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Network Identification for Diffusively Coupled
Networks With Minimal Time Complexity

Miel Sharf and Daniel Zelazo , Senior Member, IEEE

Abstract—The theory of network identification, namely,
identifying the (weighted) interaction topology among a
known number of agents, has been widely developed for lin-
ear agents. However, the theory for nonlinear agents using
probing inputs is far less developed, relying on dynamics
linearization and, thus, cannot be applied to networks with
nonsmooth or discontinuous dynamics. In this article, we
use global convergence properties of the network, which
can be ensured using passivity theory, to present a net-
work identification method for nonlinear agents. We do so
by linearizing the steady-state equations rather than the
dynamics, achieving a sub-cubic time algorithm for net-
work identification. We also study the problem of network
identification from a complexity theory standpoint, showing
that the presented algorithms are optimal in terms of time
complexity. We demonstrate the presented algorithm in two
case studies with discontinuous dynamics.

Index Terms—Computational complexity, graph theory,
networked control systems, network identification, non-
linear control systems.

I. INTRODUCTION

MULTIAGENT networks (MANs) have been in the pin-
nacle of research in the last few years, both for their

variety of applications and their deep theoretical framework.
They have been applied in a wide range of domains, including
formation control and distributed computing [1]. One of the most
important aspects in MANs is the information-exchange layer,
governing the interaction of agents with one another. Identifying
the underlying network of a MAN from measurements is of
great importance in many domains, including (mis)information
spread [2], epidemiological models [3], and brain connectivity
in neuroscience [4].

Network identification takes many different forms in the
literature. The two main paradigms for network identification
are topology reconstruction [5] and single-operator identifica-
tion [6]. Different problem definitions also vary by the level of
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interaction with the network and available data. First, network
identification can be based on unmeasured intrinsic persistent
excitations [7]. Second, network identification can be based on
naturally occurring, but measured excitations [8]. Third, network
identification can be based on interacting with the network, e.g.,
by injecting specially designed inputs [9], [10], [11] or by node
knockout [12]. Several methods have been applied to network
identification, including spectral methods [13]; information-
theoretic methods such as Granger causality [14], [15], [16];
compressed sensing and sparsity-promoting optimization [2],
[17], [18], [19]; and Wiener filtering [5].

The network identification literature for nonlinear agents
and/or interactions is not as developed. Some works linearize
the network dynamics and then use sparse recovery to identify
the connecting matrix [3], [18], [19]. Other works use adaptive
observers to find the network structure, while assuming the
Lipschitzity of certain elements in the dynamics [20], [21].
However, these methods are not applicable when the dynam-
ics are not Lipschitz continuous, let alone discontinuous. For
example, dry friction gives a nonlinear discontinuous term in
the dynamics [22], and some finite-time consensus protocols
also include nonlinear non-Lipschitz dynamics [23]. Moreover,
existing methods measure the network state in constant intervals,
resulting in an unnecessary power expenditure for networks with
extremely fast dynamics, e.g., networks following a finite-time
consensus protocol. It will also be wasteful for relatively-static
networks, e.g., networks of autonomous vehicles, especially in
platooning, where one desires to keep the vehicles’ position and
velocity very close to a certain desired steady state, either for
safety or for efficiency.

In this article, we present a method for network identification
in the graph identification framework while interacting with
the agents in the network by injecting exogenous inputs. Our
approach relies on the asymptotic stability of the network
with respect to constant exogenous inputs, which can be
verified using passivity theory, a well-known tool used to
study MANs [24], [25], [26]. Namely, the paper [25] showed
a connection between the exogenous input of a diffusively
coupled MAN and its steady-state output. We aim to use this
connection, together with the global convergence properties
of the network, to provide a network identification scheme for
MANs. We do so by injecting appropriately defined constant
exogenous inputs and tracking the output of the agents. The key
idea is that the steady-state outputs are one-to-one dependent
on the exogenous input. This dependence can be linearized,
and the associated matrix can be found by considering a finite
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number of inputs and outputs. Our contributions are stated as
follows.

1) We present a subcubic network identification algorithm
for globally convergent networks. The identification is
exact for noiseless LTI networks, and an error bound for
the identified network is derived for the general case.

2) We discuss the robustness of the algorithm, its assump-
tions, and compare it to other methods in the literature.

3) We explore the complexity theory behind network iden-
tification algorithms, and prove that the algorithm we
presented is optimal in terms of time complexity.

The rest of this article is organized as follows. Section II
surveys relevant details about diffusively coupled networks and
their convergence. Section III presents the problem formula-
tion. Section IV presents the network identification algorithm.
Section V discusses the assumptions of the algorithm. Sec-
tion VI studies network identification from a complexity theory
standpoint, showing that the presented algorithm is optimal.
Section VII demonstrates the algorithm in two case studies.
Finally, Section VIII concludes this article.

Notation: Time-dependent signals are denoted with italic
letters, e.g., y = y(t), and constant signals are denoted in an
upright font, e.g., y. We use basic notions from algebraic graph
theory. An undirected graph G = (V ,E) consists of a finite
set of vertices V and edges E ⊂ V × V . The edge with ends
i, j ∈ V is denoted as e = {i, j}. For each edge e, we pick an
arbitrary orientation and denote e = (i, j). The incidence matrix
of G, denoted EG ∈ R|V |×|E|, is defined such that for any edge
e = (i, j) ∈ E, [EG ]ie = +1, [EG ]je = −1, and [EG ]�e = 0 for
� �= i, j. The Laplacian of G is the matrix EGE�

G , and a weighted
Laplacian is the matrix EGDE�

G for a diagonal matrix D > 0.
Furthermore, a weighted graph is a pair Gν = (G, {νe}e), where
G is a graph and {νe} are real numbers assigned to the edges.

We also use basic notions from linear algebra. The standard
basis vectors in Rn are denoted e1, . . . , en. The kernel of a linear
map T : X → Y is denoted by kerT . Furthermore, if U is a
subspace of an inner-product space X (e.g., Rd), we denote the
orthogonal complement of U by U⊥. We write A > 0 (A ≥ 0)
for a positive (semi)definite matrix A. Moreover, if A > 0, we
denote the minimal eigenvalue of A by σ(A). We let 1n ∈ Rn

be the all-ones vector. A matrix M is called elementary if
the matrix multiplication map A 	→ MA defines one of the
following operations: switching two rows in A, scaling a row of
A, or adding a row of A to another. We also use basic notations
from complexity theory. For two functions f, g : N → R, if
there exist constants c, n0 > 0 such that f(n) ≤ cg(n) holds for
all integersn ≥ n0, we write f = O(g). If the reverse inequality
holds, we write f = Ω(g) instead. Finally, we say that a signal
a(t) is in Cq if it is continuously differentiable q times.

II. PRELIMINARIES

In this section, we provide some needed background on
diffusively coupled networks and complexity theory.

A. Diffusively Coupled Networks and Steady States

Consider a collection of agents interacting over a network
G = (V ,E). Assign to each node i ∈ V (the agents) and each

Fig. 1. A block diagram of a diffusively coupled network.

edge e ∈ E (the controllers) the following dynamical systems:

Σi :

{
ẋi = fi(xi) + qi(xi)ui

yi = hi(xi)
, Πe : μe = ge(ζe). (1)

We stack y = [y�1 , . . . , y
�
|V |]

� and similarly for u, ζ, and μ
and the operators Σ and Π and the function g. The net-
work is diffusively coupled by defining the control input
as u = −EGμ, and the controller input as ζ = E�

G y. The
closed-loop network is denoted by (G,Σ,Π), and is illustrated
in Fig. 1.

We consider steady states of such networks. If (u, y, ζ,μ)
is a steady state of the network, then (ui, yi) is a steady-state
input–output pair of the ith agent, and (ζe,μe) is a steady-state
input–output pair of the eth edge. This motivates the following
definition, originally introduced in [24].

Definition 1: The steady-state input–output relation k of a
dynamical system is the collection of all constant steady-state
input–output pairs of the system. Given a steady-state input u
and a steady-state output y, we define k(u) = {y : (u, y) ∈ k}
and k−1(y) = {u : (u, y) ∈ k}.

Let ki be the steady-state relations for the ith agent and let k
be their stacked version. It is shown in [27] that (u, y, ζ,μ) is
a steady state of the network if and only if y ∈ k(u), ζ = E�

G y,
μ ∈ g(ζ), and u = −EGμ all hold. Consequently, y is a steady
state for the network (G,Σ,Π) if and only if

0 ∈ k−1(y) + EGg(E�
G y). (2)

B. Tools From Passivity and Complexity Theory

Our main tool will be a variant of (2), relating constant
exogenous inputs and the corresponding steady-state outputs.
This connection will only be useful if we can measure the steady
state of the network, i.e., we must assume the network converges,
which is guaranteed under an (output-strict) passivity1 assump-
tion on the agents and controllers [24].

Definition 2: Consider the dynamical system Υ defined by
ẋ = f(x, u), y = h(x, u), with steady-state input–output rela-
tion r. The systemΥ is said to be (output-strictly) maximal equi-
librium independent passive (MEIP) if the following conditions
hold:

1Recall that the system Σ is output-strictly passive with respect to the steady-
state input–output pair (u,y) if there exists a positive-definite storage function

S(x) and a constant ρ > 0 such that any trajectory satisfies dS(x(t))
dt ≤ (u−

u)(y − y)− ρ(y − y)2.
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i) The system Υ is (output-strictly) passive with respect to
any steady-state pair (u, y) ∈ r.

ii) The relation r is maximally monotone. That is, if
(u, y), (u′, y′) ∈ r, then (u− u′)(y − y′) ≥ 0, and r is
not contained in a larger monotone relation.

Such systems include single integrators, gradient systems,
port-Hamiltonian systems, and others. The monotonicity re-
quirement is used to prove the existence of a closed-loop steady
state. See [24] or [25] for more details and examples.

Theorem 1 ( [24], [25]): Consider the network (G,Σ,Π). As-
sume all agents are MEIP, and all controllers are output-strictly
MEIP, or vice versa. Then, the signalsu, y, ζ, μ converge to some
steady-state values u, y, ζ,μ, satisfying (2).

If we measure the steady-state outputs and the corresponding
constant exogenous inputs, we end up with a function inversion
problem stemming from a variant of (2). Linearizing it results
in a matrix inversion problem instead, whose computational
complexity will now be discussed. Matrix inversion and matrix
multiplication are known to have the same time complexity,
which is usually denoted as O(nω), neglecting polylogarithmic
terms [28]. While schoolbook multiplication gives ω = 3, other
implementable algorithms yield ω ≈ 2.807 [29], while some
theoretical algorithms can give ω ≈ 2.3728639 [30]. The latter
are impractical as the constant in front of nω is extremely large.
We focus on inverting positive-definite matrices, with a time
complexity denoted by O(nω1), similarly neglecting polyoga-
rithmic terms, where 2 ≤ ω1 ≤ ω < 3, as reading the input takes
O(n2) time.

III. MOTIVATION AND PROBLEM FORMULATION

Our goal is to solve a network identification problem for
MANs having the following (possibly nonlinear) dynamics:

ẋi=fi(xi)+qi(xi)

⎡
⎣ ∑
{i,j}∈E

νijgij(hj(xj)− hi(xi)) +Biwi

⎤
⎦

(3)

where the state is xi ∈ Rni , fi, qi : Rni → Rni , gij : R → R,
and hi : Rni → R are (not necessarily smooth) functions,2 and
Bi, wi ∈ R. These dynamics are achieved from the model (1) by
adding an exogenous input to the agents, now governed by the
dynamics ẋi = fi(xi) + qi(xi)(ui +Biwi), as well as coupling
strengths {νij}. Examples of MANs governed by (3) include
the consensus protocol, the Kuramoto model for synchronizing
oscillators [31], and traffic models [32].

In many models, only certain agents can be injected with
an exogenous input (i.e., Bi = 0 is possible), and only the
output of certain agents can be measured. We assume all agents
are both susceptible to exogenous inputs and measurable. The
case in which only some agents are susceptible to exogenous
inputs is tackled in Section V. For now, we assume without
loss of generality thatBi = 1, and denoteN = diag(νij){i,j}∈E.
Denoting the network (3) as (Gν ,Σ, g), we make the following

2The functions gij are defined for all pairs, even those absent from the
underlying graph. It is often assumed in MANs that each agent knows how
to run a given protocol (i.e., consensus).

assumptions on the agents and controllers, allowing us to use
the framework presented in Section II.

Assumption 1: The closed-loop network (Gν ,Σ,Π) con-
verges to a constant steady state for any constant exogenous
input w and any initial condition.

Assumption 2: The inverse of the steady-state input–output
relation for each agent k−1

i (yi) is a continuous monotone func-
tion of yi. Moreover, gij(ζij) is a continuous monotone function
of ζij . Assume that on any bounded interval, there are at most
finitely many points at which k−1

i and gij are not twice differ-
entiable. Moreover, assume that the set of points in R on which
the derivative dgij

dζij
nulls is of measure zero.

Assumption 1 is satisfied if the weights νij are nonnegative, if
the systems {Σi}i∈V are MEIP, and the controllers {Πe}e∈E are
output-strictly MEIP (or vice versa). However, this assumption is
weaker, as convergence can be established using methods other
than passivity. Note that the last part of Assumption 2 holds if
and only if the derivative of gij is positive almost everywhere.
We will note that if the agents are linear time invariant (LTI)
then k−1

i is a linear function. We now formulate the network
identification problem considered in this article.

Problem 1: Consider the network (Gν ,Σ, g) of the form
(3) satisfying Assumptions 1 and 2. Assume the steady-state
input–output relations for the agents and controllers are known,3

but the network structure G and coupling coefficients {νij} are
unknown. Design the control inputs wi such that, together with
measurements of the output of the network, it is possible to
identify the graph G and the coupling coefficients {νij}.

The work in [11] proposed a solution for Problem 1 under an
MEIP assumption by feeding the network with a single constant
input and relying on a variant of (2). While the time complexity
for LTI networks was O(n3), the runtime for general nonlinear
networks could be superexponential, namely O(22

n
). We wish

to improve on this complexity by considering multiple constant
exogenous inputs denoted as w(i). As in [11], we write an
equation connecting the steady-state output y to the constant
exogenous input w.

Proposition 1: Suppose that the network (Gν ,Σ, g) is run
with the constant exogenous input w, and let k be the steady-
state relation for the agents. Then, the output y of the network
converges to a steady-state y satisfying the following equation:

w = k−1(y) + EGNg(E�
G y). (4)

Proof: The closed-loop network converges by Assumption
1. The equation for the steady-state output y of the closed-loop
network follows from μ = Ng(ζ), k−1(y) = u + w, ζ = E�

G y,
and u = −EGμ. This is an equality rather than an inclusion due
to Assumption 2. �

Equation (4) shows that the steady-state output y depends
not only on the constant exogenous input w, but also on the
incidence matrix EG and the weights N = diag(νij). We wish
to use this connection to reconstruct EG and N by running the
network with exogenous inputs w(1), . . . ,w(n) and measuring
the corresponding steady-state outputs y(1), . . . , y(n).

3As seen later in Remark 3, we actually only need to know the derivative of
gij at a single point.
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IV. NETWORK IDENTIFICATION OF CONVERGENT NETWORKS

This section presents an algorithm solving Problem 1. We
consider (4), relating a constant exogenous input w and the
resulting steady-state output y. If the functions k−1, g were
linear, the relation (4) is also linear, meaning that EGNE�

G can be
found by taking n steady-state input–output pairs (w(i), y(i)),
assuming the inputs w(1), . . . ,w(n) are linearly independent.
Alas, the functions k−1, g need not be linear. However, we can
still apply the same idea by linearizing (4). For now, we assume
the steady-state inputs and outputs can be measured. We explain
how to deal with this assumption at the end of this section.

We first run the network with an arbitrary constant exogenous
input w(0), get the corresponding steady-state output y(0), and
linearize (4) around y(0). Thus, for a constant exogenous input
w = w(0) + δw, we obtain

w − k−1(y) = EGNg(E�
G y)

≈ EGNg(E�
G y

(0)) + EGN∇g(E�
G y

(0))E�
G δy (5)

where y is the steady-state output of the network, and δy =
y − y(0). More precisely, we have the following result.

Proposition 2: Suppose that the functions k−1, g are twice
differentiable at y(0) and E�

G y
(0), respectively. For any δw small

enough, and y = y(0) + δy, the following equation holds:[
∇k−1(y(0)) + EGN∇g(E�

G y
(0))E�

G
]
δy = δw+O(‖δy‖2).

(6)

Proof: By subtracting w(0) = k−1(y(0)) + EGNg(E�
G y

(0))
from w = k−1(y) + EGNg(E�

G y), we obtain

δw = k−1(y)− k−1(y(0)) + EGN
(
g(E�

G y)− g(E�
G y

(0))
)
.

The result now follows by using g’s and k−1’s Taylor expansions
near E�

G y
(0) and y(0) up to first order, where the error term is

quadratic as g and k−1 are twice differentiable. �
We denote M = ∇k−1(y(0)) + EGN∇g(E�

G y
(0))E�

G . Propo-
sition 2 suggests a way to estimate the matrix N and the
graph G. Indeed, we inject n constant exogenous inputs
and measure the corresponding steady-state outputs, yield-
ing δw(1), δy(1), . . . , δw(n), δy(n) as in the proposition. Equa-
tion (6) implies that Mδy(i) ≈ δw(i) for i = 1, 2, . . . , n.
If δy(1), . . . , δy(n) are linearly independent, then we have
M ≈ δWδY −1, where δW = [δw(1) · · · δw(n)] and δY =

[δy(1) · · · δy(n)]. In turn, we can estimate N and the
graph G by looking at the off-diagonal entries of δWδY −1.
Thus, we design w(0),w(1), . . . ,w(n) in a way assuring that
δy(1), . . . δy(n) are linearly independent. We also note that
M1n = ∇k−1(y(0))1n is independent of the unknown matrix
N and the graph G, so we can choose one δy(i) as 1n, which
will be useful in one specific case.

Namely, if k−1 is a constant function, solutions to (4) are
unique up to a multiple of 1n, namely, different steady states
might be achieved from different initial conditions. For example,
consider the consensus protocol, concerning MANs with single
integrators agents and controllers given by gij(ζij) = ζij . In this
case,k−1(y) = 0 for anyy, and the agents converge to consensus

whose value depends on initial conditions. For that reason, if k−1

is constant near y(0), we project δy(1), . . . , δy(n) to 1⊥n , the space
orthogonal to 1n.

Theorem 2: Let Pn,0 be an absolutely continuous probability
measure on Rn, and take w(0) as a sample of Pn,0. Let y(0) be
a corresponding steady-state output, i.e., a solution to (4) with
input w(0). For some κ ∈ R, define {δy(i)}ni=1 as follows:

1) Suppose that k−1 is differentiable at y(0) and that
∇k−1(y(0)) = 0. For any i = 1, . . . , n− 1, choose
δw(i) = κ(ei − en), take y(i) as the steady-state out-
put corresponding to w(i), and define δy(i) = (Idn −
1
n1n1�n)(y

(i) − y(0)). Also, set δy(n) = κ1n.
2) Otherwise, choose δw(i) = κei for i = 1, . . . , n. Define

y(i) as the steady-state output corresponding to w(i) and
δy(i) = y(i) − y(0).

Suppose Assumptions 1 and 2 hold. If κ is small enough, then
the set A = {δy(1), . . . , δy(n−1), δy(n)} is a basis for Rn.

The proof of Theorem 2 can be found in Appendix A.
The resulting algorithm, as described in the paragraphs pro-
ceeding Theorem 2, is summarized as Algorithm 1, with mi-
nor changes. Namely, for reasons explained later (see Re-
mark 4), it would be advantageous if δw(1), . . . δw(n) are
also linearly independent. This is problematic if ∇k−1(y(0)) =
0, as we take that δy(n) = κ1n, and compute w(n) as
w(n) = Mδy(n) = κ∇k−1(y(0))1n = 0. Instead, we declare
δw(n) = κ1n, so that δWδY −1 ≈ M+ 1

n1n1�n , yielding an
estimate M as δWδY −1 − 1

n1n1�n .
Algorithm 1 gives an identification scheme—choose a collec-

tion of linearly independent vectors, run the MAN using them
as inputs, measure the steady-state outputs, and use the result to
compute estimates of the graph Ĝ and the weights ν̂ij . Instead
of running the MAN multiple times, we can apply a switching
signal and use the global convergence of the MAN, i.e., we inject
an exogenous input w(t) whose value changes when the MAN
reaches a steady state, or ε-close to it.

It is clear that unless all agents and controllers are LTI,
Algorithm 1 is an approximation algorithm, as the quadratic
error term in (5) affects the output. We now bound the error of
algorithm and determine its time complexity.

Theorem 3: Consider a network (Gν ,Σ, g) satisfying as-
sumptions 1 and 2.

1) Let M be the matrix calculated by Algorithm 1. Then for
any i, j ∈ V , we have

|Mij −Mij | ≤ O

(√
nκ

(
1 + max

i,j
(νijdij)λmax(G)

))

with probability 1. Thus, Algorithm 1 approximates the
graph and coupling coefficients, with probability 1.

2) Algorithm 1 performs O(nω) floating point operations.
The proof of Theorem 3 can be found in Appendix B. Its main

idea is to bound the operator norm of ‖M −M‖ by ‖(M −
M)δY ‖‖δY −1‖. The first part is estimated using (6), and the
latter is estimated by using the matrices M and δW .

Remark 1: If the agents and controllers are LTI, (4) is already
linear. Thus, Algorithm 1 is errorless.
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Algorithm 1: Network Identification for Convergent Net-
works.

Input: A networked system on n agents with an exogenous
input w(t) and a measurable output y(t).

Output: An estimate of the underlying graph, Ĝ, and an
estimate of the edge weights, {ν̂ij}.

1: Randomly choose w(0) as a standard Gaussian vector.
Change the value of the exogenous input w(t) to w(0).

2: Wait for the diffusively coupled network to converge.
Measure its steady-state output and denote it as y(0).

3: Choose 0 < κ � 1.
4: if ∇k−1(y(0)) = 0 then
5: Define δw(i) = κ(ei − en) for i = 1, . . . , n− 1.
6: Put δy(n) = κ1n and δw(n) = κ1n.
7: Put NumRuns = n− 1, Q = 1

n1n1�n , and
J = Idn −Q.

8: else
9: Define δw(i) = κei for i = 1, . . . , n.

10: Put NumRuns = n, Q = 0, and J = Idn.
11: end if
12: for i = 1 to NumRuns do
13: Change the value of w(t) to w(0) + δw(i).
14: Wait for the diffusively coupled network to converge.

Measure its steady-state output and denote it as y(i).
15: Define δy(i) = J(y(i) − y(0)).
16: end for
17: Define δW = [δw(1) . . . δw(n)] and

δY = [δy(1) . . . δy(n)].
18: Compute M ′ = δWδY −1 and M = M ′ −Q..
19: Define an empty graph Ĝ on n nodes.
20: for i = 1 to n and j = 1 to n do
21: if |Mi,j | > ε and i �= j then
22: Add the edge {i, j} to the graph Ĝ.
23: Define dij =

dgij
dζij

((y(0))i − (y(0))j);

ν̂ij = −Mij

dij
.

24: end if
25: end for
26: Return the graph Ĝ and the coupling coefficients

{ν̂ij}.

Remark 2: Steps 17-18 of Algorithm 1 essentially solve the
least-squares problem

∑N
i=1 ‖M ′δy(i) − δw(i)‖2. If, for some

reason, we decide to take more than n measurements, we could
reformulate steps 17-18 as solving a least-squares problem.

Remark 3: Algorithm 1 does not require full knowledge of the
steady-state relations, but only if∇k−1(y(0)) = 0, as well as the
derivative of gij at a single point. For the former, note that ∇k−1

is a diagonal matrix whose entries are∇k−1
i , so∇k−1(y(0)) = 0

if and only if ∇k−1(y(0))1n = 0, which can be tested by inject-
ing the constant exogenous input w = w(0) + κ1n.

Remark 4: We can reduce the complexity of com-
puting M ′ from O(nω) to O(nω1), reducing the number
of floating point operations to O(nω1). Indeed, we have
(M ′)−1 = δW−1δY . As δW is the product of O(n) elementary

matrices (see Lemma 4), we can compute (M ′)−1 in O(n2)
time by applying the corresponding row operations on δY .
However, the matrix (M ′)−1 need not be positive-definite, or
even symmetric, due to the error term in (8). We thus consider
the symmetric matrix (M ′)−1

sym = 1/2((M ′)−1 + ((M ′)−1)�).
This matrix is close to the inverse of M+Q > 0, hence,
the eigenvalues of (M ′)−1

sym are positive and it is therefore
a positive-definite matrix, so inverting it costs only O(nω1)
time.

Theorem 3 gives an error bound on the elements of the matrix
M , but we want a more explicit error estimate on the weighted
graph Ĝν̂ computed by the algorithm. We now relate the estimate
on |Mij −Mij |, the estimates on the weights {νij}, and the
estimate on the graph G.

Proposition 3: Suppose the same assumptions as in Theorem
3 hold. Suppose further that for any i, j ∈ V , |Mij −Mij | ≤
m, and that m ≤ 1

4 mini,j(νijdij). If the number ε used in
Algorithm 1 is equal to 2m, then the graph Ĝ computed by
the algorithm satisfies Ĝ = G. Moreover, for all {i, j} ∈ E, the
inequality |ν̂ij − νij | ≤ d−1

ij m holds.
Proof: Suppose first that {i, j} �∈ E. Then Mij = 0, mean-

ing that |Mij | ≤ m < ε. Thus, {i, j} is not in Ĝ, as required.
Conversely, assume that {i, j} ∈ E. Then Mij = −dijνij , and
|Mij | ≥ dijνij −m ≥ dijνij − 1

4dijνij > ε. Thus, {i, j} ∈ Ĝ.
Moreover, Mij = −ν̂ijdij and Mij = −νijdij , together with
|Mij −Mij | ≤ m, imply that |ν̂ij − νij | ≤ d−1

ij m. �
Theorem 3 and Proposition 3 show that Algorithm 1 approxi-

mates the underlying weighted graph. Moreover, they show that
it performs O(nω) floating point operations, where Remark 4
shows it can be reduced toO(nω1). However, we do not consider
the time it takes the network to converge, i.e., steps 2 and
13-14 in Algorithm 1. Indeed, as steady states are only achieved
asymptotically, we must use a finite-time approximation, after
no more than O(nω−1) time, so Algorithm 1 will have a runtime
of O(nω). As the value of ω ≥ 2 is not known, we use the
conservative bound of O(n).

Section V below, which discusses the robustness of Algo-
rithm 1, also gives an estimate on its error as a function of
measurement inaccuracies. Namely, Proposition 5 below shows
that we should measure the output when its distance from
the true steady state is bounded by O(n−0.5). In order to be
this close to the steady-state in O(n) time, the network must
have a convergence rate of no more than O(t−0.5). This is
certainly true for LTI networks satisfying Assumption 1, which
have an exponential rate of convergence. This is also true for
MANs with output-strictly MEIP agents and MEIP controllers,
as the “convergence profile” method described in [33, Section
VI] shows that under minor technical assumptions, the MAN
converges no slower than the solution of the ODE ṡ = −Csβ ,
where 0 < β < 2 depends on the observation function of the
agents and C > 0 depends on passivity coefficients. The case
β < 1 gives finite-time convergence, β = 1 gives exponential
convergence, and 1 < β < 2 gives polynomial convergence at
a rate of O(t−1/(β−1)) < O(t−0.5). In other cases, however, the
desired convergence rate can only be achieved by strengthening
Assumption 1 and explicitly demanding that the MAN has a
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convergence rate no slower than O(t−0.5). In all three cases, the
algorithm has a total runtime of O(nω).

As for determining when to declare that the network con-
verged to a steady state, there are many ways do so. For net-
works satisfying the same MEIP-based condition as above, the
“convergence profile” method described in [33, Section VI] can
be used to determine a stopping time, namely when the solution
of ṡ = −Csβ has become small enough. Another solution is to
stop running the network when ẏ (or ẋ) is small enough. Other
ways to determine the stopping time include computer-based
simulations, or even intuition based on the physical constants
affecting the agents’ dynamics.

V. ROBUSTNESS AND PRACTICAL CONSIDERATIONS

Algorithm 1 solves Problem 1, but does so under some strong
assumptions. First, it assumes the dynamics are noiseless and
disturbance-free, allowing it to converge to a constant steady
state. Second, it assumes the measurements taken are perfect and
are not subject to disturbances. Finally, it assumes the exogenous
input can be applied to all agents. This section is dedicated to
discuss these points, and to give a briefly compare the algorithm
to other methods described in the literature.

A. Robustness to Noise and Disturbances

We begin by studying how noise and disturbances affect the
output of the diffusively coupled network. Generally, if we
make no passivity assumption on the network, then it might
not converge in the presence of noise. One example of this
phenomenon is the consensus protocol [34], for which white
noise does not disturb the asymptotic convergence to consensus
(almost surely), but it does cause the consensus value to be
volatile. The consensus protocol can also be viewed as the MAN
with single-integrator agents and static gain controllers, meaning
it has passive agents and output-strictly passive controllers.
However, passivity can still be used for some form of noise-
and disturbance rejection.

Proposition 4: Consider a diffusively coupled network
(Gν ,Σ, g) with steady state (u, y, ζ,μ). Suppose that the agents
are output-strictly passive with respect to (ui, yi) with parame-
ters ρi > 0, and that the controllers are passive with respect to
(ζe,μe). Let S be the sum of the agents’ storage functions, and
denote R = diag(ρi) > 0. Let 0 < Δ ∈ R.

Consider a parasitic exogenous input d(t) to the agents,
so the input is u(t) = d(t)− EGμ(t), and assume that at any
time, ||R−1/2d(t)|| ≤ Δ holds. For any ς > 0, define Aς = {x :
‖R1/2(h(x)− y)‖ ≤ ς}, and letΞς = maxx∈Aς

S(x). Then for
any ε > 0 and any initial condition, there exists someT such that
if t > T , then ‖y(t)− y‖ ≤ maxx: S(x)≤ΞΔ+ε

‖h(x)− y‖.
Proof: Let v(t) = −EGμ(t). By definition of (output-strict)

passivity, we have that 0 ≤ ∑
e∈E(ζe − ζe)(μe − μe), and

d

dt
S(x) ≤

∑
i∈V

(−ρi‖yi − yi‖2 + (di + vi − ui)(yi − yi)
)

as v(t) = u(t)− d(t). Summing the equations and using v =
−EGμ, ζ = E�

G y, u = −EGμ and ζ = E�
G y yields

d

dt
S(x) = −(y − y)�R(y − y) + d(t)�(y − y)

= −||R1/2(y − y)||2 + (R−1/2d(t))�R1/2(y − y)

≤ −||R1/2(y − y)||2 +Δ‖R1/2(y − y)‖. (7)

We note that if ‖R1/2(y(t)− y)‖ > Δ+ ε, then the right-hand
side is bounded from above by −(ε+Δ)ε < 0. If this happens
indefinitely, we eventually reach S(x) < 0, which is absurd.
Thus, for some T > 0, we have ‖R1/2(y(T )− y)‖ ≤ Δ+ ε,
hence x(T ) ∈ AΔ+ε and S(x(T )) ≤ ΞΔ+ε.

We now claim that S(x(t)) ≤ ΞΔ+ε for all t > T . If not, we
find a time t1 in whichS(x(t1)) > ΞΔ+ε. By the same argument,
we find some time T ′ > t1 such that S(x(T ′)) ≤ ΞΔ+ε. The
functionS(x(t)) is continuous for timesT ≤ t ≤ T ′, so it attains
a maximum at some time t2 > T . As S(x(t1)) is larger than
S(x(T )), S(x(T ′)), the point t2 must be in the interior of the
interval between T and T ′, which implies that d

dtS(x(t)) = 0 at
t = t2. However, S(x(t2)) ≥ S(x(t1)) > ΞΔ+ε, so by defini-
tion of ΞΔ+ε, we must have x(t2) �∈ AΔ+ε, i.e., ‖R1/2(y(t2)−
y)‖ > Δ+ ε. In turn, this implies that d

dtS(x(t)) < 0 at t = t2
by (7). This is a contradiction, as we saw that d

dtS(x(t)) = 0 at
t = t2. Thus, S(x(t)) ≤ ΞΔ+ε for all t ≥ T . �

The proposition above shows that even in the presence of
disturbances or noise, the algorithm can sample the output y(t)
not too far from the true, disturbance-free steady-state output
y. This result will intertwine with Proposition 5, in which the
effects of measurement errors will be accounted for.

Remark 5: Proposition 4 does not distinguish between dis-
turbances and random noise. In practice, the bound is of the right
order of magnitude for disturbances, but is a gross overestimate
for noise. For example, consider a agents ẋ = −xi + ui, yi = xi

with weights νij = 0, where d(t) is chosen as random white
noise, bounded by C, and with variance σ2. Proposition 4
shows the agents converges to an output with |y(t)| ≤ C (as
ρ = 1). However, writing x(t) as a convolution integral and
applying Itô calculus [35] shows that E(x(t)) = 0 and that
Var(x(t)) ≤ σ2/2. Chebyshev’s inequality now gives a high-
probability bound on where x(t) can be, which is much better
than Proposition 4’s bound if σ � C.

We now shift our focus to measurement errors, which add
parasitic terms when defining the matrices δW , δY in Algorithm
1. We prove the following.

Proposition 5: Suppose Algorithm 1 builds the matrix
δY +ΔY instead of δY , due to measurement error. If ||ΔY || �
||δY ||, then the algorithm calculates a matrix M with ‖M −
M‖ ≤ O(

√
n(1 + maxi,j(νijdij)λmax(G)))‖ΔY δY −1‖, plus

the error term from Theorem 3.
The proof of the proposition can be found in Appendix B.
Remark 6: Proposition 5 gives bounds the error if a bound on

the relative measurement error is known. In some cases, we have
a bound on the absolute measurement error, e.g., Proposition
4. In that case, we have ‖ΔY δY −1‖ ≤ ‖δY −1‖‖ΔY ‖, where
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‖δY −1‖ can be bounded as in the proof of Theorem 3, i.e.,
‖δY −1‖ ≤ O(κ−1(1 + maxi,j(νijdij)λmax(G))).

B. Probing Inputs Supported on Subsets of Nodes

The previous section shows that the algorithm is somewhat
resistant to noise, either in the dynamics or the measurement.
We now move to the last major assumption, namely that the
exogenous input can be applied to all agents. There are two
possible ways to relax the assumption. First, we can apply
compressed sensing methods, using the sparsity of M ′, which
corresponds to a sparse graphG, similarly to [18], [19]. See [36],
for more on compressed sensing. Another approach is to still
try and use n different measurements, with exogenous inputs
supported only on � nodes. Indeed, in order to reconstruct the
matrix M ′, the vectors δy(1), . . . , δy(n) must span Rn. If the
steady state equation (4) is inherently nonlinear, then even when
the inputs are restricted to a subspace of dimension �, the outputs
can span all of Rn. Abstractly, we prove the following.

Proposition 6: Let F : Rd → Rn be any function, which
is (�+ 1)-times differentiable at w(0) ∈ Rd. Suppose the di-
mension of the subspace spanned by all partial derivatives
of F at w(0) up to order � is r, and denote the number of
these partial derivatives by s. Let P be any absolutely con-
tinuous probability measure on Rd, which is supported on a
small ball around w(0), and let w(1), . . . ,w(s) be i.i.d. sam-
ples of it. Then, with probability 1, the span of the vectors
F (w(1))− F (w(0)), . . . , F (w(s))− F (w(0)) has dimension r.
In particular, if r = n then they span all of Rn.

Before proving the theorem, we emphasize that the harsher
smoothness assumptions are made on the steady-state relation
k−1 and the interaction g, and that the agents’ dynamics might
still be nonsmooth. We also emphasize that these stricter as-
sumptions are only used for the proof, and Algorithm 1 would
still only use the first derivative of k−1 and g.

Proof: Suppose that P is supported inside a ball around
w(0) of radius κ � 1. By Taylor’s theorem, we can write
ΦF = DFW up to an error of order O(κ�+1), where ΦF is
the matrix whose columns are F (w(i))− F (w(0)), DF is the
matrix whose columns are all the partial derivatives of F at w(0)

up to order �, and W is a square matrix consisting of monomials
of the entries of w(i) − w(0) for i ∈ {1, . . . , s}. We assumed
that rank DF = r, and we aim to prove that rank ΦF = r.
This immediately follows if W is invertible, which we now
prove. Indeed, consider the map p : (Rd)s → Rn defined by
p(w(1), . . . ,w(s)) = detW . This is a nonzero polynomial in
w(1), . . . ,w(s), and W is invertible if and only if p �= 0. How-
ever, the collection of zeros of a nonzero polynomial is a zero-
measure set [37], and thus p �= 0 with probability 1, so W is
invertible with probability 1. �

Proposition 6 can be applied to the map F mapping w to y
according to (4). In some occasions, it can be hard to compute
the rank r, but one can use the proposition in a more data-driven
fashion—take s random samples w(0) + δw(i) near w(0), and
compute the s corresponding steady-state outputs y(0) + δy(i).
The rank r is computed using δy(i), and one can find the
connecting matrix M ′ using compressed sensing.

To conclude this section, we saw that the presented algo-
rithm can be applied in real-world scenarios, in which noise
and measuring errors exist, and not all nodes are susceptible
to controlled exogenous inputs. Other algorithms which use
probing inputs, or similar methods, rely on linearizing the
dynamics instead of the steady-state equation, using higher
order terms in the Taylor approximation, or assuming that the
dynamics are Lipschitz continuous [3], [18], [19], [20], [21].
Such methods cannot be applied if the dynamics are nonsmooth,
or even discontinuous, e.g., when dry friction is introduced [22],
or for some finite-time consensus protocols [23]. Moreover,
such methods are usually applied by measuring the network
at regularly scheduled intervals, which yields nearly identical
measurements if the dynamics are either very slow or that
convergence happens extremely quickly, thus wasting power on
unnecessary sensing and communication. On the contrary, these
methods work well for networks with relatively rich dynamics,
where useful measurements are gathered regularly.

In comparison, the presented algorithm can still be applied
in the case of nonsmooth or even discontinuous dynamics, so
long that the steady-state relations are differentiable. It will
not function as well in dynamics-rich networks, does not waste
unnecessary power for networks with slow dynamics, and will
perform superbly for networks which converge fast. Examples of
such networks include networks of autonomous vehicles trying
to coordinate their velocity for platooning. The network cannot
have rich dynamics due to safety constraints, and perturbations
from the desired platooning velocity should be very small.
Understanding these networks is key for traffic management,
and can form a first step in predicting traffic jams and accidents.
Other applications with similar conditions include multisatellite
arrays, UAVs, drones, and robots.

VI. TIME COMPLEXITY BOUNDS FOR THE NETWORK

IDENTIFICATION PROBLEM

In the previous sections, we presented an algorithm solving
the network identification problem in O(nω1) time using spe-
cially designed inputs. We ask ourselves if we can improve on
that. We first need to discretize our problem in order to fit it
into the standard complexity theory framework. The presented
algorithm, Algorithm 1, only measured the output of the net-
work, but we consider more general algorithms, which can also
measure the derivatives of the output.

Problem 2: We are given a diffusively coupled network
(Gν ,Σ, g) for known agents Σ and static controllers g. We are
also given an integer q > 0, such that if the input to the network
is aCq+1 signal, then the output is aCq signal.4 Find the weighted
graph Gν using measurements of the node outputs y(t) and their
derivatives dk

dtk
y(t) up to order q. The exogenous input signal

w(t) can be chosen as any Cq+1 signal. Furthermore, accessing
the measurements y(t) or changing the function describing
w(t) cannot be performed faster than at Δt-second intervals.
Moreover, the measured outputs y(t) are accurate up to a relative
error no larger than ε.

4This is weaker than assuming that the functions f, q, g, h are all smooth.
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After discretizing the problem, limiting the rate of mea-
surement and change in the input, we prove the following
theorem.

Theorem 4: Any (possibly randomized) algorithm solv-
ing Problem 2, estimating {νij} with some finite error (with
probability 1), must make n− 1 measurements in the worst
case. Moreover, if the algorithm is deterministic, its worst-case
complexity is at least Ω(nω1).

Corollary 1: By Remark 4, Algorithm 1 is optimal in terms
of computational time complexity.

The proof of the theorem relies on the following two lemmas.
Lemma 1: Let P ∈ Rm×m be a positive definite matrix, let

� > 0, and let w(t) be a Cq+1 signal. Consider the system ΣP :
ẋ = −�Px+ w, y = x. If � � 1

σ(P )Δt then for any 0 ≤ j ≤
q and any time T ≥ Δt, the equality djy

dtj (T ) =
1

P

−1 djw
dtj (T )

holds up to a relative error no larger than ε.
Lemma 2: Let P ∈ R(n−1)×(n−1) be a positive definite

matrix, let EKn
be the incidence matrix of the complete graph

on n edges, and let V ∈ R(n−1)×n be any matrix such that
V V � = Idn−1 and V 1n = 0. There exists a positive semidef-
inite matrix Q ∈ Rn×n and a positive-definite diagonal matrix
N such that Q = EKn

NE�
Kn

and P = VQV �.
The proof of Lemma 1 is very technical and is relegated to

Appendix C. We now prove Lemma 2.
Proof: DefineQ = V �PV ∈ Rn, which is positive semidef-

inite as P is positive definite. Moreover, we have

VQV � = V V �PV V � = Idn−1P Idn−1 = P

which proves the second claim. As for the first, define the matrix
N as follows—for each edge e = {i, j} in Kn, define the eth
diagonal entry ofN as−Qij = −Qji. Note that the off-diagonal
entries of Q are equal to the off-diagonal entries of EKn

NE�
Kn

,
as the latter is a weighted Laplacian. As for the diagonal entries,
1n is in the kernel of both EKn

NE�
Kn

and Q = V �PV . Thus,
the sum of the elements in each row of both matrices is zero,
meaning that

Qii = −
∑
j �=i

Qij , (EKn
NE�

Kn
)ii = −

∑
j �=i

(EKn
NE�

Kn
)ij .

Therefore, the diagonal entries are also equal. This implies that
Q = EKn

NE�
Kn

and completes the proof of the lemma. �
We now prove Theorem 4.
Proof: We first deal with a similar problem. We consider

a single agent with m inputs and m outputs, evolving accord-
ing to the equation ẋ = −f(x) + w, y = h(x). We are again
allowed to measure the output and its derivatives up to order
q, or change the Cq+1 function defining the input, no faster
than once every Δt seconds. Moreover, all measurements are
accurate up to a relative error of ε. Specifically, we choose
any positive-definite matrix P ∈ Rm×m and an arbitrary large
enough scalar � > 0, and consider the single agent ΣP with
m inputs and outputs, as defined in Lemma 1. We claim any
algorithm computing P with some finite error (with probability
1) must take at least m measurements in the worst case, and that
if the algorithm is deterministic, then its worst case complexity
is at least Ω(mω1). We will prove it below, but first show this

claim proves the theorem. Consider a network identification
problem with agents ẋi = ui, static controllers gij(x) = x, and
an underlying graph G = Kn., where the coupling matrix N
is unknown. The dynamics of the network can be written as
ẋ = −EKn

NE�
Kn

x+ w. We note that this system has two de-
coupled subsystems—one for the scalar 1�nx, and one for the
relative states vector Proj1⊥

n
x. Focusing on the latter, we consider

the matrix V ∈ R(n−1)×n having the following vectors as rows
for k = 1, . . . , n− 1:

v(k) =
1√

k2 + k
[1, . . . , 1︸ ︷︷ ︸

k times

,−k, 0, . . . , 0︸ ︷︷ ︸
n-k-1 times

].

It is easy to check thatV �V = Idn−1 and that 1n ∈ ker(V ). The
vector z = V x satisfies the ODE ż = −V EKNE�

KV �z + V w.
By Lemma 2, we get a general system of the form ΣP ,
where P can be any positive definite matrix, and reconstructing
P = V EKNE�

KV � is equivalent to reconstructingN . This com-
pletes the proof of the theorem, as here m = n− 1.

Now, return to the system identification problem for the sys-
temΣP . Consider any measurement made by the algorithm. Sup-
pose that at time T1 we measured the �th derivative of the output,
and let T0 be the last time the function describing the input w(t)
was changed. Noting that T1 − T0 ≥ Δt, we conclude that if �
is large enough then the measurement is equal to 1


P
−1 d�w

dt�
(T1)

up to a relative error of size ε. In particular, if � is sufficiently
large, all measurements made by the algorithm will be of the
form z(i) = 1


P
−1τ(i), where the vector τ(i) depends on w(t)

and can be calculated exactly. We first assume that less than m
measurement were made. Let z(1), . . . , z(r) be the measurements
and τ(1), . . . , τ(r) be the corresponding functions of the inputs.
If r < m, we can find a nonzero vector τ� which is orthogonal to
τ(1), . . . , τ(r). This means that the systems ΣP and ΣPα

where
Pα = (P−1 + ατ�τ

�
� )

−1 will yield the same measurements, and
we cannot differentiate between them. Moreover, the error can
be arbitrarily large for different values of α. Thus, any (possibly
randomized) algorithm solving the problem, estimating the sys-
tem matrix �P up to some finite error with probability 1, should
take at least m measurements. Now, the relationship between
1

τ

(i) and z(i) is linear, with the connecting matrix beingP−1, so
taking more than m measurements does not yield any additional
data. Hence, the algorithm takes measurements of P−1 times m
vectors, and returns the value of P . Thus, it solves the matrix
inversion problem for positive-definite matrices, and thus has
complexity of at least Ω(mω1). �

VII. NUMERICAL EXAMPLES

We now apply Algorithm 1 in two examples. The first consid-
ers a network of oscillators subject to dry friction, and the second
considers an opinion dynamics model in which the agents con-
verge to consensus in finite time. In both cases, the steady-state
relations are smooth, but the dynamics are discontinuous. In
particular, Algorithm 1 is applicable although other works in
the literature concerned with nonlinear agents, including [3],
[18], [19], [20], [21], are inapplicable.
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Fig. 2. Network identification of a network of oscillators with dry friction. (a) Adjacency Matrix of the Graph in the First Case Study. Yellow entries
are equal to 1, blue entries are equal to 0. (b) Estimation Errors of Coupling Strengths, as achieved by Algorithm 1.

Fig. 3. Network identification for a network of agents running a finite-time consensus protocol. (a) Adjacency Matrix of the Graph. Yellow entries
are equal to 1, blue entries are equal to 0. (b) Estimation Errors of Coupling Strengths, as achieved by Algorithm 1.

A. Oscillators With Dry Friction

We consider a network of n = 100 oscillators, affected by
dry friction [22]. These are governed by the equation ẍi +
Fisgn(ẋi) + ω2

i xi = ui, where xi is the position of the mass,Fi

is the dry friction term, ωi is the undamped angular frequency,
and ui is the input. The oscillators form a diffusively coupled
MAN on a graph G, in which each edge appears with prob-
ability p = 0.25 independently from all other edges, and the
edge controllers are static unit gains. We note that the agent
dynamics are not smooth, as the sgn function is discontinuous
at 0. However, the steady-state relation for the agents is given
by k−1

i (yi) = ω−2
i yi, which is smooth.

For our simulation, the parameters Fi, ωi were chosen log-
uniformly between 1 and 10, and the unknown coupling co-
efficients νij were chosen log-uniformly between 0.1 and 10.
Algorithm 1 was run with ε = 0.01 and κ = 0.1. Instead of
waiting for the convergence, the switching signal changed its
value every 100 s. The adjacency matrix of the randomly chosen
graph is available in Fig. 2(a). The algorithm correctly identified
all edges existing in G, and Fig. 2(b) shows the absolute and
relative errors calculating the weights νij . The maximal absolute
error is about 1.02× 10−6, and the maximal relative error is
about 1.21× 10−6.

B. Opinion Dynamics and Finite-Time Consensus

We consider a collection of n = 100 agents implementing the
finite-time consensus protocol for opinion dynamics appearing
in [23], given by ẋi = cisgn(−

∑n
j=1 lijxj) + wi, where ci

represents the conformity of the ith agent, and lij represents
the strength of the relationship between agents i and j. The
matrix L = (lij) is assumed to be a graph Laplacian of some
(undirected) graphG,L = EGNE�

G . This is a diffusively coupled
MAN with agents Σi : ẋi = sgn(ui), yi = xi and static gain
controllers equal toνij , i.e.,gij is the identity map. The dynamics
of the network are discontinuous, as sgn is discontinuous at 0.
However, the steady-state relations of the agents are given by
k−1
i (yi) = 0, and are therefore smooth.
For our simulation, we let G be a random graph on n = 100

nodes, in which each edge appears with probability p = 0.15,
independently from all other edges. The parameters ci were
chosen log-uniformly 0.1 between 10, and the weights νij were
chosen log-uniformly between 1 and 10. Algorithm 1 was run
with κ = 0.1 and ε = 0.01. As with the previous case study, we
did not wait for convergence, but instead changed the value of
the switching signal every 50 s. The adjacency matrix of the
randomly chosen graph is available in Fig. 3(a). The algorithm
correctly identified all edges existing in G, and Fig. 3(b) shows
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the absolute and relative errors calculating the weights νij . The
maximal absolute error is about 1.02× 10−5, and the maximal
relative error is about 2.92× 10−6.

VIII. CONCLUSION

In this article, we presented a network identification algorithm
using probing inputs, with no prior knowledge on the network
but only on the agents and the controllers. This was done by
injecting a prescribed switching signal, achieved for globally
converging networks, allowing identification of the underlying
network in a very general case. The resulting algorithm had sub-
cubic time complexity. We discussed the different assumptions
of the algorithm, and presented a lower bound on the complexity
of any algorithm solving the network identification problem,
proving that the presented algorithm is optimal in sense of time
complexity. We demonstrated the results in simulation, showing
the algorithm can be applied for large networks with nonsmooth
dynamics. While the analysis was carried out for the case of
SISO agents for the sake of simplicity, the ideas all generalize
easily to MIMO agents with equal input and output dimension,
with minor changes to Algorithm 1.

APPENDIX A
PROOF OF THEOREM 2

We start by stating and proving a lemma, which will allow us
to assume that k−1 and g are both differentiable at w(0).

Lemma 3: Suppose that the same assumptions as in Theorem
2 hold. Then, for any i ∈ {1, . . . , n} and any number x ∈ R, the
set S of all w ∈ Rn such that the solution y to w = k−1(y) +
EGNg(E�

G y) satisfies yi = x has measure zero.
Proof: We consider the map G : Rn → Rn defined by

G(y) = k−1(y) + EGNg(E�
G y). The relevant set S is the image

of R = {y ∈ Rn : yi = x} under G. The assumption on k−1, g
implies that G is continuous and piecewise smooth, hence
locally Lipschitz. Thus, G is absolutely continuous, sending
zero-measure sets to zero-measure sets. As R has measure zero,
we conclude that S also has measure zero. �

Corollary 2: Under the same assumptions as in Theorem 2,
with probability 1, the functions k−1 and g are twice differen-
tiable at y(0), E�

G y
(0), respectively, and the differential ∇g is a

positive-definite diagonal matrix.
We can now prove Theorem 2.
Proof: By Corollary 2, we can assume k−1 is twice differen-

tiable at y(0). Under this assumption, we can write the following
equation connecting δy(i) and δw(i) for i = 1, 2, . . . , n;

δw(i) =
[
∇k−1(y(0)) + EGN∇g(E�

G y
(0))E�

G
]
δy(i)

+O(‖δy(i)‖2)
which follows from Proposition 2 in the case ∇k−1(y(0)) �= 0
or i < n, and uses E�

G 1n = 0 otherwise. Because κ is small,
and k−1 and g are twice differentiable at y(0) and E�

G y
(0), we

can conclude that ‖δy(i)‖ = O(‖δw(i)‖). Thus, recalling the
definition of M, we can rewrite the previous equation as

δw(i) −O(‖δw(i)‖2) = Mδy(i). (8)

We first focus on the case ∇k−1(y(0)) �= 0. The matrix M
is invertible, as Assumption 2 implies that ∇k−1 ≥ 0,∇g ≥ 0

[11]. Thus, A is linearly independent if and only if the vectors
on the left-hand side of (8), κei − z(i) for some vectors z(i)

satisfying ||z(i)|| = O(κ2), are linearly independent. Thus, they
are linearly independent if κ small, and A is a basis.

As for the case∇k−1(y(0)) = 0, we note EGN∇g(E�
G y

(0))E�
G

preserves the space orthogonal to 1n. As δy(1), . . . , δy(n−1)

are orthogonal to δy(n) = κ1n, it is enough to show that
the former are linearly independent. Moreover, as the map
EGN∇g(E�

G y
(0))E�

G is invertible on the space 1⊥n , it is enough
to prove that the vectors on the left hand side of (8) are
linearly independent. However, these vectors are of the form
κ(ei − en)−O(κ2), which are linearly independent ifκ is small
enough, similarly to the first case. Thus, A is a basis. �

Remark 7: Note that we used the twice differentiability
assumption to get δy(i) = O(‖δw(i)‖). In particular, the error
rate in Proposition 2 is O(‖δw(i)‖2).

APPENDIX B
PROOFS OF ERROR BOUNDS

This appendix is dedicated to proving Theorem 3 and Propo-
sition 5. We start by stating and proving a lemma, which will
allow us to efficiently bound the term ‖δY −1‖.

Lemma 4: Let δW be the matrix computed by Algorithm
1. Then, it is the product of no more than O(n) elementary
matrices, and the operator norm of δW−1 is bounded by 2/κ.

Proof: If ∇k−1(y(0)) �= 0, then δW = κIdn, and the result
is clear. If ∇k−1(y(0)) = 0, then δW is equal to κF , where the
columns of F are given by ei − en for i = 1, . . . , n− 1 and
1n. Thus (δW )−1 = κ−1F−1, and it suffices to show that the
operator norm of F−1 is bounded by 2, and that F is the product
of no more than O(n) elementary matrices.

We run a Gaussian elimination procedure on the matrix F .
Each row operation corresponds to multiplication by an ele-
mentary matrix, so it suffices to show that the procedure halts
after O(n) steps. We first consider row operations of the form
Rn → Rn +Ri for i = 1, . . . , n− 1, i.e., adding row i to row
n. These are n− 1 total row operations, leaving all first n− 1
rows unaltered, and changing the last row of the matrix to
[0 · · · 0 n]. We now divide the nth row by n, which is
another row operation, altering the last row to [0 · · · 0 1].
Finally, we apply the row operations Ri → Ri −Rn for i =
1, . . . , n− 1. These operations nullify all nonzero off-diagonal
elements, achieving an identity matrix. Thus, we transformed
the matrix F to the identity matrix by applying a total of 2n− 1
row operations, hence F is the product of 2n− 1 elementary
matrices.

We now compute F−1 by applying the previous row opera-
tions, which transformed F to Idn, in order to transform Idn
to F−1. First, we applied the row operations Rn → Rn +Rj

for j = 1, . . . , n− 1. This leaves all rows but the last unal-
tered, and the last row becomes [1 · · · 1]. Then, we ap-
plied the row operation Rn → 1

nRn, dividing the last row by
n. Finally, we applied the row operations Rj → Rj −Rn for
j = 1, . . . , n− 1, subtracting 1

n [1 · · · 1] from each row but
the last. Thus, the matrix F−1 is the sum of two matrices
1
nξ1�n , where ξ = [−1, . . . ,−1, 1]�, and the diagonal matrix
I = Idn − ene

�
n , having all diagonal entries equal to 1, but theAuthorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 10:02:09 UTC from IEEE Xplore.  Restrictions apply. 
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last, which is equal to 0. We conclude

‖F−1‖ ≤ 1

n
‖ξ1�n‖+ ‖I‖ ≤ 1

n
‖1n‖‖ξ‖+ 1 = 1 + 1 = 2

completing the proof. �
We now prove Theorem 3:
Proof: We start by proving the floating point operations

estimate. The first part of the algorithm, before the for-loop,
takes O(n2) time, mostly to initialize δw(i) for i = 1, . . . , n.
The first for-loop takes O(n2) time, as in each iteration we store
y(i) in memory and multiply J(y(i) − y(0)), each taking O(n)
time, as J is either an identity matrix or a projection on 1⊥n .
The computation between the two for-loops takes O(nω) time.
Finally, the last for-loop also takes O(n2) time. The result is
now obtained since ω ≥ 2.

We now prove the error bound. By definition, the matrix
M ′ satisfies M ′δy(i) = δw(i) for i = 1 . . . , n. Using Corollary
2 and Remark 7, we conclude that for any i ∈ V , ‖δw(i) −
M′δy(i)‖ = O(‖δw(i)‖2), where M′ = M+Q. Thus, for any
i ∈ V , we have ‖(M ′ −M′)δy(i)‖ ≤ O(maxi ‖δw(i)‖2) =
O(κ2), and we conclude that

‖(M ′ −M′)δY ‖ ≤
√∑

i∈V

O(κ2)2 = O(
√
nκ2).

By submultiplicativity of the operator norm, we conclude
that ‖M ′ −M′‖ ≤ ‖(M ′ −M′)δY ‖‖δY −1‖, implying that
‖M ′ −M′‖ ≤ O(

√
nκ2‖δY −1‖). As M ′ −M′ = M −M,

we conclude that ‖M −M‖ ≤ O(
√
nκ2‖δY −1‖), yielding the

same bound for all entries |Mij −Mij |.
We now wish to estimate ‖δY −1‖. We define

δv(i) = M′δy(i) for i = 1, . . . , n, so (8) reads δv(i) =
δw(i) −O(κ2). Define δV = [δv(1) · · · δv(n)], so that
δV = δW −O(κ2). By multiplying both sides by δW−1 and
using Lemma 4, we conclude that δW−1δV = Idn −O(κ), or
equivalently, δV −1δW = Idn +O(κ). As δY −1 = M′δV −1,
we can again use the submultiplicativity of the operator norm

‖δY −1‖ ≤ ‖M′‖ · ‖δV −1‖ ≤ ‖M′‖ · ‖δV −1δW‖ · ‖δW−1‖.
We can now estimate each factor on its own. Lemma 4 implies
that ‖δW−1‖ = O(κ−1). Moreover, δW−1δV = Idn −O(κ)
implies that ‖δV −1δW‖ = 1 +O(κ). Finally, we have

‖M′‖ ≤ ‖∇k−1(y(0))‖+ ‖EGN∇g(E�
G y

(0))E�
G ‖+ ‖Q‖

≤ O(1) + max
i,j

(νijdij)λmax(G) +O(1)

where ‖Q‖ ≤ 1 in both cases Q = 0 and Q = 1
n1n1�n . �

We now move to proving Proposition 5:
Proof: It is enough to bound‖δW (δY −1 − (δY +ΔY )−1)‖.

Using the submultiplicativity of the operator norm, we can
bound each factor on its own. For the first factor, we note
that δW is either equal to κIdn, or to κ(Idn − en1�n +
1ne�n), depending on whether ∇k−1(y(0)) = 0 or not. In
both cases, ‖δW‖ ≤ κ

√
n. As for the second factor, we can

bound it as ‖δY −1‖‖Idn − (Idn +ΔY δY −1)−1‖. The assump-
tion ||ΔY || � ||δY || implies that (Idn +ΔY δY −1)−1≈ Idn−
ΔY δY −1 up to a second-order error, which in turn gives the de-
sired bound, as ‖δY −1‖≤O(κ−1(1+maxi,j(νijdij)λmax(G))),
see the proof of Theorem 3. �

APPENDIX C
PROOF OF LEMMA 1

Proof: The output y(t) at any time t can be written as a con-
volution integral, y(t) =

∫ t

0 e−
ξPw(t− ξ)dξ. By assumption,
w is continuously differentiable q + 1 times, so by Lagrange’s
form of the remainder in Taylor’s theorem, we have

w(t− ξ) =

q∑
j=0

(−1)j
djw(t)

dtj
ξj

j!
+

dq+1w(t̃)

dtq+1

(−ξ)q+1

(q + 1)!
(9)

for some point t̃ ∈ [t− ξ, t]. We plug this expression inside
the integral describing y(t). For the first q summands, we end

up with integrals of the form
∫ t

0 e−
ξP djw(t)
dtj

ξj

j! . The following
formula will be used to compute them [38, Formula 2.321.2]:

∫
xnecxdx = ecx

n∑
i=0

(−1)n−i n!

i!cn−i+1
xi + constant. (10)

The matrix P is positive-definite, so we can write it as
P =

∑m
k=1 λkvkv

�
k , where λk > 0 are P ’s eigenvalues and vk

are its eigenvectors satisfying ||vk|| = 1. For any ξ, �, we have
that e−
ξP =

∑m
k=1 e

−
λkξvkv
�
k . Thus, we have that

∫ t

0

e−
ξP djw(t)

dtj
ξj

j!
dξ =

m∑
k=1

vkv
�
k

j!

djw(t)

dtj

∫ t

0

e−
λkξξjdξ

=

m∑
k=1

vkv
�
k

j!

djw(t)

dtj

[
e−
λkξ

j∑
i=0

(−1)j−ij!

i!(−�λk)j−i+1
ξi

]t

ξ=0

=

m∑
k=1

vkv
�
k

j!

djw(t)

dtj

[
−e−
λkξ

j∑
i=0

j!

i!(�λk)j−i+1
ξi

]t

ξ=0

=

m∑
k=1

vkv
�
k

djw(t)

dtj

[
1

(�λk)j+1
− e−
λkt

j∑
i=0

ti

i!(�λk)j−i+1

]
.

Using functional calculus, we conclude the integral is equal to[
P−j−1


j+1 −∑j
i=0

tie−�tPP i−j−1

i!
j−i+1

]
djw(t)
dtj . By (9), we obtain

y(t) ≈
k∑

j=0

(−1)j

[
P−j−1

�j+1
−

j∑
i=0

tie−
tPP i−j−1

i!�j−i+1

]
djw(t)

dtj

(11)

with an error of the form
∫ t

0 e−
ξP dq+1w(t̃)
dtq+1

ξq+1

(q+1)! . We claim that

if � is large enough, then y(T ) = 1

P

−1w(T ) up to a relative
error of magnitude no larger than ε.

If T ≥ Δt and �σ(P ) � Δt, then 1

P

−1 ≈∑k
j=0(−1)j

[
P−j−1


j+1 −∑j
i=0

T ie−�tPP i−j−1

i!
j−i+1

]
, up to a relative

error of magnitude no larger than ε/2. Indeed, the jth

element in the sum behaves as O
(

1

j+1σ(P )j+1

)
plus a term

decreasing exponentially fast with � (for fixed P, T ). The error
term in (11) can also be bounded similarly—if we denote
μ = maxt∈[0,T ] ‖dq+1w(t)

dtq+1 ‖, then the norm of the error term in
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(11) is bounded by

M

∫ T

0

ξq+1‖e−
ξP ‖
(q + 1)!

dξ ≤ M

∫ T

0

ξq+1e−
σ(P )ξ

(q + 1)!
dξ

=
M

(q + 1)!

[
e−
σ(P )ξ

q+1∑
i=0

(−1)q+1−i(q + 1)!

i!(−�σ(P ))q+1−i+1
ξi

]T

ξ=0

=

[
−e−
σ(P )ξ

q+1∑
i=0

M

i!(�σ(P ))q+1−i+1
ξi

]T

ξ=0

=
M

(�σ(P ))q+2
− e−
σ(P )T

q+1∑
i=0

M

i!(�σ(P ))q+1−i+1
T i.

The first element is of order O( 1

q+2 ), and the second decays

exponentially with � (for fixed M,P, T ). Thus, if ρ is large
enough, then y(T ) = 1


P
−1w(T ), up to a relative error of order

of magnitude no larger than ε. More specifically, this happens
for any � > �0, where �0 is a threshold depending on the matrix
P , the sample time T ≥ Δt, and the signal w(t) (through M ).

As for derivatives ofy(t) at t = T , one can use the higher order
terms of (11) together with the error estimate and ẏ = −�Py +
w to conclude that dy

dt (T ) = −�Py(T ) + w(T ) = 1

P

−1 dw
dt (T )

up to a relative error of magnitude no larger than ε, provided that
� exceeds some threshold. Similarly, djy

dtj = −�P dj−1y
dtj−1 + dj−1w

dtj−1

for all integers 0 ≤ j ≤ q, allowing one to argue by induction
that djy

dtj (T ) =
1

P

−1 djw
dtj (T ) up to a relative error of magnitude

no larger than ε, provided that � is large enough. �
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