duced and discussed in formation control problems [39]–
[41]. The system ˙̂pi = −∑j∈Ni

P ĝi j
gij has an unde-

sired equilibrium point, which is unstable [15]. The term
nij (t) acts as a perturbation to drive the system out of
this undesired equilibrium. In this paper, we set nij (t) =
ρij [cos(σij t), sin(σij t) cos(σt), sin(σij t) sin(σt)]T. The pa-
rameters {ρij , σij}j∈Ni

, and σ are given to agent i. By select-
ing the parameters such that ρij = −ρji , 0 < |ρij | = ρ < 1,
∀(i, j) ∈ E , it is not difficult to check that ‖nij (t)‖2 = ρ < 1,
and nij = −nj i , ∀eij ∈ E .

Depending on application, the n agents may choose to consent
their heading vectors toward a specific point in space. In this
section, since we want all agents to point toward the centroid of
the n agents, the following decentralized centroid estimation and
pointing consensus dynamics for each agent i ∈ I are proposed:

˙̂qi(t) =
∑

j∈Ni

(q̂j (t)− q̂i(t)), q̂i(0) = p̂i(0) (6)

ḃi(t) = P bi
(q̂i(t)− p̂i(t)). (7)

Dynamics (6) is simply a consensus protocol used to determine
the centroid of n estimated points p̂i(0), i ∈ I, so that the vari-
able q̂i(t) contains the estimation of p̂c (the estimated group’s
centroid) by agent i at time t. Meanwhile, the pointing dynam-
ics (7) guides the heading vector bi to the true centroid. In (7),
ĥi(t) = q̂i(t)− p̂i(t) is an estimation of the displacement vec-
tor from agent i toward the group’s centroid and is time varying.
The control law (7) was taken from [14] and [41] and its con-
cept is illustrated in Fig. 4. In summary, our proposed centroid
pointing strategy consists of three control laws (5)–(7) running
simultaneously.

Example 3.1: To explain the concept of the pointing consen-
sus strategy (5)–(7), consider a four-agent system as depicted
in Fig. 5. The true configuration is p = [pT

1 , . . . ,pT
4 ]T. Initially,

agent i’s heading vector is bi(0), it makes a random estimation
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p̂i(0) and initializes q̂i(0) = p̂i(0). Under (5)–(7), p̂i(t)→ p̂∗i ,
p̂c(t) ≡ p̂∗c =

∑4
i=1 p̂∗i /4, q̂i(t)→ p̂∗c , and bi(t)→ b∗i ,∀i =

1, . . . , 4. Let p̂∗ = [p̂∗T1 , . . . , p̂∗T4 ]T be the final estimated con-
figuration, G(p) is bearing congruent [15] to G(p̂∗) (i.e.,

pj −pi

‖pj −pi ‖ =
p∗j −p∗i
‖p∗j −p∗i ‖ ,∀i �= j). Also, let p̄ = [pT

1 , . . . ,pT
4 ,pT

c ]T

and ¯̂p∗ = [p̂∗T1 , . . . , p̂∗T4 , p̂∗Tc ]T, Ḡ(p̄) is bearing congruent to
Ḡ(¯̂p∗) (see Lemma 3.1). It follows that b∗i = pc−pi

‖pc−pi ‖ = h∗i
‖h∗i ‖ ,

where h∗i = p̂∗c − p̂∗i . Thus, the heading vectors bi asymptoti-
cally point to the group’s centroid pc .

C. Stability Analysis

In this section, we will show that the proposed strategy
(5)–(7) asymptotically drives all agents’ headings toward their
centroid. Let each agent initialize a random position esti-
mation p̂i(0). Without loss of generality, we can assume
that these initial estimated values are all different. Let p̂ =
[p̂T

1 , . . . , p̂T
n ]T, g = [gT

1 , . . . , gT
m ]T, n = [nT

1 , . . . ,nT
m ]T with

nk = [nk1 , nk2 , nk3 ]T ∈ R3 , k = 1, . . . , m, and H̄ = H ⊗
I3 , we can rewrite (5) in the following compact form:

˙̂p = H̄
Tdiag

(
P ĝk

)
g

+ H̄
Tdiag

(
P ĝk
‖ĝk − gk‖

)
(sgn(diag(P ĝk

)g) + n)

= R̃(p̂)T(g+diag(‖ĝk−gk‖I3)(sgn(diag(P ĝk
)g)+n))

(8)

where R̃(p̂) � diag(‖ẑk‖I3)R(p̂). Defining p̂c �
(
∑n

i=1 p̂i)/n and s(p̂) �
√∑n

i=1 ‖p̂i − p̂c‖/n as the
estimated group’s centroid and scale, respectively, we have the
following lemma.

Lemma 3.2: Given the initial estimations p̂i(0),∀i ∈ I, un-
der the estimation dynamics (5), the estimated group’s centroid
and scale are time invariant.

Proof: Note thatN (R̃(p̂)) = N (R(p̂)). From (8) and prop-
erties of the bearing rigidity matrix R(p̂), we have ˙̂p ⊥
R([1n ⊗ I3 , p̂− 1n ⊗ p̂c ]), where ⊥ denotes orthogonality.
Thus, by writing p̂c = (1T

n ⊗ I3)p̂/n and s(p̂) = ‖p̂− 1n ⊗
p̂c‖/

√
n, it follows that

˙̂pc = (1T
n ⊗ I3) ˙̂p/n = 0, ṡ(p̂) =

(p̂− 1n ⊗ p̂c)T ˙̂p√
n‖p̂− 1n ⊗ p̂c‖

= 0

or, i.e., p̂c and ṡ(p̂) are time invariant. �
Several remarks can be made from Lemma 3.2. First, since

the sum
∑n

i=1 p̂i(t) is time invariant under (5), we can initi-
ate q̂i(0) = p̂i(0) in (6) without worrying about dynamics (5).
Second, the invariance of the group’s centroid and scale gives a
constraint on the number of equilibria of (5). Finally, the esti-
mation values will not diverge when evolving under (5) because
otherwise the group’s centroid (p̂c ) and the scale s(p̂) (which
is mathematically the mean of deviation of the estimations p̂i ,
∀i ∈ I, with regard to the group’s centroid) cannot be invariant.

Next, we study convergence of the estimation law (5).
Since (5) is a nonsmooth control law, we consider the solu-
tion of (8) in the Filippov sense [42], [43]. For brevity, we
denote η = diag(P ĝk

)g = [ηT
1 , . . . ,ηT

m ]T, where each ηk =

[ηk1 , ηk2 , ηk3 ]T is a vector in R3 . Then, for almost all time

˙̂p ∈ H̄
Tdiag

(
P ĝk

)
(η+diag(‖ĝk−gk‖I3)(K[sgn](η) + n))

(9)
where K[f ](x) denotes the Filippov set-valued mapping of
f(x), and “∈” denotes the differential inclusion.

Let p̂∗ � [p̂∗T1 , . . . , p̂∗Tn ]T ∈ R3n be the point satisfying:
1) centroid: (1T

n ⊗ I3)p̂∗/n = p̂c , 2) scale: s(p̂∗) = s(p̂), and
3) at p̂∗, the bearing vectors are ĝij = gij ,∀eij ∈ E . It can be
checked that p̂∗ exists and is an equilibrium of (8) [15]. Let ẑ∗ =
[. . . ,z∗Tij , . . .]T = [z∗T1 , . . . ,z∗Tm ]T, then ẑ∗ = diag(‖ẑ∗k‖I3)g.
We have the following theorem.

Theorem 3.1: Suppose that Assumptions 2.1 and 2.2 are sat-
isfied and p̂i(0) �= p̂j (0),∀i �= j. Under the estimation law (5),
p̂∗ is globally asymptotically stable.

Proof: Consider the Lyapunov function V = 1
2 ‖p̂− p̂∗‖2 ,

which is positive definite, continuously differentiable, and ra-
dially unbounded. At each point p̂, we have ∂V = (p̂− p̂∗).
Then, V̇ exists almost everywhere (a.e.) and V̇ ∈a.e. ˙̃V , where

˙̃V =
⋂

ξ∈∂V

ξT ˙̂p

= (p̂− p̂∗)TH̄
Tdiag(P ĝk

)

·
(
η + diag(‖ĝk − gk‖I3)(K[sgn](η) + n)

)

= − ηTdiag(‖ẑ∗k‖I3)

·
(
η + diag(‖ĝk − gk‖I3)(K[sgn](η) + n)

)

≤ −
m∑

k=1

‖ẑ∗k‖
(
ηT

kηk + ‖ĝk − gk‖(ηT
kK[sgn](ηk )

− |ηT
knk |)

)
.

From property of the sgn function, we have ηT
kK[sgn](ηk ) =

∑3
l=1 |ηkl | = ‖ηk‖1 . Further, for nk = [nk1 , nk2 , nk3 ]T,

it holds |nkl | ≤
√∑3

l=1 n2
kl = ‖nk‖,∀l = 1, 2, 3. Thus,

|ηT
knk | ≤

∑3
l=1 |ηklnkl | ≤

∑3
l=1 |ηkl ||nkl | ≤ ρ

∑3
l=1 |ηkl | =

ρ‖ηk‖1 . By combining these inequalities, it follows that

˙̃V ≤ −
m∑

k=1

‖ẑ∗k‖ηT
kηk −

m∑

k=1

(1− ρ)‖ẑ∗k‖‖ĝk − gk‖‖η‖1

≤ −
m∑

k=1

‖ẑ∗k‖ηT
kηk ≤ 0. (10)

Note that ˙̃V = 0 if and only if ĝk = gk ,∀k = 1, . . . , m, or
ĝk = −gk ,∀k = 1, . . . , m. However, the configuration corre-
sponding to ĝk = −gk ,∀k = 1, . . . , m, is not an equilibrium of
(9) due to the adjustment term n. Therefore, based on LaSalle’s
invariance principle for nonsmooth system [42], p̂(t) globally
asymptotically converges to p̂∗. �

Theorem 3.2: Under Assumptions 2.1 and 2.2, p̂ = p̂∗ is a
locally exponentially stable equilibrium of (8).
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Proof: From inequality (10), we can follow similar steps as
in [15, Th. 11] to prove the claim. �

Let p̂∗c �
∑n

i=1 p̂∗i /n, since the formation centroid is time
invariant, it follows that p̂∗c ≡ p̂c(t),∀t ≥ 0. Considering the
consensus protocol (6), the following result is canonical.

Theorem 3.3: Under Assumptions 2.1 and 2.2, q̂i(t) expo-
nentially converges to p̂∗c , ∀i ∈ I.

Proof: Under Assumption 2.2, G(p) is IBR. This implies
that G is connected. Thus, under the consensus protocol (6),
q̂i(t) converges to

∑n
i=1 q̂i(0)/n =

∑n
i=1 p̂i(0)/n = p̂c(0) =

p̂∗c exponentially fast [1], [2]. �
Consider the pointing dynamics (7). Let h∗i � p̂∗c − p̂∗i , we

can rewrite (7) as follows:

ḃi = P bi
h∗i︸ ︷︷ ︸

�f i (bi )

+P bi

(
−h∗i + ĥi(t)

)

︸ ︷︷ ︸
�ri (t)

. (11)

The heading control input (11) consists of two parts: the first part
[f i(bi)] depends only on bi and the second part [ri(t)] depends
on the estimation dynamics (5)–(6). The following lemma states
that the inputs only change the direction, and not the magnitude,
of the heading vector bi .

Lemma 3.3: Under the control strategy (5)–(7), ‖bi(t)‖ = 1,
∀i ∈ I, and ∀t ≥ 0.

Proof: It can be verified that bT
i ḃi = bT

i P bi
ĥi = 0 since

bT
i P bi

= 0T
d . As a result, ‖bi(t)‖ = ‖bi(0)‖ = 1, ∀t ≥ 0. �

The following lemma is about the external input ri(t).
Lemma 3.4: Suppose that Assumptions 2.1 and 2.2 hold.

Then, the input ri(t) in (11) is bounded and ‖ri(t)‖ → 0 expo-
nentially fast.

Proof: To show the boundedness property, we em-
ploy the following inequality ‖ri(t)‖ = ‖P bi

(−h∗i + ĥi)‖ ≤
‖P bi

‖(‖h∗i ‖+ ‖ĥi‖). Note that ‖P bi
‖ = 1, ‖h∗i ‖ is bounded,

and ‖ĥi‖ ≤ ‖q̂i‖+ ‖p̂i‖ is also bounded due to Theorems 3.1
and 3.3. Thus, ri(t) is bounded. Moreover, it follows from The-
orems 3.1 to 3.3 that

ĥi(t) = q̂i − p̂i → p̂∗c − p̂∗i = h∗i

exponentially as t→∞. Therefore, ‖ri(t)‖ = ‖ĥi − h∗i ‖ → 0
as t→∞ and the convergence is exponentially fast. �

Next, we consider the system

ḃi = f(bi) = P bi
h∗i (12)

which is the system (11) without the input r(t). For h∗i �= 0, we
have the following lemma whose proof is similar to the proof of
[14, Lemma 3.1] and will be omitted.

Lemma 3.5: System (12) has two equilibria bi = ±b∗i , where
b∗i = h∗i /‖h∗i ‖. The equilibrium bi = b∗i is almost globally ex-
ponentially stable and the equilibrium bi = −b∗i is (exponen-
tially) unstable.

We can now state the main result of this section.
Theorem 3.4: Suppose that Assumptions 2.1 and 2.2 hold.

Under the control strategy (5)–(7), all agents’ headings asymp-
totically point toward the group’s centroid for almost all initial
estimates p̂(0).

Proof: Based on Lemma 3.4, for the heading vector bi(t)
to maintain at the undesired equilibrium bi(t) ≡ −b∗i , it is

required that ri(t) ≡ 0 and bi(0) = −b∗i . Next, ri(t) ≡ 0
implies that ˙̂qi(t) ≡ 0, ˙̂pi(t) ≡ 0 and either q̂i(t)− p̂i(t) ∈
R(b∗i ) or q̂i(t) = p̂i(t). Notice that ˙̂qi(t) ≡ 0 implies that
q̂i(0) = p̂∗c , and ˙̂pi(t) ≡ 0 implies p̂i(0) = p̂∗i . Thus, there are
two cases: (i) q̂i(0) = p̂∗c and p̂i(0) = p̂∗i , or (ii) q̂i(0) = p̂∗i
and p̂i(0) = p̂∗i . Since we only consider p̂i(0) �= p̂j (0) for all
i, j ∈ I, i �= j, both cases (i) and (ii) lead to contradictions and
thus bi will not stay at the undesired equilibrium bi = −b∗i .

Consider the Lyapunov function V = 1
2 ‖bi − b∗i ‖2 , which is

positive definite and continuously differentiable. At any point
bi ∈ R3 , we have

V̇ = (bi − b∗i )
TP bi

h∗i + (bi − b∗i )
TP bi

(
ĥi(t)− h∗i

)

= −b∗Ti P bi
h∗i − b∗Ti P bi

(
ĥi(t)− h∗i

)

≤ −‖h∗i ‖b∗Ti P bi
b∗i + ‖b∗Ti P bi

(
ĥi(t)− h∗i

)‖
≤ −βib

∗T
i P bi

b∗i + ‖b∗Ti P bi
‖‖ĥi(t)− h∗i ‖ (13)

where βi = ‖h∗i ‖ > 0. It follows from Lemma 3.4 that there
exist δi, γi > 0 such that ‖ĥi(t)− h∗i ‖ ≤ βiδie

−γi t . Thus

V̇ ≤ −βi‖P bi
b∗i ‖
(‖P bi

b∗i ‖ − δie
−γi t
) ≤ 1

4
βiδ

2
i e−2γi t

where the inequality holds if and only if ‖P bi
b∗i ‖ = δi

2 e−γi t .
Thus

V (∞)− V (0) ≤
∫ ∞

0

1
4
βiδ

2
i e−2γi τ dτ =

βiδ
2
i

2γi
(14)

which shows that V is bounded. Consider the function

W =
∫ t

0
b∗Ti P bi

(
ĥi(τ)− h∗i

)
dτ (15)

which is bounded because

‖W‖ ≤
∣
∣
∣
∣

∣
∣
∣
∣

∫ t

0
b∗Ti P bi

(
ĥi(τ)− h∗i

)
dτ

∣
∣
∣
∣

∣
∣
∣
∣

≤
∫ t

0
‖b∗Ti P bi

(
ĥi(τ)− h∗i

)‖dτ

≤
∫ t

0
‖b∗Ti P bi

‖‖ĥi(τ)− h∗i ‖dτ

≤
∫ t

0
βiδie

−γi τ dτ ≤ βiδi

γi
(1− e−γi t). (16)

Consider U = V + W , then U is lower bounded, and

U̇ = V̇ + Ẇ = −βi‖P bi
b∗i ‖2 ≤ 0. (17)

Since ‖ḃi‖ = ‖P bi
b∗i ‖ ≤ ‖P bi

‖‖b∗i ‖ = 1, ḃi is bounded and
thus so is Ü . By Barbalat’s lemma, limt→∞ U̇ = 0. Thus,
‖P bi

b∗i ‖ → 0, or, i.e., bi → ±b∗i as t→∞. However, the sys-
tem (7) could not stay at bi = −b∗i according to the discus-
sion at the beginning of the proof. Therefore, we conclude that
bi → b∗i ,∀i ∈ I, as t→∞. �

We have several remarks to conclude this section.
Remark 3.3: The bearing-based position estimation dynam-

ics (5) may fail if at some time t, there exists p̂i(t) = p̂j (t),
for (vi, vj ) ∈ E , and thus ĝij is undefined. In this situation, we
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can follow [15] to obtain a sufficient condition on the initial es-
timation of {p̂i(0)}i∈I so that p̂i(t) �= p̂j (t),∀i, j ∈ I. Other
possible resolutions include reinitializing dynamics (5) if fail-
ure happens, or running (5) with a few sets of different initial
estimations to reduce the possibility of computation failure.

Remark 3.4: As the agents do not have information on their
global positions, they cannot localize the correct position of pc .
However, they can determine precisely the direction toward pc

and point toward it. If there are few agents having their global
positions and acting as beacon nodes, all agents can estimate
their true positions as well as the true position of pc .

Remark 3.5: From the proposed strategy, if we replace the
heading dynamics (7) by

ḃi(t) = P bi
q̂i(t) (18)

all agents will asymptotically point to the same direction
pc/‖pc‖ as t→∞. On the other hand, if we omit the target
decision dynamics (6) and replace the heading dynamics (7) by

ḃi(t) = P bi
(0− p̂i(t)) = −P bi

p̂i(t) (19)

then the control laws (5), (19) asymptotically drive all the
agents’ headings to a common point. In general, if there ex-
ists a leader agent who selects a virtual target point p̂t and sends
this information to other agents, then under (5) and ḃi(t) =
P bi

(p̂t − p̂i(t)), we have h∗i = p̂t − p̂∗i and the agents’ head-
ings will target pt satisfying pt−pi

‖pt−pi ‖ = p̂t−p∗i
‖p̂t−p∗i ‖ ,∀i ∈ I.

D. Further Analysis on the Desired Target Point

In this section, we discuss the target point in the pointing
consensus problem. In general, dynamics (6) can be replaced
by a more general target decision dynamics, which estimates
p̂n+1—an estimation of the target point pn+1 . The target point
pn+1 satisfies a set of predefined constraints. To guarantee that
the agents can consent their headings toward pn+1 asymptoti-
cally under our proposed pointing consensus strategy, the set of
constraints cannot be arbitrarily chosen.

When the estimation dynamics (8) is at its equilibrium, the
agents can estimate the configuration p up to a translation and
a scaling. Thus, we can write

p = ks(p̂∗ −Δ⊗ 1n ) (20)

where p̂∗ is the desired equilibrium of the estimation dynamics
(8), 0 �= ks ∈ R denotes a scale factor, and Δ ∈ R3 is a trans-
lation vector. Moreover, as the union framework Ḡ(p̄) is IBR, it
follows that

p̄ = ks(¯̂p∗ −Δ⊗ 1n+1) (21)

where ¯̂p∗ = [p̂∗T1 , . . . , p̂∗Tn , p̂∗Tn+1]
T ∈ R3(n+1) .

Let f(p̄) = f(p1 , . . . ,pn ,pn+1) = 0 be the set of con-
straints that the target point needs to satisfy and assume that
the set of constraints is sufficient to solve for pn+1 . Then, we
have the following result.

Theorem 3.5: The agents can determine the directions to-
ward the designed target if and only if the set of constraints
f(p̄) = 0 that the target point needs to hold is invariant with

respect to a translation and a scaling of the whole framework
Ḡ(p̄), or, i.e., the set of constraints satisfies (21).

Proof: (Necessity) Suppose that the constraints f(p̄) = 0
are invariant with respect to a translation and a scaling of
the whole framework. It follows that f(p̄) = f(ks(¯̂p∗ −Δ⊗
1n+1)) = f(¯̂p∗) = 0. Thus, the estimated target point p̂∗n+1
satisfies f(¯̂p∗) = 0. This implies that the agents can determine
p̂∗n+1 from the estimated positions p̂∗i ,∀i ∈ I, and the constraint
f(¯̂p∗) = 0.

(Sufficiency) Suppose that the agents can determine the di-
rections toward the designed target. Since the agents can es-
timate their positions p̂∗i , i ∈ I, differently from their precise
positions by a translation and a scale factor, they can estimate
the target p̂∗n+1 by solving f(¯̂p∗) = f(p̂∗1 , . . . , p̂

∗
n , p̂∗n+1) = 0.

Suppose that f(p̄) = 0 is not invariant with respect to a
translation and a scaling of the framework, or, i.e., f(¯̂p∗) =
f(p̂∗1 , . . . , p̂

∗
n , p̂∗n+1) �= 0. Then, the agents cannot correctly de-

termine p̂∗n+1 , which implies that they cannot point toward the
designed target. This leads to a contradiction. Thus, f(p̄) = 0
needs to hold with respect to a translation and a scaling of the
whole framework to guarantee that the agents can determine
precisely the directions toward the designed target. �

Note that invariant properties are often present in problems
in multiagent systems. Theorem 3.5 is about bearing rigidity (or
parallel rigidity) preserving motions [44]. Other invariances in
network systems can be found in the literature, for example, see
[45] and [46].

We will discuss in detail two special classes of the target point
to illustrate Theorem 3.5. First, considering the following linear
constraint:

f(p̄) =
n+1∑

i=1

aipi = 0, and
n+1∑

i=1

ai = 0 (22)

where ai ∈ R, i = 1, . . . , n + 1, we prove the following theo-
rem.

Theorem 3.6: Constraint (22) is invariant with respect to a
translation, a scaling, and a rotation of the whole framework.

Proof: Since (22) is linear, we can separately check the in-
variance of (22) with respect to each operator.

1) Translation: Let p̂∗i = pi + Δ,∀i = 1, . . . , n + 1. Then

f(p̄∗) =
n+1∑

i=1

aip
∗
i =

n+1∑

i=1

aip
∗
i +

(
n+1∑

i=1

ai

)

Δ = 0.

2) Scaling: Let ¯̂p∗ = ks(p̄−Δ⊗ 1n+1). It follows that

f(¯̂p∗) =
n+1∑

i=1

ai p̂
∗
i

= ks

n+1∑

i=1

aipi + ks

(
n+1∑

i=1

ai

)

Δ = 0.

3) Rotation: Without loss of generality, consider the rotation
about p1 by the rotation matrix Q ∈ SO(3). We have
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p̂∗i − p̂∗1 = Q(pi − p1), i = 1, ..., n + 1. Then

f(¯̂p∗) =
n+1∑

i=1

ai p̂
∗
i =

n+1∑

i=1

ai(p̂∗1 + Q(pi − p1))

=

(
n+1∑

i=1

ai

)

p̂∗1 + Qf(p̄)−Q

(
n+1∑

i=1

ai

)

p1

= 0.

Thus, (22) is invariant with respect to a translation, a scaling,
and a rotation of the whole framework. �

Now, suppose further in (22) that ai > 0,∀i ∈ I, and the po-
sition estimation dynamics (5) is at equilibrium p̂ = p̂∗. Let the
target decision dynamics (6) in our proposed pointing consensus
strategy be replaced by

ai
˙̂qi(t) =

∑

j∈Ni

(q̂j (t)− q̂i(t)), q̂i(0) = p̂∗i ∀i ∈ I. (23)

From [1, Corollary 3], we have
∑n

i=1 ai q̂i(t) =∑n
i=1 ai q̂i(0) =

∑n
i=1 aip

∗
i = −an+1 p̂

∗
n+1 ,∀t ≥ 0 and

q̂i(t)→
∑n

i=1 ai q̂i(0)
∑n

i=1 ai
=
−an+1 p̂

∗
n+1

−an+1
= p̂∗n+1

as t→∞. Thus, dynamics (23) can asymptotically determine
the target satisfying constraint (22). On the other hand, consider
constraint (22). It is easy to check that the target point satisfies
p̂∗n+1 =

∑n
i=1

ai∑ n
i = 1 ai

p̂∗n . Let ζi � ai∑ n
i = 1 ai

, it is clear that ζi >

0 and
∑n

i=1 ζi =
∑n

i=1
ai∑ n

i = 1 ai
= 1, which implies that p̂∗n+1

is a weighted centroid of {p̂∗1 , . . . , p̂∗n}. We can thus state the
following theorem whose proof is similar to Theorem 3.4 and
will be omitted.

Theorem 3.7: Suppose that the Assumptions 2.1 and 2.2 hold
and each agent i knows ai > 0. Under the control strategy (5),
(7), (23), all agents’ headings asymptotically target the weighted
centroid of {p1 , . . . ,pn} given by pn+1 =

∑n
i=1

ai∑ n
i = 1 ai

pn .
Remark 3.6: In Theorem 3.7, if the position estimation dy-

namics (6) is not at equilibrium, the dynamic average consensus
proposed in [47] or [48] can be used instead.

Next, we revisit the group’s centroid in light of Theorem 3.6.
By rewriting equation pn+1 ≡ pc = 1

n

∑n
i=1 pi as

1
n

n∑

i=1

pi − 1 · pn+1 = 0

and denoting ai = 1/n,∀i ∈ I, and an+1 = −1, it follows that∑n+1
i=1 ai = 0. Thus, the centroid’s equation belongs to the class

of constraints (22).
Remark 3.7: The class of constraints

f(p̄) =
n+1∑

i=1

aipi + c = 0, and
n+1∑

i=1

ai = 0 (24)

where ai ∈ R, i = 1, . . . , n + 1, 0 �= c ∈ R3 , is not invariant
under translation and scaling. Due to the bias term c, the es-
timated target point will have an offset depending on both the
initial value of p̂(0) and c.

Finally, consider the class of bearing-only dependent con-
straints

f(p̄) = f(b̄) (25)

where b̄ = [. . . , bT
ij , . . .]

T such that (vi, vj ) ∈ Ē , we also have
the following invariant theorem.

Theorem 3.8: Constraint (25) is invariant with respect to a
translation and a scaling of the whole framework.

Proof: Due to the IBR property of Ḡ(p̄) and according to
Theorem 3.1, we have g∗ij = gij ,∀(vi, vj ) ∈ Ē . It follows that
f(p̄∗) = f(b̄∗) = f(b̄) = f(p̄). Thus, the invariant properties
of (25) are trivially satisfied. �

IV. DECENTRALIZED BEARING-BASED SOLUTIONS TO

THE FWLP

In this section, we propose a strategy to solve the well-
known FWLP in a decentralized manner based on only bearing
vector measurements. We first introduce and reformulate the
FWLP into a decentralized pointing consensus setup. Then,
two decentralized solutions to the FWLP will be proposed
based on the strategy (5)–(7) in the previous section. Finally,
we provide analysis on convergence of the proposed control
laws.

A. Fermat–Weber Location Problem

Consider n noncollocated points at pi ∈ R3 , ∀i ∈ I. For a
set of positive weights ωi > 0,∀i ∈ I, the FWLP [23] is stated
as follows: “Find the point in R3 that minimizes the weighted
distance sum f(q) =

∑n
i=1 ωi‖q − pi‖.” Equivalently, it is re-

quired to find q∗ ∈ R3 such that

q∗ = arg min
q∈R3

f(q). (26)

The minimum q∗ is often called the Fermat–Weber point of the
set of n given points. If ωi = 1,∀i ∈ I, the solution q∗ of (26) is
called the geometric median of n points. A lot of studies related
to the FWLP can be found in the literature, see [19]–[21], [49],
for example. The following lemma is about the existence and
uniqueness of the solution of the FWLP.

Lemma 4.1: [19, Th. 1] There exists a unique q∗ minimiz-
ing the function f(q). This minimum is characterized by the
following optimality conditions.

1) If there exists q∗, different from all pi , i ∈ I, for which

n∑

i=1

ωi
q∗ − pi

‖q∗ − pi‖
= 0 (27)

then this q∗ is the minimum.
2) If for some j ∈ I we have

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n∑

i=1;i �=j

ωi

pj − pi

‖pj − pi‖

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
≤ ωj (28)

then this pj is the minimum.
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B. Decentralized Formulation of the FWLP

Consider a multiagent system consisting of n individual
agents satisfying Assumptions 2.1 and 2.2. We further make
the following assumption on the solution of the FWLP.

Assumption 4.1: Each agent i is given a strictly positive
scalar weight ωi . The unique minimum q∗ ∈ R3 of f(q) satis-
fies condition (27).

Remark that Assumption 4.1 is to assure that the Fermat–
Weber point q∗ is located in the convex hull of {p1 , . . . ,pn}
and noncollocated with all pi , i ∈ I. We can now state a decen-
tralized pointing consensus formulation of the FWLP as follows.

Problem 4.1: Given an n-agent system satisfying Assump-
tions 2.1, 2.2, and 4.1, design a decentralized control law us-
ing only bearing information such that all agents’ headings
bi ,∀i ∈ I, asymptotically point toward the solution q∗ of the
FWLP.

In other words, we would like to solve a pointing consensus
problem when the Fermat–Weber point is the common target,
i.e., bi → b∗i = q∗−pi

‖q∗−pi ‖ ,∀i ∈ I, where b∗i satisfy
∑n

i=1 ωib
∗
i =

0.
In Problem 4.1, constraint (27) depends only on the bear-

ing vectors. Thus, constraint (27) belongs to the class of con-
straints (25). Let pn+1 = q∗ and ai = ωi

‖pn + 1−pi ‖ ,∀i ∈ I, we
can rewrite (27) as follows:

n∑

i=1

ωi

‖pn+1 − pi‖
(pn+1 − pi) = 0

or,
n∑

i=1

aipi −
(

n∑

i=1

ai

)

pn+1 = 0. (29)

By denoting an+1 = −∑n
i=1 ai , it follows that

∑n+1
i=1 ai = 0.

Equation (29) has form of constraint (22), which shows that the
Fermat–Weber point is in the convex hull of {p1 , . . . ,pn} [21].
However, since ai = ai(pi ,pn+1) depends on the positions,
(29) does not belong to class (22).

C. Proposed Solutions

In the literature, a well-known solution to the FWLP is
Weiszfeld’s algorithm, which is a discrete-time iterative algo-
rithm [19], [20]. Weiszfeld’s algorithm is centralized since it
requires information of all positions pi , ∀i ∈ I. A continuous-
time control law to reach to the minimum using only local
bearing measurements was introduced in [24]. Other than [24],
we are not aware of any other decentralized solutions to the
FWLP in the literature.

This section proposes two decentralized solutions for pointing
toward the minimum of the function f . First, all agents estimate
their positions p̂i under the control law (5). After the position
estimation step is at steady state (p̂i = p̂∗i ,∀i ∈ I),4 instead of
(6), the agents adopt the estimated target point q̂ by a decentral-
ized version of Weiszfeld’s algorithm or the gradient-descent
control law in [24]. Finally, the agents control their headings
under the control law (7).

4Note that we can modify control law (5) as in [50] so that p̂(t) = p̂∗ after
a finite time.

We now present two decentralized algorithms to the FWLP.
The algorithms are hybrid in the sense that the agents eventu-
ally update the Fermat–Weber point in a series of event times
t0 , t1 , t2 , . . ., where tk = kΔT , k ≥ 0, and ΔT is a preselected
positive number [28]. For brevity, we will adopt the notation
x[k] ≡ x(kΔT ) ≡ x(tk ).

Algorithm 1: The decentralized Weiszfeld’s algorithm.
1) Initially, all agents have the same estimation of the

Fermat–Weber point: q̂i [0] = q̂[0] �= p̂∗i ,∀i ∈ I.
2) At step k ≥ 0, we need to estimate two quantities

r̄[k] =
1
n

n∑

i=1

ωi
p̂∗i

‖p̂∗i − q̂i [k]‖ (30)

r̄[k] =
1
n

n∑

i=1

ωi

‖p̂∗i − q̂i [k]‖ . (31)

Since correct estimations are required before moving to
the step k + 1, we employ the following finite-time con-
sensus protocol for estimating the quantities r̄[k] and
r̄[k]:

ẋi(t) = kx

∑

j∈Ni

sig (xj (t)− xi(t))
α . (32)

Here, 0 < α < 1 is a parameter required for finite-
time convergence, kx > 0 is a control gain, and t ∈
[tk , tk+1). Let T be the convergence time of the al-
gorithm, it is required that ΔT > T . To estimate the
vector r̄[k], in (32), we initialize xi(tk ) = ri(tk ) =
ωi

p̂∗i
‖p̂∗i−q̂i [k ]‖ ,∀i ∈ I. Meanwhile, to estimate the scalar

r̄[k], we set xi(tk ) = ri(tk ) = ωi

‖p̂∗i−q̂i [k ]‖ ,∀i ∈ I. Then,
for tk + T ≤ t < tk+1 , the consensus dynamics have set-
tled to their averages, i.e., ri(t) = r̄[k] and ri(t) = r̄[k],
and at t = tk+1 , each agent updates the estimation

q̂i [k + 1] =
ri(t)
ri(t)

=
r̄[k]
r̄[k]

=

∑n
i=1 ωi

p̂∗i
‖p̂∗i−q̂i [k ]‖∑n

i=1
ωi

‖p̂∗i−q̂i [k ]‖
(33)

which is precisely the formula of Weiszfeld’s algorithm
in [19] and [20].

3) Let k ← k + 1 and repeat that procedure.
Algorithm 2: The decentralized gradient-descent algorithm.
1) Initially, all agents have the same estimation of the mini-

mum point: q̂i [0] = q̂[0] �= p̂∗i ,∀i ∈ I.
2) At step k ≥ 0, we first estimate the quantity

r̄[k] =
1
n

n∑

i=1

ωi
p̂∗i − q̂i [k]
‖p̂∗i − q̂i [k]‖

by employing the finite-time consensus protocol (32). For
estimation of r̄[k], each agent i ∈ I initializes xi(tk ) =
ri [k] = ωi

p̂∗i−q̂i [k ]
‖p̂∗i−q̂i [k ]‖ in (32). After a time T , for tk +

T ≤ t < tk+1 , the consensus dynamics converged to the
average, i.e., ri(t) = r̄[k]. Then, at t = tk+1 , each agent
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updates its estimate

q̂i [k + 1] = q̂i [k] + kq r̄[k]

= q̂i [k] +
kq

n

n∑

i=1

ωi
p̂∗i − q̂i [k]
‖p̂∗i − q̂i [k]‖ (34)

where kq > 0 is a constant update gain. It can be checked
that (34) is the discrete-time version of the control law in
[24].

3) Let k ← k + 1 and repeat that procedure.
Due to Algorithms 1 and 2, the right-hand side of (7) is

discontinuous. We rewrite (7) as follows:

ḃi(t) = kbP bi
(q̂i [k]− p̂∗i ) (35)

for tk ≤ t < tk+1 , k = 0, 1, 2, . . ., and kb > 0 is a constant con-
trol gain. Thus, our proposed Fermat–Weber pointing consensus
strategies include the position estimation law (5), Algorithm 1
or 2, and the heading vector control law (35).

D. Stability Analysis

In this section, we will prove that two control strategies 1) (5),
Algorithm 1, (35), and 2) (5), Algorithm 2, (35) asymptotically
solve Problem 4.1. In both strategies, the finite-time consensus
protocol (32) is crucial for updating the estimation in Algorithms
1 and 2. The following lemmas are employed for the finite-time
convergence analysis.

Lemma 4.2 (see [51] ): If ξ1 , . . . , ξd ≥ 0 and 0 ≤ p ≤ 1,
then

(
d∑

i=1

ξi

)p

≤
d∑

i=1

ξp
i .

Lemma 4.3 (see [29] ): Suppose there exists a continuous
function V (x) : D → R such that the following conditions hold.

1) V (x) is positive definite.
2) If there exist κ > 0, α ∈ (0, 1), and an open neighbor-

hood U0 ∈ D of the origin such that

V̇ (x) + κ(V (x))α ≤ 0 ∀x ∈ U0\{0}
then V (x) will reach zero in finite time with the settling time
T ≤ V (0)1−α/(κ(1− α)).

We have the following result on the finite-time consensus
protocol (32).

Lemma 4.4: Under the control law (32), for each step k ≥ 0,
ẋi(t)→ 1

n

∑n
i=1 αibi [tk ],∀i ∈ I, in a finite time T satisfying

T ≤ V (tk )1−α/2

κ(1− α/2)
=

2V (tk )(2−α)/2

κ(2− α)
. (36)

Proof: Although Lemma 4.4 can be considered as a corol-
lary of the result in [22], it is not straightforward to derive an
upper bound of the convergence time T of the control law (32)
from [22]. Thus, we provide the proof of this lemma in the
Appendix. �

Lemma 4.5: In each estimation step k of Algorithm 2

xi(t) = r̄[k] =
1
n

n∑

i=1

ωi
p̂∗i − q̂i [k]
‖p̂∗i − q̂i [k]‖ ∀i ∈ I

for tk + T ≤ t < tk+1 , where T satisfies

T ≤ 2

(

2
n∑

i=1

ω2
i

) 2−α
2 /

(κ(2− α)). (37)

Proof: Let βi [k] = p̂∗i−q̂i [k ]
‖p̂∗i−q̂i [k ]‖ ,∀i ∈ I, it follows

that ‖βi [k]‖ = 1 and xi(tk ) = ωiβi [k]. Let x̄(tk ) =
1
n

∑n
i=1 xi(tk ), we have

‖δi(tk )‖2 = ‖xi(tk )− x̄(tk )‖2 ≤ 2(‖xi(tk )‖2 + ‖x̄(tk )‖2)

= 2

⎛

⎝ω2
i +

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

ωiβi [k]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2 /
n2

⎞

⎠ .

Moreover
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

ωiβi [k]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤
n∑

i=1

ω2
i

n∑

i=1

‖βi [k]‖2 = n

n∑

i=1

ω2
i .

Thus, it follows that ‖δi(tk )‖2 ≤ 2(ω2
i +
∑n

i=1 ω2
i /n), ∀i ∈ I.

Summing up these inequalities, we get

V (tk ) = ‖δ(tk )‖2/2 ≤ 2
n∑

i=1

ω2
i ∀k = 0, 1, 2, . . . . (38)

Therefore, inequality (37) follows immediately from (38) and
(36). �

Remark 4.1: The upper bound of T in (37) provides a
conservative lower bound for choosing the time step in im-
plementing Algorithm 2. This upper bound is independent
of p̂∗i and q̂i . We can implement Algorithm 2 with ΔT ≥
2
(
2
∑n

i=1 α2
i

)2−α
/(κ(2− α)) to guarantee that xi [ΔT ] =

x̄[ΔT ], ∀i ∈ I.
Unfortunately, we cannot find an explicit lower bound that is

independent on p̂∗i for choosing the time step in Algorithm 1.
However, if q̂i [k] �= p̂∗i for all time, it can be proved that there
exists a lower bound for choosing the time step ΔT . Thus, when
implementing Algorithm 1, it is recommended to choose ΔT
sufficiently large depending on the size of the estimation p̂i .

The following lemma is about the asymptotic convergence of
the estimation q̂i [k].

Lemma 4.6: Under Algorithm 1 or 2, all agents’ estimations
q̂i [k] asymptotically converge to the minimum q̂∗ of f(q̂) =∑n

i=1 ωi‖q̂ − p̂∗i ‖ if q̂i [k] �= p̂∗i for all time.
Proof: The update law (33) is the same as Weiszfeld’s al-

gorithm. Thus, as shown in [19] and [20], under Algorithm 1,
the estimation q̂i [k]→ q̂∗ as kΔT →∞ for almost all initial
conditions.

The update law (34) is a gradient-descent law of f . Since
f is a strictly convex function for q̂i [k] �= p̂∗i ,∀i ∈ I, ∇f =
∑n

i=1 ωi
p̂∗i−q̂i [k ]
‖p̂∗i−q̂i [k ]‖ is locally Lipschitz continuous (i.e., ∃κ > 0

s.t. ∇2f =
∑n

i=1 ωi

P ( p̂∗
i
−q̂i [k ] )

‖p̂∗i−q̂i [k ]‖ ≤ κ
∑n

i=1 ωiI3 in any neigh-
borhood of q̂∗ that does not contain {p̂∗i |i ∈ I}), and the min-
imum is unique, it follows that the estimation q̂i [k] converges
to q̂∗ asymptotically if q̂i [k] �= p̂∗i , i ∈ I,∀k ≥ 0 with a small
fixed step size kq/n.
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Finally, both algorithms fail to find the minimum if and only
if q̂i [k] = p̂∗i for some time. The set of points that the algorithm
fails is a set of measure zero in R3 [19], [21]. �

We can now state the main result of this section.
Theorem 4.1: Suppose that Assumptions 2.1, 2.2, and 4.1

hold. If q̂i [k] �= p̂∗i , i ∈ I,∀k ≥ 0, the two proposed control
strategies solve Problem 4.1, i.e., all heading vectors asymptot-
ically point toward the minimum point q∗ of f(q).

Proof: First, the position estimation dynamics gives a solu-
tion of p̂∗i for all cases. Second, Algorithms 1 and 2 asymptoti-
cally give the solution q̂∗.

It is remained to prove that the pointing dynamics (7) guides
all the heading vectors to q∗. Due to the implementation of
Algorithms 1 and 2, the right-hand side of (7) is discontinuous
at t = kΔT , where k = 0, 1, 2, . . .. However, for any time t,
bi(t)Tḃi(t) = bi(t)TP bi

(q̂i [k]− p̂∗i ) = 0 and thus ‖bi(t)‖ =
1. It shows that during the evolution of q̂i [k], the trajectory
of (7) is bounded and will not diverge. Thus, if q̂i [k]→ q̂∗

asymptotically, by a similar argument as in Theorem 3.4

bi(t)→ q̂∗ − p̂∗i
‖q̂∗ − p̂∗i ‖

as t→∞, ∀i ∈ I, or the heading vectors asymptotically point
toward the minimum point q∗ of f(q). �

Remark 4.2: Until now, we have assumed that ωi > 0,∀i ∈
I, and condition (27) is satisfied (see Assumption 4.1). By
incorporating a conditional statement into the algorithms, we
may relax this assumption. For example, consider Algorithm 1
and suppose that condition (28) holds, i.e., the Fermat–Weber
point is pj for a j ∈ I. At the beginning of the step k, each
agent i first checks whether or not q̂i [k] = p̂∗i . If the condi-
tion is true, then agent i initiates ri(tk ) = xi(tk ) = ri(tk−1),
and ri(tk ) = xi(tk ) = ri(tk−1) before employing a finite-time
consensus step in which it acts as the leader. After a time T ,
we have rj (t) = ri(tk ), and rj (t) = ri(tk ),∀j ∈ I, and thus
q̂j [k + 1] = q̂i [k + 1] = p̂∗i . By this way, we generate the fol-
lowing sequence in a distributed manner:

q̂i [k + 1] =

⎧
⎪⎨

⎪⎩

∑ n
i = 1

ω i p̂∗
i

‖q̂i [k ]−p̂∗
i
‖

∑ n
i = 1

ω i
‖q̂i [k ]−p̂∗

i
‖
, q̂i [k] /∈ {p̂∗1 , . . . , p̂∗n}

p̂∗j , q̂j [k] = p̂∗j for some j ∈ I
and this sequence converges to the estimated Fermat–Weber
point q̂∗ [21]. Then, under the heading dynamics (35), all agents
asymptotically consent their headings to pi and agent i’s head-
ing trivially intersects pi . Thus, a pointing consensus is achieved
even if (28) holds. The flowchart of Algorithm 1 with this modi-
fication is given in Fig. 6. Note that the modified algorithm also
fails to solve Problem 4.1 if q̂j [k] = p̂∗j for some p̂∗j does not
satisfy conditions (27)–(28).

V. SIMULATION RESULTS

In this section, we conduct numerical simulations to verify
our analysis in the previous sections. A simulation is about the
centroid pointing consensus problem in Section III. The other
simulations are about the Fermat–Weber location problem in
Section IV.

A. Simulation 1: Pointing to the Group’s Centroid

We consider a six-agent system whose information
graph G is given in Fig. 2. Six agents are positioned
at p1 = [3, 0, 9

2 ]T,p2 = [ 3
2 , 3

√
3

2 , 9
2 ]T,p3 = [0, 0, 9

2 ]T,p4 =
[3, 0, 0]T,p5 = [ 3

2 , 3
√

3
2 , 0]T, and p6 = [0, 0, 0]T, respectively.

The position estimation control law (5) is chosen according
to Remark 3.2, with the parameters given as follows: σ12 =
0.10, σ13 = 0.15, σ14 = 0.05, σ16 = 0.02, σ23 = 0.03, σ34 =
0.07, σ45 = 0.075, σ46 = 0.11, σ56 = 0.065, σ = 0.20, and
ρ = 0.01. The initial estimates p̂i(0), q̂i(0) = p̂i(0), and
the initial heading directions bi(0),∀i ∈ I, were randomly
generated.

We simulate the six-agent system under the control strategy
(5)–(7). Simulation results are given in Figs. 7(a) and (b), and
8. From Fig. 7(a), it can be observed that the estimated posi-
tions asymptotically take up a configuration p̂ different from the
real configuration p by a translation and a dilation. Meanwhile,
under the consensus protocol (6), q̂i , i ∈ I, asymptotically con-
verges to the estimated centroid p̂c of {p∗1 , . . . ,p∗6}. This leads
q̂i − p̂i to gradually align with the direction from pi to pc .
Consequently, after about 20 s, the heading vectors of six agents
concurrently target the group centroid as depicted in Fig. 8(a)–
(g).

Thus, simulation results are consistent with the analysis in
Section III.

B. Simulation 2: Pointing to the Fermat–Weber Point

We use the same six-agent system as in Simulation 1. The sim-
ulations in this section are conducted after each agent has already
had an estimation p̂∗i . The parameters of the cost function f are
chosen as follows: ω1 = ω2 = ω3 = 1

5 , ω4 = ω5 = ω6 = 1
8 . We

simulate the system under two control strategies to compare their
performance.

Simulation 2a (Algorithm 1): The initial estimate
of the Fermat–Weber point is chosen to be q̂i [0] =
[12.9669, 1.2199, 7.7389]T, which corresponds to the initial
states ri [0] = [0.8466, 0.0796, 0.5052]T and ri [0] = 0.0653,
∀i ∈ I. The chosen control gains are kx = 0.15 and kb = 0.50.
The time step between two updates of q̂i [k] in Algorithm 1 is
ΔT = 5 s.

Simulation results are given in Fig. 9. The agents can point
the heading vectors very close to the Fermat–Weber point after
40 s. Due to the fast convergence of Algorithm 1, the agents
can approximate the direction to the Fermat–Weber point in a
short time. After 20 s (three updates of Algorithm 1), the agents
point to qi [3] = [1.6105, 0.8606, 2.9308]T, which is quite close
to the Fermat–Weber point ([1.500, 0.8666, 3.3451]T). It is also
observed that the pointing dynamics (35) is able to track the
target in the interval between two updates.

Simulation 2b (Algorithm 2): The initial estimate of
the Fermat–Weber point is also chosen to be q̂i [0] =
[12.9669, 1.2199, 7.7389]T as in Simulation 2a. The time step
between two updates of q̂i [k] in Algorithm 2 is ΔT = 5 s.
The chosen control gains are kx = 0.15 and kb = 0.50, and the
update rate in (34) is kq = 6.
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Fig. 6. Modified algorithm to solve Problem 4.1 without Assumption 4.1.

Fig. 7. Simulation 1. (a) Trajectories of p̂i (t), ∀i ∈ I, under the position estimation law (5). The final estimated configuration p̂∗ is different from
the true configuration p by a translation and a scaling. (b) Trajectories of q̂i , ∀i ∈ I, under the consensus protocol (6). All q̂i (t), i ∈ I, asymptotically
converge to p̂∗c —the group’s centroid of both {p̂i (0)}i∈I and {p̂∗i }i∈I .

Fig. 8. Simulation 1: The heading vectors of six agents under the proposed control laws (5)–(7). All heading vectors asymptotically point toward
the group’s centroid. (a) t = 0 s. (b) t = 0.5 s. (c) t = 1 s. (d) t = 2 s. (e) t = 5 s. (f) t = 10 s. (g) t = 20 s.
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Fig. 9. Simulation 2a: The heading vectors of six agents under the proposed control laws (5), Algorithm 1, (35). (a) t = 0 s. (b) t = 10 s.
(c) t = 20 s. (d) t = 40 s.

Fig. 10. Simulation 2b: The heading vectors of six agents under the proposed control laws (5), Algorithm 2, (35). (a) t = 0 s. (b) t = 20 s.
(c) t = 60 s. (d) t = 100 s.

Simulation results are given in Fig. 10. After about
100 s, the agents’ heading vectors point to qi [19] =
[1.6716, 0.8188, 3.4373]T, which is also quite close to the
Fermat–Weber point. As can be observed from Fig. 10, the con-
vergence rate of this strategy is much slower than the previous
strategy.

We also observe that the convergence time of the first con-
trol strategy mostly depends on time step between two updates
[convergence time of the finite-time consensus protocol (32)].
Meanwhile, the convergence time of the second control strategy
mainly depends on the convergence time of Algorithm 2 [i.e.,
the gradient-descent update law (34)].

VI. CONCLUSION

This paper studied the weighted centroid pointing consen-
sus problem in the 3-D space. The proposed solution was built
up from the solutions of three subproblems: bearing-only net-
work localization, target decision, and heading coordination.
The bearing rigidity theory plays an important role in linking
these subproblems together. Two decentralized solutions to the
Fermat–Weber location problem were also proposed under this
bearing-based pointing consensus setup.

For further studies, we would like to consider the problem
with target point locating outside the convex hull of agents’
positions. Another extension is studying the problem when all
agents’ local reference frames are not initially aligned. This
formulation may be related to the bearing rigidity theories in

SE(2) and SE(3) [52]–[54]. Moreover, if the desired target
follows a time-varying trajectory, the pointing consensus prob-
lem becomes a cooperative target tracking problem, and the
analysis will be, respectively, more complicated. Finally, sup-
pose that all agents’ local reference frames are not aligned, it
is interesting to consider the inverse problem of aligning the
agents’ local coordinates if their headings had initially pointed
to a same point.

APPENDIX

PROOF OF LEMMA 4.4

At each step k ≥ 0, we rewrite (32) as

ẋ(t) = −kxH̄
Tsig(H̄x(t))α (39)

where tk ≤ t < tk+1 , and x(t) = [xT
1 , . . . ,xT

n ]T ∈
R3n . Denote δi(t) = xi(t)− x̄(tk ), where x̄(tk ) =
(
∑n

i=1 xi(tk )) /n = (1n ⊗ I3)Tx(tk )/n is a constant
vector for tk ≤ t < tk+1 , and let δ(t) = [δT

1 , . . . , δT
n ]T. It

follows that δ = x− 1n ⊗ x̄(tk ). Since H1n = 0, we have
H̄x = H̄δ. Thus, we can write

δ̇ = −kxH̄
Tsig(H̄δ)α . (40)

Consider the Lyapunov function V (t) = 1
2 ‖δ‖2 , which is pos-

itive definite, radially unbounded, and continuously differen-
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tiable. For tk ≤ t < tk+1

V̇ = −kxδTH̄
Tsig(H̄δ)α

= −kx

3m∑

k=1

|[H̄δ]k |α

= −kx

3m∑

k=1

|[H̄δ]2k |
α
2 (41)

≤ −kx

(
3m∑

k=1

|[H̄δ]2k |
) α

2

(42)

where in (41), we have used the inequality in Lemma 4.2 to get
(42). Thus

V̇ ≤ −kx

(‖H̄δ‖2)
α
2 = −kx

(
δTL̄δ

) α
2

≤ −kx (2λ2(L))
α
2

(‖δ‖2
2

) α
2

= −κV
α
2 (43)

where L is the Laplacian matrix of G, L̄ = L⊗ I3 , λ2(L) >
0 is the second smallest eigenvalue of L [2], and κ =
kx (2λ2(L))

α
2 . It follows from (43) and Lemma 4.3 that δ → 0

or xi → x̄(tk ) in finite time T . Also, the convergence time is
upper bounded by

T ≤ V (tk )1−α/2

κ(1− α/2)
=

2V (tk )(2−α)/2

κ(2− α)
.
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