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On Structural Rank and Resilience of
Sparsity Patterns
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Abstract—A sparsity pattern in Rn×m, for m ≥ n, is a
vector subspace of matrices admitting a basis consisting of
canonical basis vectors in Rn×m. We represent a sparsity
pattern by a matrix with 0/�-entries, where �-entries are
arbitrary real numbers and 0-entries are equal to 0. We
say that a sparsity pattern has full structural rank if the
maximal rank of matrices contained in it is n. In this article,
we investigate the degree of resilience of patterns with full
structural rank: We address questions, such as how many
�-entries can be removed without decreasing the structural
rank and, reciprocally, how many �-entries one needs to
add so as to increase the said degree of resilience to reach
a target. Our approach goes by translating these questions
into max-flow problems on appropriately defined bipartite
graphs. Based on these translations, we provide algorithms
that solve the problems in polynomial time.

Index Terms—Graph theory, matchings, max-flows, pas-
sivity, sparsity patterns.

I. INTRODUCTION

THE development of network-enabled systems [1], [2], [3],
[4] is creating new opportunities for integrating theretofore

disconnected systems. These systems, however, come with new
challenges associated with their secure and resilient operation
in the face of network-level faults or even malicious actors
intentionally aiming to disrupt their functionality. An inherent
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challenge in problems related to the resilience of these systems
against faults or attacks stems from their combinatorial nature,
which is induced by the network interconnections. Indeed, the
removal or addition of a communication link in a network is a
binary operation and does not fit well within the framework of
robust control theory. Closely related to the network resilience
problem is the study of structural properties of dynamical sys-
tems. The structure is often described by graphs, where the spar-
sity pattern of the system parameters indicates the presence or
absence of edges in an associated graph. The so-called structural
system theory aims to determine whether controllable or stable
dynamics can be sustained by a given system structure, which
is described via a sparsity patterns for the system matrices [5],
[6], [7], [8], [9], [10], [11], [12].

In this article, we address a novel resilience problem for
structural system theory. A basic object in that domain is a
sparsity pattern, i.e., a vector space of matrices admitting a basis
comprised only of canonical basis vectors. We represent them as
matrices with 0/�-entries, where � denote arbitrary real entries.
The starting point of our analysis is to determine whether a given
sparsity pattern contains an open set of matrices of full rank.
Necessary and sufficient conditions for this requirement to hold
are in fact well known and can easily be described using a graph
machinery (see Lemma 3). The core problems we address in this
article go beyond that. We consider the resilience of the full-rank
property of these sparsity patterns—here, resilience refers to the
property of a sparsity pattern being full-rank after the removal
of �-entries (which can be viewed as attacks on communica-
tion links). The list of specific problems will be presented in
Section I-B.

The application areas of this work encompass problems re-
lated to structural stability of linear systems [13], structural
controllability of linear ensemble systems [8], and passivation of
networked systems [14]. For the sake of illustration, we elaborate
on the last application domain in Section I-A.

Outside of the control theory literature, problems seeking
to understand the structural rank of sparsity patterns have also
been addressed in the mathematical literature. In particular, we
mention the minimum rank problem, which aims to determine
the minimum rank of real symmetric matrices in a sparsity
pattern (where the �-entries have to be nonzero); see [15] and
[16], and the references therein for a comprehensive survey on
this subject. A typical approach to the minimal rank problem
involves analyzing a corresponding inverse problem, which is
trying to identify a graph structure from the spectrum of a
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Fig. 1. General network system and a network passivation approach.
(a) Block-diagram of the network system (Σ, Π, M ). (b) Passivation of
the system Σ over the interconnection M.

matrix [17]. Some other relevant works include the rank reduc-
tion of the adjacency matrix of a directed graph (digraph) by
vertex and/or edge deletions [18].

A. Application: Resilience for Network Passivation

To illustrate the importance of the sparsity patterns for net-
work systems and their influence on network robustness and
resilience, we will look at a general network systems architec-
ture. This section is, thus, meant to provide a system theoretic
motivation for the problems mentioned above, but the remainder
of this article does not rely on the notions introduced here.

Consider an ensemble of n agents and m controllers that may
exchange state information over a network represented by a
matrix M ∈ Rn×m. For ease of exposition, we let the entries
of M be either 0 or 1. In this sense, when Mij = 1, it means
that controller j has access to state information from agent i.
The matrix M can, therefore, also be associated with a graph
G = (V,E)with |V | = n+m nodes and edge-setE describing
the sparsity pattern of M .

For this setup, we assume that the agents and the controllers
are associated with the dynamical systems Σi : ui �→ yi for i =
1, . . . , n and Πj : ζj �→ μj , for j = 1, . . . ,m. Here, we assume
that the agent dynamics and controllers are SISO systems (i.e.,
ui, yi, ζj , μj ∈ R). The loop is closed by taking ζ(t) = M�y(t)
and u(t) = −Mμ(t). This interconnection structure is moti-
vated by the association of each controller with a set of agents.
Thus, controller j receives a linear combination of the outputs
of adjacent agents (the adjacency relation is encoded in the jth
column of M ) and distributes its control output back to the same
set of agents. We denote such systems by the triplet (Σ,Π,M),
as shown in Fig. 1(a). Note that if the matrices M are taken to be
the incidence matrix of a graph G, then the system (Σ,Π,M)
describes the well-known diffusively coupled networks [19],
[20], [21].

The stability of the interconnection in Fig. 1(a) can be guar-
anteed by the (output-strict) passivity of the systems Σi and
passivity of the controllers Πj [21], [22]. In many applications,
however, it may not be possible to guarantee the passivity of
the agents Σi. This corresponds to some or all of the agents
possessing a negative passivity index; see [23] and [24] for more
details on this notion. Nevertheless, it is still desirable to be
able to interconnect these so-called passive-short systems with

each other to achieve group coordination tasks. In this direction,
there have been recent works that aim to passify these agents
over the network itself [14], [25], [26]. This architecture can
be seen in Fig. 1(b), where the gains γi are chosen to ensure
that the system from external input ũ to output ỹ = y is passive.
If this can be achieved, then it can be shown that the network
interconnection (Σ̃,Π,M) is stable, where Σ̃ maps ũ to output
ỹ [14]. The conditions for which this is possible were explored
in [14]. The main result can be extended to the general network
structure M so we state it as follows without a proof.

Lemma 1: Let R = diag(ρ1, . . . , ρn) be a diagonal matrix
containing the passivity index ρi of each agent Σi, and assume
that ρi < 0 for at least one agent. If R+M diag(γ)M� is pos-
itive semidefinite, then Σ̃, mapping ũ(t) to ỹ(t) as in Fig. 1(b),
is passive with respect to any steady-state input–output pair.
Moreover, if R+M diag(γ)M� is positive-definite, then Σ̃
is output-strict passive. Furthermore, there exist scalars γi, for
i = 1, . . . ,m, such that R+M diag(γ)M� > 0 if and only if
x�Rx > 0 for any nonzero x ∈ Ker(M�).

This result shows that for a given network matrix M , it may
not even be possible to guarantee a network passivation scheme
that ensures output-strict passivity of Σ̃. At the same time, it
hints that for a given set of passivity indices ρi, a change to the
network matrix M may allow for output-strict passivation. This
result also shows that for a full-rank matrixMM�, it will always
be possible to find a single gain γ such that R+ γMM� > 0.

With this setup, we can now motivate the study of the struc-
tural rank of the interconnection matrix M . For a matrix M
with a given sparsity pattern, how many of its entries can be re-
moved, corresponding to compromising the network connection
between an agent and controller, before the matrix loses rank.
In the case where the network is being used to also passify the
agents, this loss of rank may lead to the loss of passivity of Σ̃,
thereby destroying the convergence guarantees of the network
system (Σ̃,Π,M). To illustrate this, we present a brief example.

Example 1: We consider an ensemble of n = 4 identical
but unstable plants, with dynamics of each agent described
by the SISO transfer function Σi(s) = (s+ 0.5)/(s− 1) for
i ∈ {1, . . . , 4}. It can be verified that the agents are output
passive-short with ρ = −2.1 The agents are to be controlled
according to the architecture in Fig. 1(a) with the network matrix
M , as illustrated in Fig. 2. Since M is full rank, according
to Lemma 1, the ensemble can be passified (and stabilized)
over the network using the architecture in Fig. 1(b) and with
gain γ > 3.4142 (found by using, for example, semidefinite
programming [14]).

Consider now a scenario where an attacker successfully dis-
ables controllersΠ1 andΠ6 (corresponding to nulling columns 1
and 6 in M ). Even under such an attack, the matrix M maintains
full column rank and can still be passified, now with a gain of
γ > 13.7082. On the other hand, if, in addition, the connection
between Σ3 and Π3 is severed (i.e., changing entry M13 to
0), then M loses rank and it is no longer possible to passify
the system over the network. Consequently, the architecture of

1The passivity index can be computed, for example, in MATLAB using the
command getPassiveIndex.
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(a) (b)

Fig. 2. (a) Network matrix M in Example 1, and (b) its graph repre-
sentation. Each column of M represents a controller Πe while each row
corresponds to a system Σi.

Fig. 1(a) can not be used to control the ensemble and the attacker
was successful in disabling the system. �

The above example illustrates the importance of structural
rank for networked systems. Applications that can rely on
this analysis include plug-and-play control for networked sys-
tems [27], [28], [29].

B. Problem Formulation and Contributions

In this section, we formulate the core problems addressed
in this article. We start by introducing the notions of sparsity
patterns and their rank.

A sparsity pattern S(n,m) in Rn×m (or simply S if (n,m)
is clear from the context) is a vector subspace that admits a
basis consisting only of matrices Eij’s, i.e., matrices with 1 on
the ijth entry and 0, elsewhere. Such a vector space is, thus,
fully determined by the pairs (i, j), which indicate the entries
of matrices in S that are not always zero. We denote by E(S)
the collection of all such pairs, hence dimS = |E(S)|. We refer
to the entries of S(n,m) indexed by E(S) as �-entries, and the
other entries as 0-entries.

Definition 1 (Rank of sparsity pattern): The rank of a sparsity
pattern S , denoted by rkS , is the maximal value of the ranks of
matrices in S:

rkS := max
A∈S

(rk A).

It should be clear that rkS(n,m) ≤ min{n,m}. Returning
to the example of Section I-A, we are interested in finding sparse
matrices M such that MM� is full rank (i.e., rank n). Thus, we
assume in the sequel that m ≥ n.

The set of sparsity patterns of the same parameters (n,m)
admits a natural partial order.

Definition 2 (Partial order on sparsity patterns): Given pat-
terns S(n,m) and S′(n,m), we write S′ 	 S if E(S′) ⊇ E(S)
and S′ � S if E(S′) � E(S).

We now precisely define the notions of resilience studied in
this article.

Definition 3a (Resilience): Given positive integers n and m
with m ≥ n, a sparsity pattern S(n,m) of rank n is exactly
k-resilient, for 0 ≤ k ≤ |E(S)|, if the following hold.

1) All patterns S′ � S with |E(S′)| ≥ |E(S)| − k are of
rank n.

2) There exists an S′ ≺ S with |E(S′)| = |E(S)| − k − 1
whose rank is less than n.

We denote by rslS the degree of resilience of S .
In general, finding the degree of resilience of a zero-pattern

is a difficult problem. We introduce in the following a slightly
stronger notion of resilience, termed strong resilience, which
will allow us to develop fast algorithms to obtain bounds on the
degree of resilience.

To motivate this definition, observe that a sparsity pattern S is
exactly 0-resilient if its rank isn and there exists a patternS′ ≺ S
whose rank is strictly less than n. Thus, when expressing S as
a direct sum of sparsity patterns, it is clear that if any of the
summand is of rank n, then so is S . Following this fact, we now
have the following definition.

Definition 3b (Strong resilience): Given positive integers n
and m with m ≥ n, a sparsity pattern S(n,m) of rank n is
exactly strongly k-resilient, for k ≥ 0, if it contains a direct sum2

of (k + 1) but not (k + 2), sparsity patterns each of which is
0-resilient. We denote by s-rslS the degree of strong resilience
of S .

On occasion, we will deal with sparsity patterns S(n,m) that
are not full rank, i.e., rkS(n,m) < n. By convention, we set

(s-)rslS(n,m) := −1 if rkS(n,m) < n.

Throughout this article, we shall always consider the exact
degree of (strong) resilience of a sparsity pattern. Thus, for
convenience, we will omit “exact” in the sequel if there is no
confusion.

By the arguments outlined before Definition 3b, if a sparsity
pattern is strongly k-resilient, then it is at least k-resilient. How-
ever, the converse is not true: there exist k-resilient patterns that
cannot be expressed as a direct sum of (k + 1) patterns which are
0-resilient (an example is given in Fig. 4). Nevertheless, we will
show in Corollary 2 (see Section III-A) that the gap between the
two notions does not have any impact on the minimal dimensions
of patterns meeting either definition. Specifically, if dk is the
minimal dimension of a k-resilient pattern (provided that it
exists)

dk := min
S : rslS=k

|E(S)|,

then there exists a pattern of dimension dk which is strongly
k-resilient.

Standing from the perspective of a system designer, we pose
the following questions.

P1: Given a sparsity pattern S , what is its degree of (strong-)
resilience?

P2: Given a sparsity pattern S , what is the least number of
�-entries one should add to obtain a degree of (strong-)
resilience k∗? This problem can be expressed as follows:

min |E(S∗)| s.t. S∗ 	 S with (s-)rslS∗ = k∗.

P3: Given a sparsity pattern S , what is the largest degree of
(strong-)resilience we can achieve by addingp�-entries?

2The direct sum S′ ⊕ S′′, for S,′ S′′ ⊆ S, is well defined only if S′ ∩ S′′ =
{0}.
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This problem can be expressed as follows:

max (s-)rslS∗ s.t. S∗ 	 S with |E(S∗)|= |E(S)|+ p.

We pose the above questions for both resilience and strong
resilience. Focusing on strong resilience will lead to polynomial-
time algorithms that solve these questions exactly, thereby pro-
viding bounds for resilience. The main results are formulated in
Theorems 3, 8, and 9, respectively.

Outline of proofs: The first step in our analysis is to assign a
bipartite graph to a sparsity pattern and to relate the full-rank
property, and its resilience, to the existence of matchings in
this graph. This is done in Section II. We then proceed toward
the first result, Theorem 1, in which relying on a result of
König [30] to characterize the bipartite graphs corresponds
to strongly k-resilient patterns. This is done in Section III-A.
Relying on Theorem 1, we then translate the three problems
formulated above into problems about max-flows over graphs.
In more details, we first create several variations on the bipartite
graphs associated with a sparsity pattern by adding source and
target nodes, turning undirected edges into directed ones, and
appropriately assigning edge- and node-capacities. We then
introduce several max-flow problems defined on these modified
bipartite graphs and, moreover, prove that integral solutions
to these max-flows problems provide solutions to the original
problems P1–P3. Finally, we demonstrate that these max-flow
problems can be solved using standard algorithms in polynomial
time.

II. BIPARTITE GRAPHS, MATCHINGS, AND RESILIENCE

A. Background on Graph Theory and Flows

We introduce the necessary background and notations about
graph theory and related flow problems. In this article, we will
be concerned with bipartite graphs, i.e., graphs which admit a
partition of their node set into two disjoint components with the
property that nodes in the same components share no edge.

Denote by G(n,m) = (Vα ∪ Vβ , E) an undirected bipar-
tite graph on (n+m) nodes: by convention, there are n left
nodes denoted by α1, . . . , αn and m right nodes denoted by
β1, . . . , βm. On occasion, we will write G by omitting the
arguments (n,m) if it is clear from the context. Each edge of
G(n,m) connects a left node with a right node. An edge in
G(n,m) is thus denoted by (αi, βj). We say that G′ = (V,′ E ′)
is a subgraph of G if V ′ ⊆ Vα ∪ Vβ and E ′ ⊆ E. Given a node
α in G, we denote by deg(α,G′) the degree of α relative to G′,
defined as the number of edges in E′ incident to α (equivalently,
the number of neighbors of α in G′). We will also consider
directed bipartite graphs in the following; we denote the directed
edge from αi to βj by αiβj .

Recall that a matching in the graph G(n,m) is a set of edges
so that no two distinct edges are incident to the same node. For
n = m, a perfect matching P in G(n, n) is a set of n edges such
that each node of G(n, n) is incident to exactly one of these n
edges. For the general case m �= n, we introduce the following
definition.

Definition 4 (Left-perfect matchings): A left-perfect match-
ing in a bipartite graph G(n,m) = (Vα ∪ Vβ , E), with m ≥ n,

is a set of n edges in E so that no two distinct edges are incident
to the same node.

Equivalently, G(n,m), for n ≤ m, admits a left-perfect
matching if there exist n distinct right nodes βi1 , . . . , βin such
that the subgraph G′(n, n) induced by the left nodes Vα and
{βi1 , . . . , βin} has a perfect matching. We say that two match-
ings P1 and P2 of G are disjoint if P1 ∩ P2 = ∅.

Let �G = (V, �E) be an arbitrary digraph with two special
nodes s, t ∈ V , termed the source and target nodes, respectively.
The source node has no incoming edges and the target has no
outgoing edges. A capacity on �G is a function c : �E → R≥0.
Given the capacity, a flow on �G is a function f : �E → R≥0 such
that:

1) f(e) ≤ c(e) for all e ∈ �E;
2) the following balance condition is satisfied at all nodes

v ∈ V − {s, t}:∑
u:uv∈�E

f(uv) =
∑

w:vw∈�E

f(vw). (1)

The value of the flow f is defined as

|f | :=
∑

v:sv∈�E

f(sv) =
∑

v:vt∈�E

f(vt). (2)

We denote by Fc the set of all flows on �G with capacity function
c. The celebrated max-flow problem [31] is the optimization
problem formulated as follows:

max
f∈Fc

|f |.

It is well known that finding a solution f ∗ to the above opti-
mization problem can be done in polynomial time using, e.g.,
the Ford–Fulkerson algorithm [32]. Note that a solution to the
max-flow problem is not necessarily integer-valued, i.e., there
may exist edges e such that f ∗(e) are not integers, even if c is
integer-valued. However, if c is integer-valued (which will be the
case in this article), then the output of the Ford–Fulkerson al-
gorithm initialized at an integer-valued flow is integer-valued as
well and, thus, provides an integer-valued maximum flow [31].
This statement is referred to as the integrality theorem.

A fundamental result in the study of max-flow problems is
the max-flow min-cut theorem, which we briefly describe here.
To this end, we recall the definition of a cut in the digraph �G =
(V, �E) with the capacity function c: An s-t cut (S, T ) in �G is a
partition of the node set of �G into two disjoint sets S � s and
T � t. We denote the set of all s-t cuts in �G as C. For a given
cut (S, T ) ∈ C, we let

�E(S,T ) := {vivj ∈ �E | vi ∈ S, vj ∈ T}.
Then, the capacity of the cut (S, T ) is defined as

c(S, T ) :=
∑

e∈�E(S,T )

c(e).

The min-cut problem is then formulated as follows:

min
(S,T )∈C

c(S, T ).

The max-flow min-cut Theorem [33] says the following.
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Fig. 3. We illustrate the correspondence between (a) sparsity pattern
and (b) bipartite graph. The left and right nodes are labeled as αi and
βj , respectively. A star in the ijth entry corresponds to the edge (αi, βj)
in the bipartite graph.

Lemma 2: Given a digraph �G with source s and target t and
capacity function c, let Fc be the set of corresponding flow maps
on �G and C the set of s-t cuts in �G. Then,

max
f∈Fc

|f | = min
(S,T )∈C

c(S, T ).

B. Graph Theoretic View on (Strong) Resilience

To proceed, we establish some standard connections between
graph theoretic concepts and the pattern properties introduced
here. First, to a given sparsity pattern S(n,m), we can assign
the bipartite graph G(n,m) = (Vα ∪ Vβ , E) on (n+m) nodes
with edge set E given by the rule: the ijth entry of S is a � if and
only if (αi, βj) is an edge in E. See Fig. 3 for an illustration.

Since this representation of sparsity patterns as bipartite
graphs is one-to-one, we also write (s-)rslG to refer to the
degree of (strong) resilience of the corresponding pattern S . We
now relate (s-)rslG to perfect matchings of G. The following
result is standard, and we include a proof in the Appendix for
completeness.

Lemma 3: A sparsity pattern S(n,m) is of rank n if and only
if its associated bipartite graph G(n,m) admits a left-perfect
matching.

As an immediate consequence of the above lemma, we can
characterize k-resilient bipartite graphs as follows.

Lemma 4: A bipartite graph G = (Vα ∪ Vβ , E) is k-resilient
if and only if the following hold.

1) For any subset E ′ ⊂ E with |E ′| = k, G′ = (Vα ∪
Vβ , E − E ′) contains a left-perfect matching.

2) There exists a subset E ′ with |E ′| = k + 1 such that
G′ = (Vα ∪ Vβ , E − E ′) does not contain a left-perfect
matching.

We can also characterize strongly k-resilient bipartite graphs
using perfect matchings.

Lemma 5: A bipartite graph G is strongly k-resilient if and
only if it has exactly (k + 1) disjoint left-perfect matchings.

Proof: We first show that if G has exactly (k + 1) dis-
joint left-perfect matchings, it is strongly k-resilient. Denote
by P1, . . . , Pk+1 the disjoint left-perfect matchings in G. By
Lemma 3, the graph induced by each left-perfect matching in
G corresponds to a 0-resilient subpattern of S . Furthermore,

since the (k + 1) left-perfect matchings are disjoint, the spar-
sity pattern corresponding to their union is the direct sum of
the subpatterns corresponding to the Pi. It then follows from
Definition 3b that G is strongly k-resilient.

We now show that if G is strongly k-resilient, then it has
exactly (k + 1) disjoint left-perfect matchings. First, note that
G cannot have more than (k + 1) disjoint left-perfect match-
ings because otherwise, by the above argument, G is at least
strongly (k + 1)-resilient. It remains to show that G has at
least (k + 1) disjoint left-perfect matchings. By definition of
strong resilience, S contains (k + 1) subpatterns S1, . . . ,Sk+1

that are 0-resilient and Si ∩ Sj = {0} for i �= j. Owing to the
correspondence between sparse patterns and bipartite graphs,
each subpattern corresponds a subgraph of G. Denote these
subgraphs by G1, . . . , Gk+1. Since each pattern is 0-resilient,
by Lemma 3, each Gi contains at least one left-perfect matching
Pi. Since Si ∩ Sj = {0} for i �= j, it follows that Gi and Gj are
edgewise disjoint, and hence, Pi and Pj are disjoint as well. We
have, thus, shown that G has at least (k + 1) disjoint left-perfect
matchings. �

III. MAIN RESULTS

A. On k- and Strong k-Resilience

From Lemma 5, we know that a strongly k-resilient pattern
is associated with a bipartite graph that contains exactly (k +
1) disjoint left-perfect matchings. To better understand strong
resilience, we characterize graphs that can be obtained as unions
of disjoint left-perfect matchings.

Theorem 1: A bipartite graph G(n,m), for m ≥ n, is a union
of k, for 1 ≤ k ≤ m, disjoint left-perfect matchings if and only
if the following hold.

1) The degree of each left node is exactly k.
2) The degree of each right node is less than or equal to k.

Note that the degree of each right node of G(n,m) is at most
n, so for k ≥ n, item 2) of Theorem 1 holds trivially. It is not too
hard to see that the bipartite graphs characterized by Theorem 1
exist for every k = 1, . . . ,m.

Proof: We first establish the necessity of the two items. The
necessity of item (1) is obvious. For item 2), assume, to the
contrary, that there is at least one node in Vβ , say vβj

, with
degree larger than k. Since each node of Vβ is incident to at
most one edge in a left-perfect matching, after removing the
k disjoint perfect matchings of G(n,m), vβj

will have degree
strictly larger than 0, and thus, G(n,m) is not a union of k
left-perfect matchings.

We next establish the sufficiency of the two items. The
proof relies on the use of König’s Line Coloring Theorem [34,
Th. 1.4.18], which can be equivalently stated as follows: Let
G = (Vα ∪ Vβ , E) be an arbitrary bipartite graph, and Δ(G) be
the maximal degree of G, i.e., Δ(G) := maxv∈Vα∪Vβ

deg(v).
Further, let χ(G) be the minimal number 
 of disjoint matchings
P1, . . . , P� in G such that E = ∪�

i=1Pi. Then, χ(G) = Δ(G).
Applying König’s Line Coloring Theorem to G(n,m) as in the
theorem statement, we obtain that E is a union of k disjoint
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Fig. 4. (a) Graph contains three distinct (but not pairwise disjoint)
perfect matchings, depicted in (b)–(d). The intersection of these three
perfect matchings is the empty set, i.e., there is no common edge to all
these matchings. Hence, the graph in (a) is at least 1-resilient. Moreover,
since deg(αi) = deg(βi) = 2 for i = 1, 3, 4, the graph in (a) is exactly
1-resilient. However, since the pairwise intersections of the matchings
are not empty, it is not strongly 1-resilient.

matchings P1, . . . , Pk. In order to show that these matchings are
all left-perfect matchings, it suffices to show that they are all of
cardinality n. Indeed, since n ≤ m, any matching of cardinality
n is necessarily left-perfect. Note that |E| = ∑k

i=1 |Pi| and,
by the hypothesis on G(n,m), |E| = kn. Finally, since G is
bipartite, the cardinality of any matching in G cannot exceed n.
We conclude that all matchings P1, . . . , Pk have cardinality n
and are, thus, left-perfect matchings. �

The following result is a corollary of Theorem 1.
Corollary 2: The following two statements hold.
1) For any given k = 1, . . . ,m− 1, the minimal number of

edges needed for G(n,m), with m ≥ n, to be k-resilient
(or strongly k-resilient) is (k + 1)n.

2) Given a pair of positive integers (n,m) with m ≥ n, the
maximal degree of resilience (or strong resilience) of a
bipartite graph G(n,m) is (m− 1).

Proof: We first establish the fact that if a bipartite graph
G(n,m) is k-resilient, then it has at least (k + 1)n edges. To
see this, recall that by Lemma 3, G(n,m) is k-resilient if, after
removing k edges, the remaining graph still admits a left-perfect
matching. Hence, the degree of each left node has to be at least
(k + 1) because, otherwise, such node can be disconnected from
the others by the removal of the edges incident to it. Since
G(n,m) is bipartite, this proves the claim. Item 1 is then an
immediate consequence of the above fact and Theorem 1.

We now prove item 2. To consider maximal degree of (strong)
resilience, it suffices to let G(n,m) be the complete bipartite
graph (owing to the monotonicity of resilience with respect to
adding edges). In this case, we show that the degree of (strong)
resilience ofG(n,m) is (m− 1). On the one hand, the degree of
every left node is m. From the fact established at the beginning
of the proof, we have that G(n,m) is at most (m− 1)-resilient.
On the other hand, by Theorem 1, G(n,m) is a union of m

disjoint left-perfect matchings. Thus, by Lemma 5, G(n,m) is
strongly (m− 1)-resilient. �

Corollary 2 says that k- and strongly k-resilience require the
same minimal number of edges, and that the maximal degrees
of resilience and of strong resilience one can achieve for a
given (n,m) are also the same. Nevertheless, they are distinct
notions: strong k-resilience is strictly stronger than k-resilience.
We provide an example in Fig. 4 where a graph that is 1-resilient
but strongly 0-resilient is depicted.

In the sequel, we will mostly focus on strong resilience.
The main reason for this is the characterization provided by
Theorem 1, which we can leverage to obtain provable solutions
to problems P1–P3. An equivalent characterization for resilience
appears harder to obtain. While the previous example shows
that resilience can be strictly weaker than strong resilience,
Corollary 2 shows that the two notions are interchangeable when
the number of edges used (which can be viewed as resources
deployed by the designer) is to be minimized.

B. Solution to Problem P1

In this section, we show how to determine the degree of
strong resilience of a bipartite graphG(n,m) forn ≤ m, i.e., we
provide a solution to Problem P1. The solution is constructive,
in the sense that we also exhibit a set of edges, which is a
union of disjoint left-perfect matchings and can be obtained in
polynomial time. This is done by translating the problem into a
max-flow problem and appealing to Theorem 1.

We start with the following definition, which takes a bipartite
graph G and a nonnegative integer 
 and produces a directed
version of G, denoted by Ḡ, and a capacity function defined on
the edge set of Ḡ:

Definition 5: Let G(n,m) = (Vα ∪ Vβ , E) be a bipartite
graph and 
 ≥ 0 be an integer. Define the digraph Ḡ(n,m) =
(V̄ , Ē) and the capacity function c̄� : Ē → Z≥0 as follows:

1) Add two new nodes to G, denoted by s and t:

V̄ := Vα ∪ Vβ ∪ {s, t}.

2) Create the edge set Ē as a union of Ē0 and Ē1 where

Ē0 := {sαi, βjt | αi ∈ Vα, βj ∈ Vβ},
Ē1 := {αiβj | (αi, βj) ∈ E}.

3) Define c̄� as follows:

c̄�(e) :=

{

 if e ∈ Ē0,

1 if e ∈ Ē1.
(3)

The two new nodes s and t added in step 1 are the source and
the target of Ḡ, respectively. The value of 
 will be problem-
dependent and specified as follows. We illustrate the definition
in Fig. 5.

Denote by F� the set of integer-valued flow maps on Ḡ with
respect to c̄�. When 
 = 0,F� is the singleton {f}, where f(e) =
0 for all e ∈ Ē.
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Fig. 5. Given a bipartite graph G(4, 5) in (a), we plot the digraph
Ḡ(4, 5) in (b). The edge set Ē of Ḡ(4, 5) is partitioned into two subsets
Ē0 and Ē1 depicted in blue and black, respectively. The capacity of each
blue (resp. black) edge is � (resp. 1).

Given a flow f ∈ F�, we define the subgraph of the original
bipartite graph G induced by f as follows:

Gf := (Vα ∪ Vβ , Ef ) with

Ef := {(αi, βj) ∈ E | f(αiβj) �= 0}. (4)

In words, we select only edges of G whose directed versions in
Ḡ are used by the flow f .

Recall that for a flow f ∈ F�, its value |f | is given by (2). We
need the following definition.

Definition 6 (Saturated flows): Given the digraph Ḡ(n,m)
and a nonnegative integer 
, we say that a flow f ∈ F� on
Ḡ(n,m) is saturated if |f | = n
. We denote by F̄� the set of
saturated flows on Ḡ(n,m).

Note that a saturated flow is necessarily a max-flow because,
by Definition 5, the value of a flow f cannot exceed n
. Further,
note that by the integrality theorem (see Section II-A), if a
real-valued flow f with |f | = n
 exists, then F̄� is nonempty.
The following lemma shows that saturated flows are in corre-
spondence with disjoint left-perfect matchings.

Lemma 6: Let 
 ≥ 1 and f ∈ F�. Then, f ∈ F̄� if and only if
Gf is a union of 
 disjoint left-perfect matchings.

Proof: Assuming that f ∈ F� and Gf = (Vα ∪ Vβ , Ef ) is a
disjoint union of 
 left-perfect matchings, we show that f ∈
F̄�. It should be clear that deg(αi;Gf ) = 
 for each αi ∈ Vα.
Hence, there exist 1 ≤ i1, . . . , i� ≤ 
 so that (αi, βij ) ∈ Ef , for
1 ≤ i ≤ n and 1 ≤ j ≤ 
. From the definition ofGf and the fact
that f is integer-valued, we have that f(αiβij ) ≥ 1. On the one
hand, using (1) and (2), we obtain that

|f | =
n∑

i=1

f(sαi) =
∑

(αi,βij
)∈Ef

f(αiβij ) ≥ n
.

On the other hand, since f ∈ F�, |f | ≤ n
. Thus, we must have
that |f | = n
 and, hence, f ∈ F̄�.

Reciprocally, assuming that f ∈ F̄�, we show that Gf is a
disjoint union of 
 left-perfect matchings. To this end, we claim
that the degree of each left node in Gf is exactly 
 and the
degree of each right node in Gf is less than or equal to 
.
If this holds, then the result is an immediate consequence of
Theorem 1. We now prove the claim. For the left nodes, because

f is saturated,n
 = |f | = ∑n
i=1 f(sαi). By the definition of the

capacity function (3), f(sαi) ≤ 
. It follows that f(sαi) = 

for all i = 1, . . . , n. Next, by the balance condition and the
definition of Gf in (4), we have that

f(sαi) =
∑

j:(αi,βj)∈E
f(αiβj) =

∑
j:(αi,βj)∈Ef

f(αiβj).

Further, by the capacity function (3) and the fact that f is
integer-valued, we have thatf(αiβj) = 1 for (αi, βj) ∈ Ef , and
thus, there are exactly n edges in Ef incident to αi. Finally,
for the right nodes, one can apply similar arguments: first,
from the capacity function, we have that f(βjt) ≤ 
; then, the
balance condition f(βjt) =

∑
i:(αi,βj)∈Ef

f(αiβj) implies that
deg(βj ;Gf ) ≤ 
. �

With the above preliminaries, we now provide a solution to
Problem P1.

Theorem 3: Let G(n,m) be a bipartite graph with m ≥ n.
Let Ḡ(n,m) be the digraph from Definition 5 and F̄� be given
as in Definition 6. Let 
∗ := max{
 ≥ 0 | F̄� �= ∅}. Then, 0 ≤

∗ ≤ m and the following hold.

1) For any 
 ∈ {0, . . . , 
∗}, F̄� �= ∅. For any f ∈ F̄�, the
bipartite graph Gf (n,m) given in (4) is a union of 

disjoint left-perfect matchings.

2) The degree of strong resilience of G(n,m) is (
∗ − 1).
Proof: Recall that when 
 = 0, F̄0 is a singleton, so 
∗ ≥ 0.

We next show that 
∗ ≤ m. Suppose to the contrary that 
∗ > m;
then, by Lemma 6, G contains at least (m+ 1) disjoint left-
perfect matchings, which contradicts item 2) of Corollary 2
saying that the degree of strong-resilience of G(n,m) is at most
(m− 1) (and, hence, G(n,m) can contain at most m disjoint
left-perfect matchings). We now establish the two conditions of
the theorem.

Proof of item 1): Because F̄�∗ is nonempty, by Lemma 6,
G contains 
∗ disjoint left-perfect matchings, denoted by
P1, . . . , P�∗ . Let G′ = (Vα ∪ Vβ , E

′) be the subgraph of G
induced by P1, . . . , P�. We use G′ to define a flow f on Ḡ as
follows:

f(e) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 if e = sαi for αi ∈ Vα,

deg(βj ;G
′) if e = βjt,

1 if e = αiβj for (αi, βj) ∈ E ′,
0 otherwise.

It should be clear that f ∈ F̄�. Using again Lemma 6, we have
that for any f ∈ F̄�, Gf is a union of 
 disjoint left-perfect
matchings.

Proof of item 2): First, we consider the case 
∗ = 0 and show
thatG does not have a left-perfect matching (i.e., s-rslG = −1).
Suppose, to the contrary, that there exists a left-perfect matching
P in G; then, consider the flow f on Ḡ defined as follows:

f(e) :=

{
0 if e = αiβj with (αi, βj) /∈ P,

1 otherwise.

It is not hard to see that f is a flow on Ḡ with respect to c̄1 (i.e.,

 = 1). By construction, f is a saturated flow in F̄1, which is a
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Fig. 6. We show saturated flows f� on the graph Ḡ(4, 5) as de-
picted in Fig. 5 for (a) � = 1 and (b) � = 2. The edges with nonzero
values under f� are highlighted in blue. In the case � = 2, the two
disjoint left-perfect matchings are {(α1, β1), (α2, β4), (α3, β2), (α4, β5)}
and {(α1, β2), (α2, β1), (α3, β3), (α4, β4)}. Note, in particular, that the
perfect matching of case � = 1 is not part of the disjoint matchings for
� = 2.

contradiction. For the other case where 
∗ ≥ 1, the item follows
from the definition of 
∗ and Lemma 6. �

Example 2: Consider the bipartite graph G(4, 5) given in
Fig. 5. We run, e.g., the Ford–Fulkerson algorithm for the
weighted digraph Ḡ(4, 5) with 
 = 1, 2. We show in Fig. 6 the
corresponding saturated flows, which implies that F̄� �= ∅ for

 = 1, 2. Also, note that F̄3 = ∅ because the degrees of nodes
α1 and α4 in G(4, 5) are both 2. Using Theorem 3, we have that
G(4, 5) is strongly 1-resilient. �

Theorem 3 provides an algorithmic solution, of polynomial-
time complexity, to P1, i.e., to determine s-rslG(n,m). The
algorithm is as follows: Start by setting 
 := m, and repeat the
following procedure.

1) Construct the digraph Ḡ(n,m) and the capacity function
c̄�. The complexity is O(m+ n).

2) Run the Ford–Fulkerson algorithm on Ḡ(n,m) initialized
at the zero flow and denote its output by f . The complexity
isO(n2m
) [35]. If |f | = n
, then return s-rslG(n,m) =

− 1. The algorithm is over.

3) If |f | < n
 and if 
 ≥ 2, decrease the value of 
 by 1 and
return to step 1. Otherwise, return s-rslG(n,m) = −1
and the algorithm is over.

C. Minimal Number of Edges to Increase s-rslG

In this section, we address the following simple question:
Given a graphG(n,m)which is a union of k disjoint left-perfect
matchings with k ≤ m− 1, how many edges need to be added to
this graph to obtain a bipartite graph G∗(n,m) which is a union
of (k + 1) disjoint left-perfect matchings? Understanding this
problem provides a solution to Problems P2 and, partially, P3
for the special case where G is a union of disjoint left-perfect
matchings. The advantage of the solution proposed here, when
compared to the algorithms provided in the next section for
solving general cases, is that it allows to establish an analytical
bound on the number of edges needed to increase the degree of
strong resilience.

Fig. 7. (a) We depict a graph G(2, 3) which is the union of
two disjoint left-perfect matchings P1 = {(α1, β1), (α2, β2)} and P2 =
{(α1, β2), (α2, β1)}. (b) We depict the complementary graph Gc(2, 3);
it does not contain a left-perfect matching. (c) We plot the three dis-
joint left-perfect matchings in the complete bipartite graph K(2, 3) =
G(2, 3) ∪Gc(2, 3).

To proceed, we introduce the natural notion of the graph
complement. Given the complete bipartite graph K = (Vα ∪
Vβ , EK) and the bipartite graph G = (Vα ∪ Vβ , E), we denote
by Gc the complement of G (in K); more precisely

Gc := (Vα ∪ Vβ , EK − E).

Special case m = n: We have the following result.
Lemma 7: LetG(n, n) be a union of k disjoint perfect match-

ings with k ≤ n. Let Gc(n, n) be the complement of G(n, n).
Then, Gc(n, n) is a union of (n− k) disjoint perfect matchings.

Proof: Sincem = n, by Theorem 1, the degree of every node
in G(n, n) is k. It then follows that the degree of each node in
Gc(n, n) is (n− k). Using Theorem 1 again, we conclude that
Gc(n, n) is a union of (n− k) disjoint perfect matchings. �

It should be clear that adding any perfect matching ofGc(n, n)
to G(n, n) yields a graph G∗(n, n), which is a union of (k +
1) disjoint perfect matchings. However, such a fact cannot be
extended to the case m > n, as seen in the following example.

Example 3: To see this, consider the graph G(2, 3) in Fig. 7,
which depicts a simple case for which m > n. Here, G(2, 3) is
the union of two disjoint left-perfect matchings. It is easy to see
thatGc(2, 3) does not contain a left-perfect matching. Neverthe-
less, adding Gc(2, 3) to G(2, 3) still yields the graph K(2, 3),
which is a disjoint union of three left-perfect matchings. The key
difference between this case and the one with n = m is that in
the latter case, one can always produce a graph G∗(n, n), which
is composed of the all of the existing k disjoint perfect matchings
of G(n, n) and an additional disjoint perfect matching. In this
example G(2, 3), the three disjoint left-perfect matchings of
G∗(2, 3) do not contain all of the left-perfect matchings that
were used to express G(2, 3) as a disjoint union of perfect
matchings. Generally speaking, this fact precludes the use of
simple inductive arguments that rely on adding n edges while
keeping the k disjoint perfect matchings that made G(n,m). �

General case m ≥ n: We establish the following result, the
proof of which will be constructive.

Theorem 4: LetG(n,m), withn ≤ m, be a union ofk disjoint
left-perfect matchings for k < m. Then, one can add 
n edges,
for 1 ≤ 
 ≤ m− k, to G(n,m) such that the resulting graph
G∗(n,m) is a union of (k + 
) disjoint left-perfect matchings.

The next result is then an immediate consequence of Theo-
rem 4.
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Fig. 8. Bipartite graph G(4, 5) in (a) is a union of two disjoint left-
perfect matchings, highlighted in red and green. The weighted digraph
in (b) is Ĝc(4, 5) for k = 3. Correspondingly, by Definition 7, the capacity
of an edge βjt is given by 4− deg(βj ;G), whereas the capacity of each
remaining edge is 1. We then run the Ford–Fulkerson algorithm and
highlight (in blue) a solution f to the max-flow problem (6). By Prop. 7,
the capacity of any such solution is given by |f | = n = 4.

Corollary 5: Given a strongly k-resilient G(n,m), with k <
m, and given a budget of p additional edges, one can select p
edges {e1, . . . , ep} out of Gc(n,m) such that the new graph
G(n,m) ∪ {e1, . . . , ep} is at least strongly (k + � p

n�)-resilient.
The remainder of this section is devoted to the proof of

Theorem 4. It suffices to prove the theorem for the case 
 = 1;
one can then iteratively apply this case to prove the general result.
The proof has two parts: The first part relates the feasibility
of the addition problem (i.e., the problem of adding n edges
to G(n,m) to form a union of (k + 1) disjoint left-perfect
matchings) to a max-flow problem; this is akin to what was
done in Section III-B. Here, we define a max-flow problem
whose capacity function allows us to decide whether the addition
problem is feasible. Then, in the second part, relying on the
max-flow min-cut theorem, we compute explicitly the maximal
capacity by computing the corresponding minimal cut.

Max-flow formulation: We start by constructing another di-
rected version of the bipartite graph Ĝ(n,m)with an appropriate
capacity function. The solution of a newly defined max-flow
problem on this graph will yield the edges needed to increase
the resilience.

Definition 7: Given a bipartite graph G = (Vα ∪ Vβ , E) and
an integer k, define the digraph Ĝc = (V̂ , Ê) and the capacity
function ĉk : Ê → Z≥0 as follows.

1) Add two new nodes to G, denoted by s and t:

V̂ := Vα ∪ Vβ ∪ {s, t}.

2) Create the edge set Ê as a union of Ê0 and Ê1 where

Ê0 := {sαi | αi ∈ Vα} ∪ {αiβj | (αi, βj) /∈ E},
Ê1 := {βjt | βj ∈ Vβ}.

3) If e ∈ Ê0, then ĉk(e) := 1; if e = βjt ∈ Ê1, then

ĉk(e) := max{0, (k + 1)− deg(βj ;G)}. (5)

We illustrate the definition in Fig. 8.

Let F̂k be the set of integer-valued flow maps on Ĝc(n,m).
We will now relate the max-flow problem on Ĝc(n,m):

max
f∈F̂k

|f | (6)

to Theorem 4. As mentioned above, requiring an integer solu-
tion is not constraining; it suffices to use the Ford–Fulkerson
algorithm.

Proposition 6: Let G(n,m) be a union of k disjoint left-
perfect matchings, for 0 ≤ k < m, and Ĝc(n,m) be given in
Definition 7. Let f be a solution to problem (6). If |f | = n,
then there exist n edges {e1, . . . , en} ∈ Gc(n,m) so that
G∗(n,m) := G(n,m) ∪ {e1, . . . , en} is a union of (k + 1) dis-
joint left-perfect matchings.

Proof: Given the flow f on Ĝc, we let Gc
f be the subgraph

of Gc induced by f as defined in (4).
Because |f | = n and because the capacity assigned to the

edges sαi, for αi ∈ Vα, is 1, the inflow at every node αi is
also 1. Also, since the capacities of edges of type αiβj are 1,
we have that there are exactly n edges of this type for which
f is nonzero, and thus, there are exactly n edges in Gc

f . By
construction, these edges are incident to n distinct left nodes (as
otherwise, it implies that an edge of type sαi has a flow above
its capacity of 1). Denote by {e1, . . . , en} this set of edges in
Gc

f .
We show that adding this set of edges to G yields a G∗, which

is a union of (k + 1) disjoint left-perfect matchings. We do so
by verifying that G∗ satisfies the two items in Theorem 1.

1) deg(αi;G
∗) = k + 1, for all αi ∈ Vα. This holds be-

cause of the following three facts. First, by assumption,
deg(αi, G) = k. Next, note that G and Gc

f have disjoint
sets of edges. Finally, the edges e1, . . . , en in Gc

f are
incident to n distinct left nodes.

2) deg(βj ;G
∗) ≤ k + 1 for all βj ∈ Vβ . This holds be-

cause of the following three facts. First, by assumption,
deg(βj ;G) ≤ k for βj ∈ Vβ . Second, recalling that the
capacities of the edges in Ê1 are given in (5), we have
that for each right node βj ,

deg(βj ;G
c
f ) ≤ (k + 1)− deg(βj ;G).

Finally, because G∗ is the disjoint union of G and Gc
f ,

deg(βj ;G
∗) = deg(βj ;G) + deg(βj ;G

c
f ) ≤ (k + 1).

We have, thus, shown that the two items of Theorem 1 are
satisfied by G∗. �

Equipped with the above Proposition, Theorem 4 is easily
seen to be equivalent to the following result.

Proposition 7: Let G(n,m) be a union of k disjoint left-
perfect matchings, for 0 ≤ k < m, and Ĝc(n,m) be as in Defi-
nition 7. Let f be a solution to the max-flow problem (6). Then,
|f | = n.

Proof: To prove the result, we rely on the use of the max-flow
min-cut theorem (see Lemma 2), which applied here reduces the
problem to showing that for every cut (S, T ) in Ĝc, its capacity
c(S, T ) ≥ n and, furthermore, this lower bound is realizable.

For a given cut (S, T ) in Ĝc, we let Sα := S ∩ Vα and Tα :=
T ∩ Vα be the sets of left nodes contained in S and T , respec-
tively. Similarly, we define Sβ := S ∩ Vβ and Tβ := T ∩ Vβ .

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 10:01:37 UTC from IEEE Xplore.  Restrictions apply. 



4792 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Fig. 9. We illustrate the three terms defined in (8). In this digraph, we
let the cut (S, T ) be such that the nodes depicted in green (resp. red) are
nodes in S (resp. T ). The set S is circled by the dashed green line. Then,
the term c(s, Tα) is the sum of the capacities of the edges depicted in
orange, the term c(Sα, Tβ) is the sum of the capacities of the edges
depicted in blue, and the term c(Sβ , t) is the sum of the capacities of the
edges depicted in purple. The capacity of the cut (S, T ) is easily seen
to be sum of these three terms.

Let p := |Tα| and q := |Sβ |. For every such cut, we can write
its capacity into the sum of three terms

c(S, T ) = c(s, Tα) + c(Sα, Tβ) + c(Sβ , t) (7)

where the three terms are given by⎧⎨
⎩
c(s, Tα) :=

∑
αi∈Tα

c(sαi),
c(Sα, Tβ) :=

∑
αi∈Sα,βj∈Tβ

c(αiβj),

c(Sβ , t) :=
∑

βj∈Sβ
c(βjt).

(8)

We evaluate these three terms (also, see Fig. 9 for an illustra-
tion) as follows.

First term c(s, Tα): Note that by item 3) of Definition 7,
ĉk(sαi) = 1, for αi ∈ Tα, so

c(s, Tα) = p. (9)

Second term c(Sα, Tβ): We first establish the following inequal-
ity:

c(Sα, Tβ) ≥
∑

αi∈Sα

deg(αi;G
c)−

∑
βj∈Sβ

deg(βj ;G
c). (10)

To see it holds, first note that the total number of outgo-
ing edges incident to the nodes αi ∈ Sα is exactly given by∑

αi∈Sα
deg(αi;G

c). Every such outgoing edge is necessarily
incident to either a node in Sβ or a node in Tβ . Furthermore, the
number of incoming edges incident to nodes βj ∈ Sβ is given
by

∑
βj∈Sβ

deg(βj ;G
c). Similarly, every such incoming edge

can be incident to either a node in Sα or a node in Tα. It then
follows that the number of edges incident to both Sα and Tβ in
Ĝc is bounded below by the expression on the right-hand side
of (10). Because ĉk(αiβj) = 1, the inequality (10) holds.

Now, we evaluate the two sums on the right-hand side
of (10). For the first sum, since G is a union of k disjoint left-
perfect matchings, we have that deg(αi;G

c) = (m− k) for all
i = 1, . . . , n. Further, since |Sα| = n− |Tα| = n− p,∑

αi∈Sα

deg(αi;G
c) = (m− k)(n− p). (11)

For the second sum, since the degree of each node βj in Gc is
n− deg(βj ;G) and since |Sβ | = q,∑

βj∈Sβ

deg(βj ;G
c) = qn−

∑
βj∈Sβ

deg(βj ;G). (12)

Plugging (11) and (12) into (10), we obtain that

c(Sα, Tβ) ≥ (m− k)(n− p)− qn+
∑

βj∈Sβ

deg(βj ;G).

(13)
Third term c(Sβ , t): From (5) and the fact that |Sβ | = q,

c(Sβ , t) = (k + 1)q −
∑

βj∈Sβ

deg(βj ;G). (14)

We now use the facts just established to show that c(S, T ) ≥
n. Specifically, we use (7)–(9) and (13)–(14) to obtain that

c(S, T ) ≥ p+ (m− k)(n− p)− qn+ (k + 1)q

≥ (p+ q) + (m− k)(n− p)− (n− k)q

≥ (p+ q) + (m− k)(n− p− q)

≥ (p+ q) + (n− p− q)

≥ n.

To obtain the second line from the first, we simply rearrange
terms. To obtain the third line from the second, we use the fact
that m ≥ n, and using furthermore the assumption that m > k,
we obtain the fourth line from the third.

Finally, note that if we let S := {s} and T := V̂ − {s}, then
c(S, T ) = n. �

At the end of this section, we conclude that given a graph
G(n,m), which is a union of k disjoint left-perfect matchings,
and 1 ≤ 
 ≤ m− k, one can obtain a G∗(n,m) � G(n,m),
which is a union of (k + 
) disjoint left-perfect matchings using
the following algorithm in polynomial-time: Start by setting

′ = 0 and G′ = G; while 
′ < 
, repeat the following steps.

1) Construct Ĝ′c and ĉk+�′ given by Definition 7. The com-
plexity is O(m+ n).

2) Run the Ford–Fulkerson algorithm on Ĝ′c and denote by
f the output. The complexity is O(n2(m− k)).

3) Update G′ to be the union of the current G′ and Gc
f (note

that G′ and Gc
f are edgewise disjoint) and increase 
′ by

1. The complexity is O(n).

D. Solutions to Problems P2 and P3

In this section, we let G(n,m) be an arbitrary bipartite graph,
with m ≥ n as above, and Gc(n,m) be its complement in the
complete bipartite graph K(n,m).

Recall that for Problem P2, we aim to find a set of edges
in Gc of least cardinality which, when added to G, yields a
graph which is (strongly) k-resilient, and for Problem P3, given
a budget ofp edges and a graphG, we aim to maximize the degree
of (strong) resilience by optimally choosing these p additional
edges.

We provide complete solutions to the two problems for strong
resilience in the following, together with a polynomial-time
algorithm that fulfills the respective goals.
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Fair matchings and fair b-matchings: One of the major hurdles
in adding edges to G to increase the number of left-perfect
matchings is that one has the option to use edges that already
exist in G to create said additional matchings. The use of
these existing edges should of course be prioritized as much
as possible over the addition of new edges. We can recast this
problem by considering the embedding of G into the complete
bipartite graphK = (Vα, Vβ , EK). This embedding allows us to
view both Problems P2 and P3, which are dual to each other, as
the problem of selecting edges in K to obtain a desired number
of disjoint left-perfect matchings while maximizing the use of
edges that belong to G. Moreover, this point of view will allow
us to appeal to algorithms that obtain such matchings and, thus,
solve the above-mentioned problem in polynomial time.

To proceed, we rely on the notion of fair matching and, more
specifically, fair b-matching in a bipartite graph. Such matchings
are described in relation to the following additional structures
on a graph.

1) A capacity function μ at the nodes, which is a positive-
integer valued function μ : Vα ∪ Vβ → Z≥0 which pro-
vides an upper bound on the degrees of the nodes in a
b-matching.

2) A priority order for the possible neighbors of each node.
Assuming that there are r different priorities, we label
them as 1, . . . , r. The priority order indicates which edges
of G are preferred to appear in the matching.

For our purpose, we only need to consider a particular class of
fair b-matching problems: 1) Elements of that class are defined
on the complete bipartite graph K; 2) the capacity functions μ
are constant functions with value equal to (k∗ + 1), where k∗ is
the target degree of strong-resilience; and 3) the priority order
has r = 2 classes, and is induced by G in the sense that a node
αi (resp. βj) prefers βj (resp. αi) if (αi, βj) is an edge in G.
We refer the reader to [36] and [37] for a general introduction
to b-matchings.

Formally, we introduce the following definition of b-matching
and fair b-matching considered in this article.

Definition 8 (b-matching and fair b-matching): Let K =
(Vα ∪ Vβ , EK) be the complete bipartite graph and G = (Vα ∪
Vβ , E) be a subgraph ofK. A b-matching is a subsetP ⊆ EK for
which each vertex v ∈ Vα ∪ Vβ is incident to at most (k∗ + 1)
edges of P . A fair b-matching is a b-matching of maximal
cardinality so that |P ∩ E| is maximized.

We make the following observation.
Lemma 8: The subset P is a b-matching of maximal cardi-

nality if and only if it is a disjoint union of (k∗ + 1) disjoint
left-perfect matchings.

Proof: First, it should be clear that if P is a b-matching,
then by the capacity condition in Definition 8, |P | ≤ (k∗ + 1)n.
Next, let P be an arbitrary union of (k∗ + 1) disjoint left-
perfect matchings. Then, P satisfies the capacity condition and
|P | = (k∗ + 1)n. Thus, such a P is a b-matching of maximal
cardinality.

Now, let P be a b-matching of maximal cardinality and
G = (Vα ∪ Vβ , P ). Suppose that P is not a union of (k∗ + 1)
disjoint left-perfect matchings; then, by Theorem 1 and the
capacity condition in Definition 8, there exists at least one node

αi ∈ Vα such that

deg(αi;G) < k∗ + 1. (15)

To see this, note that a graph G induced by a b-matching always
satisfies item 2) of Theorem 1; hence, if G is not a union of
(k∗ + 1) disjoint left-perfect matchings, then item 1) cannot be
met, which implies that deg(αi;G) < k∗ + 1 for some αi. On
the one hand, as a consequence of (15), the cardinality of P is
strictly less than (k∗ + 1)n. On the other hand, by the arguments
at the beginning of the proof, if we letP ′ be an arbitrary union of
(k∗ + 1) disjoint left-perfect matchings, then P ′ is a b-matching
with |P ′| = (k∗ + 1)n > |P |, which is a contradiction. �

If P ∗ ⊆ EK is a b-matching of maximal cardinality, a fair b-
matching can be obtained by first finding all b-matchings of car-
dinality |P ∗| and, amongst those, selecting one which maximizes
|P ∗ ∩ E|. It is known that finding a fair b-matching in K(n,m)
can be done in polynomial time. To be more precise, if we let
N := m+ n be the number of nodes ofK(n,m) andM := mn
be the number of edges in K(n,m), there exist algorithms solv-
ing fair b-matching problems in O(NM log(N2/M) log(N))
time, using O(M) space [37].

Solution to Problem P2 for strong resilience: We now reduce
Problem P2 to the fair b-matching problem. Let k∗ be the target
degree of strong resilience. If s-rslG ≥ k∗, then no additional
edge is needed and we are done. Otherwise, we have the follow-
ing result.

Theorem 8: LetG(n,m) = (Vα ∪ Vβ , E)be a bipartite graph
with m ≥ n and s-rslG < k∗ with 0 ≤ k∗ ≤ (m− 1). Let P ∗

be a solution to the fair b-matching problem of Definition 8.
Then, the following hold.

1) The graph G∗(n,m) := (Vα ∪ Vβ , E ∪ P ∗) is strongly
k∗-resilient.

2) The minimal number of edges out of Gc(n,m) one needs
to add to G(n,m) to obtain a strongly k∗-resilient graph
G∗(n,m) is given by

δ∗ := |P ∗| − |P ∗ ∩ E|. (16)

Note that for a given graph G(n,m), δ∗ depends only on the
number k∗ (in particular, it does not depend on the choice of P ∗

from Definition 8). If necessary, we will write explicitly δ∗(k)
to indicate such dependence.

By item 1, we have that G∗ � G; by item 2, G∗ contains the
least number of additional edges so as to be strongly k∗-resilient.
Thus, Problem P2 is indeed solved for strong k∗-resilience.

Proof of Theorem 8: We establish the two items as follows.
Proof of item 1: We show that G∗ contains exactly (k∗ + 1)

disjoint left-perfect matchings. By Lemma 8, P ∗ is a union of
(k∗ + 1) disjoint left-perfect matchings. Since the edge set ofG∗

contains P ∗, G∗ contains at least (k∗ + 1) disjoint left-perfect
matchings. Now, suppose, to the contrary, that G∗ contains
(exactly) k̄ disjoint left-perfect matchings, with k̄ ≥ (k∗ + 2);
then, we let {Pi}k̄i=1 be a set of such matchings. Let ρi :=
|Pi − E|, i.e., ρi is the number of edges in Pi but not in E.

It follows that |E ∩ P ∗| = |P ∗| −∑k̄
i=1 ρi. Relabel the Pi, if

necessary, so that ρ1 ≥ · · · ≥ ρk̄. Then, ρ1 has to be positive,
since otherwise ρi = 0 for all i = 1, . . . , k̄, which implies that
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all these k̄ matchings Pi are contained in E, contradicting the
assumption that s-rslG < k∗ (the same arguments imply that
ρ2 has to be positive as well). Now, let P := ∪k∗+2

i=2 Pi. Then,
by Lemma 8, P is a b-matching and |P | = |P ∗|. Moreover,
|E ∩ P | = |P | −∑k∗+2

i=2 ρi > |E ∩ P ∗|, which contradicts the
assumption that P ∗ is a fair b-matching.

Proof of item 2: Let G∗ = (Vα ∪ Vβ , P
∗) be induced by an

arbitrary fair b-matching P ∗. Then, the cardinality |P ∗ ∩ E|
is maximized over all b-matchings P of maximal cardinality
and, thus, |P | − |P ∩ E| is minimized. This proves item 2 and
completes the proof. �

Solution to Problem P3 for strong resilience: Since Problem
P3 is dual to Problem P2, it can similarly be solved via a
reduction to the fair b-matching problem. Precisely, we have
the following result.

Theorem 9: LetG(n,m) = (Vα ∪ Vβ , E)be a bipartite graph
with m ≥ n and p be a positive integer. Then, the solution
to the following optimization problem (Problem P3 for strong
resilience):

max s-rslG∗(n,m) = (Vα ∪ Vβ , E
∗)

s.t. G∗(n,m) 	 G(n,m) and |E∗| − |E| = p

is given by

max{k | δ∗(k) ≤ p},

where δ∗(k) is defined in (16).
Proof: It is an immediate consequence of Theorem 8: On

the one hand, for any k with δ∗(k) ≤ p, one can always add
p edges out of Gc to G so that the resulting graph G∗ is at
least strongly k-resilient. On the other hand, it is clear from the
definition of δ∗(k) that it is infeasible to obtain a graph with
strong k-resilience by adding fewer than δ∗(k) edges to G.

IV. CONCLUSION

We have addressed in this article the resilience of the structural
rank of sparsity patterns. The first step in our approach to solve
the problems was to recast them as problems posed for bipartite
graphs. We then provided a characterization of bipartite graphs
corresponding to sparsity patterns of full rank (see Theorem 1).
Based on this characterization, we provided provably correct
polynomial-time algorithms to solve three problems dealing
with strong resilience of the pattern: Given a sparsity pattern,
1) what is its degree of strong resilience, i.e., how many �-
entries can be removed without affecting the structural rank;
2) what is the minimal number of �-entries one needs to add
to a pattern so as to reach a target degree of strong resilience;
and 3) given that one can add p �-entries to a sparsity-pattern,
where to place these entries so as to maximize the degree of
strong resilience. As shown in Fig. 4, strong resilience strictly
implies resilience. The problem of computing the exact degrees
of resilience for sparsity patterns will be addressed in the future
work.

APPENDIX

PROOF OF LEMMA 3

Proof: To prove the result, we first introduce a few prelimi-
naries. Given a digraph �G = (V, �E) on n nodes, we say that �G
admits a Hamiltonian decomposition [7] if there is a subgraph
�G′ = (V, �E ′), with �E ′ ⊆ �E, such that �G′ is a disjoint union of
cycles. To a sparsity pattern S(n, n), we can associate a digraph
�G = (V, �E) on n nodes γ1, . . . , γn as follows: γiγj ∈ �E if the
pair (i, j) belongs to E(S(n, n)). It is well known that S(n, n)
admits a matrix of full rank if and only if �G admits a Hamiltonian
decomposition. Let G(n, n) be the bipartite graph associated
with the same sparsity pattern S(n, n). It is also well known
that G(n, n) has a perfect matching if and only if the digraph
�G admits a Hamiltonian decomposition (see [13] for a simple
account of this fact).

With the above preliminaries, we now return to establish
Lemma 3. First, note that the rankS(n,m) isn if and only if there
exist n columns so that the subpattern induced by these columns
is of full rank; precisely, there exists 1 ≤ j1 < · · · < jn ≤ m so
that the sparsity pattern S′(n, n) defined by the index set

E(S′) = {(i, jk) ∈ E(S) | 1 ≤ k ≤ n}

is of rank n. Owing to the preliminaries above, S′(n, n) is of full
rank if and only if the associated digraph �G′ on n nodes admits
a Hamiltonian decomposition. Furthermore, the existence of
this Hamiltonian decomposition implies that the bipartite graph
G′(n, n) corresponding to S′(n, n) contains a perfect matching.

From the definition ofS′, it is not hard to see thatG′(n, n) can
be realized as a subgraph of G(n,m); more precisely, G′(n, n)
is the subgraph of G(n,m) induced by the nodes αi ∈ Vα and
nodes βj1 , . . . , βjn . Thus, a perfect matching in G′(n, n) is
mapped using the above inclusion to a left-perfect matching
in G(n,m). We, thus, conclude that the rank of S(n,m) is n if
and only if G has a left-perfect matching. �
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