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On the Robustness of Uncertain Consensus Networks
Daniel Zelazo, Member, IEEE and Mathias Bürger

Abstract—This work considers the robustness of uncertain con-
sensus networks. The stability properties of consensus networks
with negative edge weights are also examined. We show that the
network is unstable if either the negative weight edges form a cut in
the graph or any single negative edge weight has a magnitude less
than the inverse of the effective resistance between the two incident
nodes. These results are then used to analyze the robustness of the
consensus network with additive but bounded perturbations of the
edge weights. It is shown that the small-gain condition is related
again to cuts in the graph and effective resistance. For the single
edge case, the small-gain condition is also shown to be exact. The
results are then extended to consensus networks with nonlinear
couplings.

Index Terms—Consensus protocol, graph theory, multiagent
systems, network theory (graphs), robustness, uncertain systems.

I. INTRODUCTION

THE CONSENSUS protocol has recently emerged as a
canonical model for the study of networked dynamic

systems. In the linear setting, the consensus protocol has been
studied from both dynamic systems and graph-theoretic per-
spectives [1]. The most basic setting considered in consensus
networks assumes an undirected connected graph with non-
negative weights on the edges of the graph. In such a setting,
it is well known that the trajectories of all agents in the network
converge to a common value. The use of edge weights in
these networks often arises from the modeling of physical
processes [2], or as a design parameter used to improve certain
performance metrics [3], [4].

Recently, there has been a growing interest in multiagent
networks containing negative edge weights. For example, in
[4], it was shown that negative edge weights can appear as
an optimal solution for finding the fastest converging linear
iteration used in distributed averaging. Negative edge weights
in problems related to the control of multiagent systems can
also lead to steady-state configurations that are clustering [5],
[6]. In [7], negative weights are used to model antagonistic
interactions in a social network and conditions are provided
for when such weights lead to bipartite consensus. The work
of [8] provides bounds on the number of positive, negative,
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and zero eigenvalues of the weighted Laplacian matrix with
negative weights.

An important issue that has not received much attention is
the robustness of these linear weighted consensus protocols.
Indeed, even in the most basic setups, the trajectories generated
by a weighted consensus protocol can be very rich, including
steady-state trajectories that are synchronized, clustering, or
unstable. If the weights in a consensus network arise from its
physical modeling, then one must consider the performance of
such systems when the weights are not known exactly. Simi-
larly, if the weights are designed as an engineered parameter,
then it is important to consider the robustness of the system
in the presence of malicious attacks on the network, one of
which could be the manipulation of the nominally designed
edge weights.

The question of robustness in this context relates to the
underlying graph. Recent works have analyzed the robustness
of synchronization networks with random link failures [9], par-
ticular families of graphs in the context of the H2 performance
[10], and uncertain tree structures [11]. In [12], uncertainties
in the dynamics of each agent comprising a networked system
were studied in the context of the small-gain theorem. However,
these works do not address the fundamental combinatorial
aspect that can arise in uncertain networked systems.

This then motivates the main contributions of this paper.
We aim to study the robustness properties of linear weighted
consensus protocols and provide graph-theoretic interpretations
of the results. We consider consensus networks where the
nominal edge weights are subject to bounded additive pertur-
bations. At the heart of this analysis is an algebraic and graph-
theoretic characterization of the definiteness of the weighted
graph Laplacian with negative edge weights. We then apply
these results to a linear consensus protocol in the context of the
celebrated small gain theorem. We show that in certain cases,
the small gain theorem provides an exact robustness margin
for the uncertain consensus network. Furthermore, this measure
turns out to be related to the notion of the effective resistance
of a graph. These results are also extended to consider edge
weights with nonlinear, but sector bounded perturbations.

The organization of this paper is as follows. In Section II,
fundamental notions from graph theory are reviewed, including
the results on the weighted graph and edge Laplacian matrices
[13]–[15]. Section III introduces the uncertain consensus
models. Section IV provides a general analysis on the stability
of linear consensus protocols with negative edge weights, and
Section V leverages these results to make statements on the ro-
bust stability of uncertain networks. Finally, a numerical exam-
ple and concluding remarks are offered in Sections VI and VII.

Preliminaries: The notations employed in this paper are
standard. For a real n×m matrix A, σ(A) denotes its largest
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TABLE I
SUMMARY OF THE MATRIX REPRESENTATIONS FOR GRAPHS

singular value, and the spectral norm of the matrix A is ‖A‖ =
σ(A). The image and null space of a matrix A are denoted
as IM[A] and N [A], respectively. The inertia of a real sym-
metric matrix A, denoted by the triple s(A) = (n+, n−, n0),
is the number of positive, negative, and zero eigenvalues of
the matrix. An important result on the inertia of a matrix is
Sylvester’s Law of Inertia, which states that all congruent sym-
metric matrices have the same inertia [16].1 The m-dimensional
space of piecewise continuous vector-valued square integrable
functions is denoted as Lm

2 [0,∞). For a linear dynamical
system described by the state-space model ẋ(t) = Ax(t) +
Bu(t) y(t) = Cx(t) +Du(t), its transfer function is denoted
as G(s) = C(sI −A)−1B +D. The L2-induced gain of the
system described by G(s) is determined by the H∞ system
norm ‖G(s)‖∞ = supω σ(G(jω)) [17].

II. FORESTS, CYCLES, AND THE EDGE LAPLACIAN

In this section, we introduce the fundamental notions of span-
ning forests and cycles in graphs and present their associated
matrix representations [18]. We consider undirected weighted
graphs described by the triple G = (V, E ,W) consisting of the
node set V , edge set E ⊆ V × V , and weight function that maps
each edge to a scalar value W : E → R. We often collect the
weights of all the edges in a diagonal matrix W ∈ R

|E|×|E| such
that [W ]kk = W(k) = wk where ek = (i, j) ∈ E .

The maximal acyclic subgraph of G is referred to as a
spanning forest, denoted by F = (V, EF ). If F is connected,
it is called a spanning tree, and is denoted as T = (V, ET ).
Every graph G can always be expressed as the union of a
spanning tree (spanning forest) and another subgraph contain-
ing the remaining edges, that is, G = T ∪ C (G = F ∪ C). The
subgraph C necessarily “completes cycles” in G, and is defined
as C = (V, EC) ⊂ G with EC = E \ ET (similarly defined with a
forest); we refer to this as the cycle subgraph.

The incidence matrix of a graph (with arbitrary edge orien-
tation) E(G) ∈ R

|V|×|E| is such that for edge ek = (i, j) ∈ E ,
[E(G)]i,k = 1, [E(G)]j,k = −1, and [E(G)]�,k = 0 for � 	= i, j.
With an appropriate labeling of the edges, we can always
express the incidence matrix as E(G) = [E(T )E(C)] (E(G) =
[E(F) E(C)]). An important property of the incidence matrix
is that E(G)T 1l = 0 for any graph G, where 1l is the vec-
tor of all ones, and that rk[E(G)] = n− c for a graph with
c-connected components. For a more compact notation, we will
write E := E(G), ET = E(T ), EF = E(F), and EC = E(C).

The weighted graph Laplacian of G is defined as L(G) =
EWET ∈ R

|V|×|V|. It is well known that for a weighted graph
with only positive edge weights (i.e., W : E → R≥0), the inertia
of the Laplacian can be expressed as s(L(G)) = (|V| − c, 0, c),

1A square matrix A is congruent to a square matrix B of the same dimension
if there exists an invertible matrix S such that B = STAS.

where c is the number of connected components of G [18].
Another symmetric matrix representation of a graph is the
edge Laplacian [13]. For weighted graphs, we define the edge
Laplacian as Le(G) := W 1/2ETEW 1/2 ∈ R

|E|×|E|.
We now review some basic results relating the weighted edge

Laplacian matrix to the graph Laplacian.
Proposition II.1: The weighted Laplacian matrix L(G) =

EWET is similar to the matrix[
Le(F)R(F,C)WRT

(F,C) 0
0 0c

]
(1)

where G has c connected components, F ⊆ G is a spanning
forest, and R(F,C) = [I Le(F)−1ET

FEC ].
Proof: For a spanning forest, one has rk[EF ] = n− c

and, therefore, Le(F) = ET
FEF is invertible. Define the trans-

formation matrices

V =
[
EF

(
ET

FEF
)−1

NF
]
, V −1 =

[
ET

F
NT

F

]

where IM[NF ] = span[N [ET
F ]]. It is straightforward to verify

that the matrix in (1) is equal to V −1L(G)V . �
The matrix Le(F)R(F,C)WRT

(F,C) := Less(F) is referred to
as the essential edge Laplacian [14]. (For a connected graph
with spanning tree T , we write Less(T ).) Note that the essential
edge Laplacian is therefore a non-singular matrix, and the edge
Laplacian of a spanning forest (Le(F)) is always positive-
definite. The matrix Le(F)−1ET

FEC := T(F,C) is sometimes
referred to as the Tucker representation of a graph [19]. The
rows of the matrix R(F,C) form a basis for the cut space of a
graph [18] and we refer to it as the cut-set matrix. For a more
in-depth discussion on the matrices R(F,C) and T(F,C), please
see [13] and [14]. Note also that the matrix Le(F)−1ET

F is the
left-inverse of EF ; we denote this matrix as EL

F . For the reader’s
convenience, we summarize the various matrix representations
of graphs in Table I.

Proposition II.1 immediately leads to the following results
on the inertia of the weighted Laplacian, the weighted edge
Laplacian, and the essential edge Laplacian.2

Theorem II.2 ([15]): Assume G has c-connected com-
ponents and s(L(G)) = (n+, n−, n0). Then, s(Less(F)) =
(n+, n−, n0 − c). Furthermore, Less(F) has the same inertia as
the matrix R(F,C)WRT

(F,C).
Proof: Using the similarity transformation matrix

Le(F)1/2, we have that Le(F)R(F,C)WRT
(F,C) is similar to

Le(F)1/2R(F,C)WRT
(F,C)Le(F)1/2. This matrix is congruent

to R(F,C)WRT
(F,C) and, thus, by Sylvester’s Law of Inertia has

the same inertia as Le(F)R(F,C)WRT
(F,C). �

2Observe that Less(F) is similar to a symmetric matrix, justifying our slight
abuse of terminology by referring to the inertia of Less(F).
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An immediate corollary of Theorem II.2 is that if s(L(G)) =
(n+, n−, n0) and G have c-connected components, then
s(R(F,C)WRT

(F,C)) = (n+, n−, n0 − c).

The matrix R(F,C)WRT
(F,C) turns out to be closely related

to many combinatorial properties of a graph. Most important
is its connection to the notion of the effective resistance of a
graph, which will be discussed in Section IV. Theorem II.2 thus
shows that studying the definiteness of the weighted Laplacian
can be reduced to studying the matrix R(F,C)WRT

(F,C) which
contains in a more explicit way information on how the location
and magnitude of negative weight edges influence spectral
properties. This theme will be periodically revisited throughout
this paper.

III. CONSENSUS AND THE EDGE AGREEMENT

In this paper, we consider the linear weighted consensus
protocol [1] in the presence of exogenous finite-energy distur-
bances. The consensus dynamics over the graph G = (V, E ,W)
can thus be expressed as

Σ(G) :
{

ẋ(t) =−L(G)x(t) + v(t)

z(t) =E(Go)
Tx(t).

(2)

Here, v(t) = [v1(t), . . . , vn(t)]
T ∈ Ln

2 [0,∞) is a finite-energy
exogenous disturbance entering each agent in the system. The
performance of the system is measured in terms of the energy
of the vector z(t) ∈ R

|Eo| capturing the relative states over a set
of edges determined by the unweighted graph Go = (V, Eo).3

With this model, we can consider how finite energy dis-
turbances affect the asymptotic deviation of a subset of the
states to an agreement value. This can be formally analyzed by
considering the L2-induced gain of the system, that is, its H∞
performance, ‖Σ(G)‖∞ [13]. It is a well-established result that
if the graph G is connected and all weights are positive, then
(2) reaches consensus, that is, limt→∞ z(t) = 0, for any output
graph Go. Therefore, z(t) ∈ L|Eo|

2 [0,∞) and ‖Σ(G)‖∞ is finite.
However, this is not the case if L(G) has multiple eigenvalues at
the origin (and certainly if any eigenvalue of L(G) is positive).
Indeed, if G is disconnected and E(Go) = G,4 then z(t) is not
a finite-energy signal. On the other hand, for the same example
and choosing Go ⊆ G, it can be verified that z(t) ∈ L|Eo|

2 [0,∞)
(since each component of the graph will reach consensus).

Nevertheless, we would like to examine some notion of
performance of (2) for any choice of output graph Go. In this
direction, we can define a coordinate transformation for (2),
x̃(t) = S−1x(t), with

S =
[(
EL

F
)T

NF
]
, S−1 =

[
ET

F
NT

F

]

where IM[NF ] = span{N [ET
F ]}. Thus, the state vector

x̃(t) can be partitioned into two components as x̃(t) =

[xF (t)
T xT

a (t)]
T

, where xF (t) = ET
F x(t) are the relative states

over the edges forming the spanning forest of G with

3Note that Go need not have any dependence on G.
4The notation G denotes the complement of the graph G.

c-connected components, and xa(t) = NT
F x(t) correspond to

modes in the direction of the all-ones vector across each com-
ponent of G. Applying this transformation to (2) leads to the
following system:[

ẋF (t)

ẋa(t)

]
=

[
−Less(F) 0

0 0c

] [
xF (t)

xa(t)

]
+ S−1v(t)

z(t) =E(Go)
T
[(
EL

F
)T

NF
] [xF (t)

xa(t)

]
. (3)

In the new coordinate system, it is now straightforward
to show that limt→∞ z(t) = E(Go)

TNFxa(0) and furthermore
that E(Go)

T (EL
F )

TxF (t) ∈ L|EF |
2 [0,∞). We can now consider

the following truncated system:

ΣF (G) :

⎧⎨
⎩

ẋF (t) = −Less(F)xF (t) + ET
F v(t)

zF (t) =E(Go)
T
(
EL

F
)T

xF (t).
(4)

We call the system ΣF (G) the edge agreement protocol over
the spanning forest F ⊆ G. The above transformation holds
also when G is connected and F = T is a spanning tree. It
is verifiable that the system ΣF (G) is minimal. When F = T
is a spanning tree, then ΣF (G) is a minimal realization of
Σ(G) [14].

A. Uncertain Edge Agreement Protocol

We now introduce a notion of uncertainty into the edge
agreement protocols. First, we examine an uncertainty model
where it is assumed that the exact weights of a subset of
edges are an uncertain but bounded perturbation about some
nominal value. In this direction, let EΔ ⊆ E denote the set of
uncertain edges. The nominal edge weight for an edge k ∈ EΔ
is determined by the weight function W . The uncertainty of the
weight on edge k is modeled as an additive perturbation to the
nominal edge weight as wk + δk with |δk| ≤ δ for some finite
positive scalar δ. Thus, we can define the uncertainty set as

Δ = {Δ : Δ = diag
{
δ1, . . . , δ|EΔ|

}
, ‖Δ‖ ≤ δ}.

In this way, we can consider the uncertain edge agreement
protocol as

ΣF (G,Δ) :⎧⎪⎨
⎪⎩

ẋF (t)=−Le(F)R(F,C)(W + PΔPT )RT
(F,C)xF (t)

+ ET
F v(t)

z(t)=E(Go)
T
(
EL

F
)T

xF (t).

(5)

for Δ ∈ Δ. The matrix P ∈ R
|E|×|EΔ| is a {0, 1}-matrix used

to select the uncertain edges with [P ]ij = 1 if ei ∈ EΔ,
and [P ]ij = 0 otherwise [i.e., E(G)P = E(GΔ) with GΔ =
(V, EΔ)]. In this form, we see that the uncertainty is a structured
additive uncertainty. This setup is visualized by the two-port
block diagram in Fig. 1.

We also consider the consensus protocol with nonlinear
couplings. By introducing appropriate assumptions on the non-
linear couplings, we are able to cast the problem as an uncertain
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Fig. 1. Consensus network with uncertainties.

agreement protocol in the form of Fig. 1. In this direction, the
nonlinear consensus protocol has the form

ẋ(t) = −L(G)x(t)− E(GΔ)Φ
(
E(GΔ)

Tx(t)
)
+ v(t)

z(t) =E(Go)
Tx(t).

As before, we assume EΔ ⊆ E . The nonlinear vector function
Φ : R|EΔ| → R

|EΔ| is assumed to be decoupled, that is, Φ(y) =
[φ1(y1), . . . , φ|EΔ|(y|EΔ|)]

T . Furthermore, we assume that the
nonlinear functions φi(·) belong to the sector [αi, βi]; that
is, αiu

2
i ≤ uiφi(yi) ≤ βiu

2
i for all ui ∈ R and αi < βi both

real numbers. The corresponding nonlinear edge agreement
protocol can thus be expressed as

ΣF (G,Φ) :⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋF (t) = −Less(F)xF (t)

− Le(F)R(F,C)P
(
Φ
(
PTRT

(F,C)xF (t)
))

+ ET
F v(t)

z(t) =E(Go)
T
(
EL

F
)T

xF (t).

(6)

For both models ΣF (G,Δ) and ΣF (G,Φ), we will be con-
cerned with determining bounds on the uncertainty that guar-
antee the robust stability of the uncertain agreement protocols.
The main analytic tool will be the application of the small
gain theorem. To proceed with this analysis, we first examine
stability properties of the linear consensus protocol with arbi-
trary negative edge weights. These results will then be applied
to derive the more general robust stability statements of the
uncertain models.

IV. ON THE STABILITY OF WEIGHTED CONSENSUS

Before examining the robust stability of the uncertain con-
sensus networks presented in Section III-A, we first study the
general stability properties of the linear consensus protocol
Σ(G) with negative weights. This section aims to reveal how
the magnitude and placement of negative weight edges in a
weighted graph can influence the stability properties of Σ(G).
In this section, we assume there are no exogenous disturbances
entering the protocol (i.e., v(t) = 0).

Theorem II.2 revealed that the inertia of L(G) is related to the
inertia of R(F,C)WRT

(F,C). We now exploit the structure of this
matrix to show how negative edge weights affect the stability of
the weighted consensus. We first examine the effect of negative
edge weights for a class of graphs known as signed graphs.
Then, we proceed to provide a general stability characteriza-
tion that turns out to be related to the notion of the effective

resistance of a graph. Moreover, as Σ(G) is a linear system,
its stability can be determined by examining the eigenvalues
of the weighted Laplacian L(G). In particular, the stability of
Σ(G) is guaranteed as long as the weighted Laplacian is a
positive semidefinite matrix. Therefore, the results to follow are
presented in terms of the definiteness of L(G).

A. Signed Graphs and the Stability of Σ(G)
A useful approach for the analysis of graphs with both pos-

itive and negative edge weights is the notion of signed graphs
[20]. A signed graph is a weighted graph G with a partition of
the edge set into edges with positive weights, denoted as E+,
and edges with negative weights, denoted as E−. We can now
define two subgraphs—one containing only positive weight
edges, and one containing only negative weight edges; G+ =
(V, E+,W+) and G− = (V, E−,W−). The weight maps W+

and W− are simply the original weight map W restricted to
either E+ or E− with corresponding diagonal weight matrices
W+ and W−. The corresponding incidence matrices can also
be written as [13]

E+ :=E(G+) = EF+
R(F+,C+) = EF+

[
I T(F+,C+)

]
E− :=E(G−) = EF−R(F−,C−) = EF−

[
I T(F−,C−)

]
.

A signed graph is structurally balanced if and only if the vertex
set can be partitioned into 2 sets V1 and V2, such that all edges
in E− connect nodes in V1 to nodes in V2 (i.e., G− is bipartite),
and all edges in E+ connect nodes in Vi only to nodes in Vi for
i = 1, 2 [21].

Observe that the weighted graph Laplacian can now be ex-
pressed in terms of the positive and negative weight subgraphs

L(G) = E+W+E
T
+ − E−|W−|ET

− . (7)

This decomposition leads to the following statement on the
definiteness of the weighted Laplacian.

Theorem IV.1: The weighted Laplacian is positive semidefi-
nite if and only if[

|W−|−1 ET
−

E− E+W+E
T
+

]
≥ 0. (8)

Proof: This result follows from the Schur complement
applied to (7). �

The linear matrix inequality (LMI) in (8) already indicates
that the magnitude of the negative edge weights plays an
important role in the definiteness of the Laplacian. We now
proceed to examine this LMI in more detail to reveal how also
their location in the graph is important.

Corollary IV.2: The weighted Laplacian is positive semidef-
inite if and only if⎡

⎢⎢⎣
|W−|−1 ET

−

(
EL

F+

)T

ET
−NF+

EL
F+

E− R(F+,C+)W+R
T
(F+,C+) 0

NT
F+

E− 0 0

⎤
⎥⎥⎦ ≥ 0. (9)
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Proof: Let IM[NF+
] = span{N [ET

F+
]}. Consider the

congruent transformation matrix

Q =

[
I 0

0

[(
EL

F+

)T

NF+

] ]
.

Then the matrix in (8) has the same inertia (by the congruent
transformation usingQ) as the matrix in (9). From Theorem IV.1
it now follows that the weighted Laplacian is positive semi-
definite if and only if (9) is positive semi-definite. �

We can make some more observations about the above result.
It directly follows that if G+ is connected, then IM[NF+

] =
span{1l}, and ET

−NF+
= 0. Thus, L(G) ≥ 0 if and only if[

|W−|−1 ET
−

(
EL

F+

)T

EL
F+

E− R(F+,C+)W+R
T
(F+,C+)

]
≥ 0. (10)

We are now prepared to make a statement connecting the
location of the negative edge weights to the definiteness of
the weighted Laplacian. First, we comment on the structural
meaning of the matrix ET

−NF+
in (9). The quantity ET

−NF+

characterizes any cuts of the original graph G using only
the negative weighted edges. To show this, assume G+ has
c-connected components and let NF+

= [n1, . . . ,nc]. Then, ni

is a {0, 1}-vector with [ni]j = 1 if and only if node j ∈ V is
in component i. Then, it is clear that ET

−ni will be a {0,±1}-
vector with [ET

−ni]k = ±1 if and only if k = (u, v) ∈ E− such
that u and v are not in the same components of G+.

Theorem IV.3: Assume that G is connected and E+, E− 	= ∅.
If G+ is not connected, then the weighted Laplacian matrix is
indefinite for any (nonzero) choice of negative edge weights.

Proof: Consider the following submatrix of (9) obtained
by deleting the center block row and column[

|W−|−1 ET
−NF+

NT
F+

E− 0

]
∈ R

(m+c)×(m+c)

where m = |E−| and c is the number of connected components
of G+. We assume that G+ is not connected and, thus, NF+

contains c columns. Partition the matrix as NF+
= [n1, . . . ,nc]

and recall that [ET
−ni]k = ±1 if and only if k = (u, v) ∈ E−

such that u and v are not in the same components of G+. Denote
by CUTi ⊆ E− as the set of negative weight edges used to
form a cut separating the ith component of G+ from G, and
let CUT = ∪iCUTi. Then an expression for the quadratic form
of the matrix of interest is

xT

[
|W−|−1 ET

−NF+

NT
F+

E− 0

]
x =

∑
i∈E−

|W−(i)|−1 x2
i

+
∑

k∈CUT1

±2xkxm+1 + · · ·

+
∑

k∈CUTc

±2xkxm+c.

From the quadratic form, it is now clear that the elements of
the vector xi for i = m+ 1, . . . ,m+ c can be arbitrarily cho-
sen to make the inequality negative. Therefore, there exists at

least one negative eigenvalue and the matrix in (9) is indefinite.
From Corollary IV.2 we can conclude that the weighted graph
Laplacian is indefinite independent of the value of the negative
weights. �

Theorem IV.3 shows that if any of the negative weight edges
forms a cut in the graph, then the Laplacian matrix must have
negative eigenvalues. A particular class of graphs satisfying the
conditions of Theorem IV.3 are the structurally balanced signed
graphs, immediately leading to the following corollary.

Corollary IV.4: If a signed graph G is balanced, then L(G) is
indefinite for any choice of negative edge weights.

B. Effective Resistance and the Stability of Σ(G)
The main result of Section IV-A provides an analytical

justification of what may be considered an intuitive result. That
is, if the negative weight edges form a cut in the graph, then
the weighted Laplacian will be indefinite, that is, Σ(G) will be
unstable. In this section, we reveal a more general condition on
the negative edge weights that can lead to an indefinite weighted
Laplacian. This condition turns out to be related to the notion
of the effective resistance of a graph. Results from this section
were recently reported in [15] and, thus, the reader is referred
to that work for related proofs.5

It is well known that the weighted Laplacian of a graph
can be interpreted as a resistor network [22]. Each edge in
the network can be thought of as a resistor with a resistance
equal to the inverse of the edge weight rk = W(k)−1 = w−1

k

for k ∈ E .6 The resistance between any two pairs of nodes can
be determined using standard methods from electrical network
theory [22]. It may also be computed using the Moore-Penrose
pseudoinverse of the graph Laplacian, denoted as L(G)†.

Definition IV.5 ([22]): The effective resistance between
nodes u, v ∈ V in a weighted graph G = (V, E ,W) is

Ruv(G) = (eu − ev)
TL†(G)(eu − ev)

=
[
L†(G)

]
uu

− 2
[
L†(G)

]
uv

+
[
L†(G)

]
vv

where eu is the indicator vector for node u, that is, eu = 1 in
the u position and 0 elsewhere.

Our first result shows how the effective resistance between
two nodes is related to the matrix R(T ,C)WRT

(T ,C) and the
essential edge Laplacian.

Proposition IV.6 ([15]): Let G be a connected graph and
assume s(L(G)) = (n+, n−, 1). Then

L†(G) =
(
EL

T
)T (

RT
(T ,C)WRT

(T ,C)

)−1

EL
T

=
(
EL

T
)T

Less(T )−1ET
T . (11)

From Proposition IV.6, it is clear that the effective resistance
between nodes u, v ∈ V can be expressed as

Ruv(G)=(eu−ev)
T
(
EL

T
)T(

RT
(T ,C)WRT

(T ,C)

)−1

EL
T (eu− ev).

(12)

5An extended version of this work containing all proofs is also available on
arXiv (arXiv:1408.4471).

6Thus, the edge weight wk can be interpreted as an admittance.
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Fig. 2. Resistive network interpretation with one negative weight edge.

We now present a result showing that this equivalent charac-
terization of the effective resistance is useful for understanding
the definiteness of the weighted Laplacian.

Theorem IV.7 ([15]): Assume that G+ is connected and
|E−| = 1 with E− = {e− = (u, v)}. Let Ruv(G+) denote the
effective resistance between nodes u, v ∈ V over the graph G+.
Then, L(G) is positive semidefinite if and only if |W(e−)| ≤
R−1

uv (G+).
The above result has a very intuitive physical interpretation.

The entire network G+ can be considered as a single lumped
resistor between nodes u and v with resistance Ruv(G+).
The negative-weight edge can thus be thought of as adding
another resistor in parallel between the nodes, as in Fig. 2. The
equivalent resistance between u and v is well known to be

Ruv(G) =
Ruv(G+)r−

Ruv(G+) + r−
.

If r− is a negative resistor, then choosing r− = −Ruv(G+)
corresponds to an equivalent resistance that is infinite, that is, an
open circuit. The open circuit can be thought of as a cut between
the terminals u and v. This interpretation is inline also with the
results of Theorem IV.3. Indeed, in this case, the graph G+ is not
connected and the effective resistance between any two nodes
connected by a negative edge weight over G+ is infinite, that is,
R−1

uv (G+) = 0.
The result in Theorem IV.7 can be generalized to multiple

negative weight edges with some additional assumptions on
how those edges are distributed in the graph. In this direction,
for each edge k = (u, v) ∈ E−, define the set Pk ⊆ E+ to be
the set of all edges in G+ that belong to a path connecting
nodes u to v. Let G+(Pk) ⊆ G+ be the subgraph induced by
the edges in Pk.7 Note that if Pk ∩ Pk′ = ∅ for edges with
distinct nodes (i.e., k = (u, v) and k′ = (u′, v′) ∈ E−), then
there exists no cycle in G+ containing the nodes u, v, u′, v′. An
important class of graphs that can admit such a partition is the
cactus graphs [23]. Using this characterization, the following
statement on effective resistance with multiple negative weight
edges follows.

Theorem IV.8 ([15]): Assume that G+ is connected and
|E−| > 1. Let Rk(G+) denote the effective resistance between
nodes u, v ∈ V over the graph G+ with k = (u, v) ∈ E−, and
let R = diag{R1(G+), . . . ,R|E−|(G+)}. Furthermore, assume
that Pi ∩ Pj = ∅ for all i, j ∈ E−, where Pi is the set of all
edges belonging to a path connecting the nodes incident to edge
i ∈ E·. Then, the weighted Laplacian is positive semi-definite if
and only if |W−| ≤ R−1.

7Thus, G+(Pk) = (V(Pk),Pk) where V(Pk) ⊆ V are the nodes incident
to edges in Pk .

Theorem IV.8 also has the same physical interpretation as
Theorem IV.7. Indeed, the resistance between two nodes con-
tained in a subgraph G+(Pk) is not determined by any other
edges in the network. Both Theorems IV.7 and IV.8 provide a
clear characterization of how negative weight edges can impact
the definiteness of the weighted Laplacian, and how that is
related to the effective resistance in the graph. In fact, from (10),
we can also observe an additional fact relating the total effective
resistance between all nodes incident to edges in E− and the
definiteness of the graph, independent of the actual location of
these edges in the network.

Corollary IV.9 ([15]): Assume that G+ is connected. If
L(G) ≥ 0, then

∑
k∈E− |W(k)|−1 ≥ R

E−
tot, where

R
E−
tot = trace

[
ET

− (E
L
T+)

T
(
R(T+,C+)W+R

T
(T+,C+)

)−1

EL
T+E−

]
.

Corollary IV.9 indicates that a weighted Laplacian with
negative weights can still be positive semidefinite, and in that
case, the total magnitude of the negative weight edges is closely
related to the total effective resistance in the network (defined
over the nodes incident to E−). The notion of total effective
resistance has also appeared in works characterizing the H2

performance of certain multiagent networks [24]–[26]. While
Corollary IV.9 only provides a sufficient condition for the def-
initeness of the weighted Laplacian, it nevertheless reinforces
its connection to the notion of effective resistance.

V. ON THE ROBUST STABILITY OF THE

UNCERTAIN CONSENSUS PROTOCOL

The results of the previous section provide the correct foun-
dation to now consider the robust stability of the uncertain con-
sensus models presented in Section III-A. A natural approach
for analyzing the robust stability is via the celebrated small
gain theorem. While the small gain theorem often provides
very conservative results, we demonstrate in this section that
for certain classes of uncertainties, the small gain result is, in
fact, an exact condition.

A. Robust Stability of ΣF (G,Δ)

We now proceed with an analysis of the system ΣF (G,Δ) in
(5). Based on the system interconnection shown in Fig. 1, the
map from the exogenous inputs v(t) to the controlled output
z(t) in the presence of the structured uncertainty Δ ∈ Δ can
be characterized by the upper fractional transformation [17]

S (ΣF (G),Δ) = M22 +M21Δ(I −M11Δ)−1M12 (13)

where

M11(s) =PTRT
(F,C) (sI + Less(F))−1 Le(F)R(F,C)P

M12(s) =PTRT
(F,C) (sI + Less(F))−1 E(F)T

M21(s) =E(Go)
T
(
EL

F
)T

(sI + Less(F))−1 Le(F)R(F,C)P

M22(s) =E(Go)
T
(
EL

F
)T

(sI + Less(F))−1 E(F)T .
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This representation can lead directly to a small-gain inter-
pretation for the allowable edge-weight uncertainties that guar-
antees the system is robustly stable. In particular, a sufficient
condition for determining whether (I −M11Δ) has a stable
proper inverse is to ensure that ‖M11(s)Δ‖∞ < 1.

We now cite a result from [13] that gives insight on the H∞
norm of the transfer function matrix M11(s).

Proposition V.1 ([13]):

‖M11(s)‖∞ = σ (M11(0)) .

This results shows that the H∞ performance of the system
M11(s) can be obtained by computing the largest singular value
of the real matrix M11(0), leading to the result on the robust
stability of ΣF (G,Δ).

Theorem V.2: Let Δ = {Δ ∈ R
|EΔ|×|EΔ|, ‖Δ‖ ≤ δ,

Δdiagonal} and assume ΣF (G) is nominally stable. Then, the
uncertain edge agreement protocol is robustly stable for any
Δ ∈ Δ if ‖Δ‖ < (σ(M11(0)))

−1.
Theorem V.2 is, in fact, a direct statement of the small-gain

theorem and can be considered conservative. One might wonder
if the results of Theorem IV.3 might lead to a less conservative
result. That is, if EΔ forms a cut set of G, is it possible that
maxe∈EΔ W(e) < σ(M11(0))

−1. The following result shows
that this cannot be the case.

Proposition V.3:(
max
e∈EΔ

W(e)

)−1

≤ max
e∈EΔ

Re(G) ≤ σ (M11(0)) ≤ REΔ
tot

where

REΔ
tot = trace

[
PTET

(
EL

T
)T (

RT
(T ,C)WRT

(T ,C)

)−1

EL
T EP

]
.

Proof: Let EΔ = EP denote the incidence matrix with
columns corresponding to the edges in EΔ. Observe that
R(F,C)P = EL

T EΔ. Therefore, the diagonal entries of M11(0)
correspond to the effective resistance between nodes inci-
dent to the edges in EΔ [from (12)], establishing a lower
bound on σ(M11(0)). By a similar argument, it follows that
trace[M11(0)] = REΔ

tot leading to the upper bound.
To establish the lower bound, let S, S ′ ⊂ V be the set of

nodes incident to edges in EΔ (with S the nodes that are the
head of each edge, and S ′ the tail). For each edge e ∈ EΔ,
let re = W(e)−1 = we denote its resistance. Consider now
the edges e1 = (u, v), e2 = (u′, v′) ∈ EΔ and assume r1 ≥ r2
(equivalently, w1 ≤ w2). Similarly, let R̃uv = Ruv(G \ e1) de-
note the effective resistance between u and v after edge e1 is
removed. It now follows that:

Ruv(G) =
r1R̃uv

r1 + R̃uv

≥ r2(r1 + R̃uv − r1)

r1 + R̃uv

≥ r2.

Since the above inequality holds for any pair of edges in
EΔ and, in particular, when r2 = (maxe∈EΔ W(e))−1, the lower
bound is verified. �

By introducing additional assumptions into the system
ΣF (G,Δ), the small gain result of Theorem V.2 can be tightened
and endowed with more meaningful physical interpretations.

Theorem V.4: Consider the uncertain edge agreement pro-
tocol ΣF (G,Δ) with EΔ = E and the nominal edge weights
are all positive and equal, that is, W = αI with α > 0. Then,
‖M11(s)‖∞ = α−1 and ΣF (G,Δ) is robustly stable for all
diagonal Δ, satisfying ‖Δ‖∞ = σ(Δ) < α.

Proof: With EΔ = E , it follows that P = I . Therefore
M11(0) = (1/α)RT

(F,C)(R(F,C)R
T
(F,C))

−1
R(F,C) is a projection

matrix scaled by α−1, that is, ‖M11(s)‖∞ = σ(M11(0)) =
α−1. The bound on the uncertainty Δ then follows immediately
from the small-gain theorem. �

While still a conservative result, Theorem V.4 has a more
intuitive interpretation. It states that all edge weights must
remain positive even in the presence of uncertainty. This result
can also be understood in the context of Theorem IV.3 since
one can imagine the uncertainty attacking a set of edges that
forms a cut in the graph. Thus, if the uncertainty is such that the
edges in the cut have negative weight (i.e., wk + δk < 0), then
the resulting edge agreement protocol will be unstable.

The small gain result can, in fact, lead to an exact condition
for the robust stability of ΣF (G,Δ). The next result considers
the uncertain edge agreement problem when the uncertainty is
present in only a single edge in the graph.

Theorem V.5: Consider the uncertain edge agreement pro-
tocol ΣF (G,Δ) with EΔ = {{u, v}} (i.e., |EΔ| = 1) and as-
sume Σ(G) is nominally stable. Then, ‖M11(s)‖∞ = Ruv(G)
and Σ(G,Δ) are robustly stable for all δ satisfying ‖Δ‖∞ <
R−1

uv (G).
Proof: This statement directly follows Theorem IV.7,

Proposition V.1, and the effective resistance between two nodes
in a graph (11). �

Theorem V.5 provides an exact condition for the robust
stability of ΣF (G,Δ) when a single edge has uncertainty, that
is, there is no conservatism in this result, which is a direct
consequence of Theorem IV.7. This result also demonstrates
that the effective resistance between nodes in the network can
serve the role of a gain margin for the system.

Consider now a scenario where an attacker is able to perturb
the weight of any single edge in the graph. From Theorem V.5,
each edge can tolerate a perturbation determined by the ef-
fective resistance between the two incident nodes. Thus, an
attacker might consider choosing the edge with the “smallest”
margin. This leads to a less restrictive uncertainty class than
in Theorem V.5; however, the result will consequently be more
conservative.

Corollary V.6: Let Δ={δPiP
T
i , i=1, . . . , |E|, |δ| ≤ δ} be

the set of allowable perturbations on the edge weights, where
Pi ∈ R

|E| satisfies [Pi]j=1 when j= i and 0 otherwise, and as-
sume that ΣF (G) is nominally stable. Then, Σ(G,Δ) is robustly
stable if for any Δ ∈ Δ, one has ‖Δ‖∞ < minuv R−1

uv (G).
Corollary V-6 demonstrates the earlier discussion. If only a

single edge can be “attacked,” then the robustness margin of
the entire network will be determined by the edge connecting
the nodes with the largest effective resistance between them.
It should be noted that this value will depend on the nominal
values of the edge weights along with the location of the edges
in the graph.

Using the result of Theorem IV.8 also leads to a less conser-
vative corollary for Theorem V.2.
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Fig. 3. Simulation results demonstrating Corollary V.6 and V.11. (a) Random geometric graph. (b) Clustering trajectories. (c) Nonlinear coupling functions.
(d) Corollary V.11 is satisfied.

Corollary V.7: Let EΔ denote the set of uncertain edges and
define the uncertainty set as Δ = {Δ ∈ R

|EΔ|×|EΔ|, ‖Δ‖ ≤
δ, Δdiagonal}. For each edge k = (u, v) ∈ EΔ, define Pk ⊆ E
as the set of all edges in G that belong to a path connecting
nodes u to v and assume that Pi ∩ Pj = ∅ for all i, j ∈ EΔ
with R = diag{R1(G), . . . ,R|EΔ|(G)}. Assume that ΣF (G)
is nominally stable. Then, Σ(G,Δ) is robustly stable for all
Δ ∈ Δ, if ‖Δ‖ < mine∈EΔ Re(G)−1.

B. Robust Stability of ΣF (G,Φ)
We now examine the robust stability of the consensus system

with nonlinear couplings ΣF (G,Φ) given in (6). First, we recall
results on the multivariable circle criterion [27].

Let K1,K2 ∈ R
|EΔ|×|EΔ| be real diagonal matrices with

K2 −K1 > 0. Define Φ to be the set of all sector-bounded
time-varying nonlinearities as described in Section III-A with
K1 = diag{α1, . . . , α|EΔ|} and K2 = diag{β1, . . . , β|EΔ|}. In
the following text, we denote by G(s) the transfer-function of a
linear system with state-space matrices (A,B,C,D).

Lemma V.8 ([27]): The following statements are equivalent:

1) The state matrix A is asymptotically stable and G(s) is
strictly positive real.

2) D +DT > 0 and there exists X,Y > 0 such that

0=ATX+XA+(BTX−C)T (D+DT )
−1
(BTX−C)+Y.

Theorem V.9 ([27]): If (I +K2G(s))(I +K1G(s))−1 is
strictly positive real, then for all Φ ∈ Φ, the negative feedback
interconnection of G(s) and Φ is asymptotically stable.

We are now prepared to make a general statement on the
robust stability of ΣF (G,Φ).

Theorem V.10: Consider the nonlinear edge agreement pro-
tocol ΣF (G,Φ) with EΔ ⊆ E and assume Σ(G) is nominally
stable. Then, ΣF (G,Φ) is asymptotically stable for any Φ∈Φ if

‖K1‖ = max
i

|αi| <
1

‖M11(s)‖∞

and 2W+P (K−(1−
√
2)I)(K−(1+

√
2)I)PT > 0, where

K = K2 −K1.
Proof: From Lemma v.8, it follows that a necessary condi-

tion for (I +K2M11(s))(I +K1M11(s))
−1 to be strictly pos-

itive real is for (I +K1M11(s))
−1 to have a stable and proper

inverse. Since K1 may have negative entries, we arrive at the
small-gain result on the largest singular value K1 to guarantee

the inverse exists. Next, it can be shown that a minimal state-
space realization of the transfer function (I +K2M11(s))(I +
K1M11(s))

−1 can be expressed by the state-space matrices

Ã = −Less(F)− Le(F)R(F,C)PK1P
TRT

(F,C)

B̃ =Le(F)R(F,C)P, C̃ = (K2 −K1)P
TRT

(F,C)

D̃ = I.

Using Theorem V.9, it can be verified that choosing X =
Le(F)−1 and Y = R(F,C)QRT

(F,C) with

Q = 2W − PPT − P (K2 −K1)
2P + 2P (K2 −K1)P

T

satisfies the equality stated in condition 2). Thus, Y > 0 if and
only if Q > 0 concluding the proof. �

As expected, the agreement protocol with sector nonlineari-
ties on the edges will inherit certain robustness measures found
in the case where there are additive perturbations. We can
understand the aforementioned result better when considering
the case where |EΔ| = 1; that is, the nonlinearity is present on
only a single edge.

Corollary V.11: Consider the nonlinear edge agreement
protocol ΣF (G,Φ) with EΔ = {{u, v}} (i.e., |EΔ| = 1) and
assume Σ(G) is nominally stable. Then, ΣF (G,Φ) is asymp-
totically stable for all Φ ∈ Φ, satisfying

|α| < R−1
uv (G) and

(
(β − α)2 − 2(β − α)− 1

)
> −2wuv.

The result of Corollary V.11 can also be interpreted in
terms of passivity indices quantifying the shortage or excess
of passivity in the system. Indeed, Corollary V.11 can be used
to conclude that the effective resistance between a pair of nodes
with nonlinear couplings represents an excess of passivity for
the system.

VI. SIMULATION EXAMPLE

We now briefly report on a numerical simulation illustrating
the main results of this work. Fig. 3(a) shows a random geomet-
ric graph with 75 nodes. The edge weights are taken to be the
inverse of the Euclidean distance between neighboring nodes.
With EΔ = E , Corollary V.6 states that the robustness margin
corresponds to the inverse of the largest effective resistance
between nodes in EΔ which, in this example, corresponds to
the edge connecting the two black nodes in Fig. 3(a); the ef-
fective resistance between these nodes is computed to be 0.429.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:50:09 UTC from IEEE Xplore.  Restrictions apply. 



178 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 2, JUNE 2017

Fig. 3(b) shows the resulting trajectories when the uncertainty
on that edge is exactly equal to the inverse of the effective
resistance, leading to a clustering phenomena (considered in
detail in [15]).

Using the same graph, Figs. 3(c) shows two nonlinear cou-
pling functions used across the uncertain edge highlighted
earlier (y = ax+ sinx). Choosing the nonlinearity satisfying
the sector condition from Corollary V.11 (a < −2.035) leads
to stable trajectories [Fig. 3(d)], while choosing a = −3 [red
line in Fig. 3(c)] leads to unstable dynamics.

VII. CONCLUDING REMARKS

This paper examined the robust stability of weighted con-
sensus protocols with bounded additive uncertainties on the
edge weights. The main results demonstrate that the robustness
margins of such systems are determined by the combinatorial
properties of the uncertain edges, and the nominal value of
the edge weights. These margins were related to the effective
resistance in a network, and the robust stability results were
cast in this framework. We believe that this framework provides
a new graph-theoretic interpretation for classical notions from
robust control theory when applied to networked systems. The
ability for this framework to also handle nonlinear extensions
suggests a greater utility and our future works aim to apply
these results to certain real-world applications.
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